JPH0615115U - Control system of reactive power compensator - Google Patents

Control system of reactive power compensator

Info

Publication number
JPH0615115U
JPH0615115U JP5156692U JP5156692U JPH0615115U JP H0615115 U JPH0615115 U JP H0615115U JP 5156692 U JP5156692 U JP 5156692U JP 5156692 U JP5156692 U JP 5156692U JP H0615115 U JPH0615115 U JP H0615115U
Authority
JP
Japan
Prior art keywords
control
reactive power
tcr
load
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5156692U
Other languages
Japanese (ja)
Inventor
英機 山村
隆 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP5156692U priority Critical patent/JPH0615115U/en
Publication of JPH0615115U publication Critical patent/JPH0615115U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】 【目的】 アーク炉のような変動の激しい負荷のフリッ
カー対策を目的として、無効電力補償装置(SVC)の
サイリスタ制御リアクトル(TCR)の制御に、オープ
ンループ制御方式を採用した場合に、系統電圧VSと負
荷電流ILの波形の乱れ等の原因で、検出した負荷の無
効電力QLに誤差が含まれると、TCRの制御エラーが
生じ、電圧変動ΔVが残留する。この考案は、この制御
エラーを制御の高速性を確保しながら修正し、補償性能
を向上することを目的とする。 【構成】 主制御となるオープンループ制御に、系統の
トータルの無効電力QTを検出してフィードバック制御
する従制御を組合わせることにより、前者の制御エラー
として残留する系統の電圧変動ΔVを修正する。
(57) [Abstract] [Purpose] An open loop control system was adopted for the control of the thyristor control reactor (TCR) of the reactive power compensator (SVC) for the purpose of flicker countermeasures for highly variable loads such as arc furnaces. If, in the cause of disturbance in the waveform of the system voltage V S and the load current I L, when an error is included in the reactive power Q L of the detected load, caused control error in TCR, and the voltage variation ΔV remains. The present invention aims to correct this control error while ensuring high-speed control, and improve the compensation performance. [Structure] By combining open loop control, which is the main control, with slave control, which detects the total reactive power Q T of the grid and performs feedback control, the voltage fluctuation ΔV of the grid that remains as the former control error is corrected. .

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、負荷変動に対し、系統母線全体の無効電力が一定になるように補 償を行って、電圧変動を抑制する無効電力補償装置(以下SVCという)に関す る。 The present invention relates to a reactive power compensator (hereinafter referred to as SVC) that compensates for load fluctuations so that the reactive power of the entire system bus is constant and suppresses voltage fluctuations.

【0002】[0002]

【従来の技術】[Prior art]

SVCは、系統母線に接続されたサイリスタ制御リアクトル(以下TCR〔Th yristor Controled Reactor〕という)が発生する無効電力を、負荷変動に応じ て増減し、変電所等の電源が系統母線に供給する無効電力を一定化する。これに よって、系統の電源側回路におけるインピ−ダンス降下を一定化し、母線電圧の 変動を抑制する。 The SVC increases or decreases the reactive power generated by a thyristor-controlled reactor (TCR [Thyristor Controled Reactor]) connected to the system bus, and increases or decreases it according to the load fluctuation, and the power from a substation or the like supplies it to the system bus. Make the power constant. As a result, the impedance drop in the power supply side circuit of the system is made constant and the fluctuation of the bus voltage is suppressed.

【0003】 この電圧変動抑制の対象とする変動負荷は、例えば、アーク炉である。アーク 炉の電流は半サイクル毎に、かつランダムに、激しい変動を示す。このような電 圧変動を抑制するには、電流が変化した、そのサイクル内に、TCRを制御する 必要がある。そのため、帰還回路の時定数による検出遅れが致命的となるフィー ドバック制御は採用できず、高速制御が可能なオープンループ制御を採用し、商 用周波の半サイクル毎に、検出した負荷の無効電力QLで、TCRの発生する無 効電力QTCRを、決定・制御している。The fluctuating load targeted for voltage fluctuation suppression is, for example, an arc furnace. The electric current of the arc furnace shows a strong fluctuation every half cycle and randomly. In order to suppress such voltage fluctuation, it is necessary to control the TCR within the cycle in which the current changes. Therefore, the feedback control, which makes the detection delay due to the time constant of the feedback circuit fatal, cannot be adopted.The open loop control that enables high-speed control is adopted, and the reactive power of the detected load is detected every half cycle of the commercial frequency. in Q L, the reactive power Q TCR generated in TCR, and are determined and controlled.

【0004】 次に、従来のSVCの回路例を、図2に示し説明する。 図において、1は電源、2は電源および電源系統のインピ−ダンス、3は負荷 及びSVCが接続される母線、4はフリッカの発生源となる変動負荷を示す。Next, a circuit example of the conventional SVC will be described with reference to FIG. In the figure, 1 is a power supply, 2 is impedance of a power supply and a power supply system, 3 is a bus bar to which a load and SVC are connected, and 4 is a fluctuating load which is a source of flicker.

【0005】 5はSVC用リアクトルで、最近では変圧器の漏れインピーダンスを大きくし た高インピ−ダンス変圧器を用いる場合が多い。6はSVC用サイリスタ装置で 、5と6でTCRを構成する。7は進相コンデンサ設備で、TCRや負荷が発生 する高調波を吸収するフィルタ構成としている。8は負荷電流検出用のCT、9 は母線電圧検出用のPT、10はPTの電圧を90°遅らせる遅相回路、11は 負荷の無効電力(QL)を高速に検出するQL検出回路である。12はQL検出回 路11の出力する無効電力信号QLに応じてサイリスタの点弧パルス位相を決定 し、TCRの位相制御パルスを発生するパルス発生回路を示す。Reference numeral 5 denotes an SVC reactor, and recently, a high impedance transformer having a large leakage impedance of the transformer is often used. Reference numeral 6 is a thyristor device for SVC, and 5 and 6 constitute a TCR. Numeral 7 is a phase-advancing capacitor equipment, which has a filter structure that absorbs harmonics generated by TCR and load. 8 slow circuit CT, 9 is PT, 10 for bus voltage detection delaying 90 ° the voltage of PT for load current detection, Q L detection circuit for detecting the load of the reactive power of (Q L) in a high speed 11 Is. 12 shows the pulse generation circuit which determines the ignition pulse phase of the thyristor according to the reactive power signal Q L to the output of the Q L detection circuitry 11, which generates a phase control pulse TCR.

【0006】 上記構成は、商用周波の半サイクル毎に行われるTCRの位相制御において、 負荷の無効電力QLを母線電圧VSおよび負荷電流ILから求め、TCRの無効電 力QTCRを、所定のオフセット値からQLの大きさだけ減少させるもので、電源側 から見た無効電力QL+QTCRを、一定化して電圧変動を抑制する。[0006] The above arrangement, in the phase control of the TCR to be performed every half cycle of the commercial frequency, determine the reactive power Q L of the load from the bus voltage V S and the load current I L, the reactive power Q TCR of TCR, intended to reduce only the size of Q L from a predetermined offset value, the reactive power Q L + Q TCR with the power source side, to suppress a voltage variation and a constant reduction.

【0007】 なお、QL検出回路11における負荷の無効電力QLの算出は、例えば図示しな い乗算器とアクティブフィルタを用い、次の方法により行なわれている。 乗算器は、遅相回路10で90°遅らせた母線電圧VS′と負荷電流ILの瞬時 値を掛ける。この出力は、次式で表される。[0007] The calculation of the reactive power Q L of the load in the Q L detection circuit 11, using a multiplier and an active filter has for example shown, it has been made by the following method. The multiplier multiplies the bus voltage V S ′ delayed by 90 ° in the delay circuit 10 by the instantaneous value of the load current I L. This output is expressed by the following equation.

【数1】 [Equation 1]

【0008】 これは、図3に示すように、直流成分である無効電力(VS・IL・sinθ) に、商用周波の2倍周期の成分が重なったものである。As shown in FIG. 3, this is a component in which the reactive power (V S · I L · sin θ) which is a DC component is overlapped with a component having a double period of the commercial frequency.

【0009】 そこで、この2倍周期成分を、アクティブフィルタによって取除いて、検出遅 れなしに上記無効電力を出力させている。Therefore, the double cycle component is removed by an active filter, and the reactive power is output without delay in detection.

【0010】[0010]

【考案が解決しようとする課題】[Problems to be solved by the device]

上述したように、変動の激しい負荷に対するSVCの制御は、その変動を高速 に検知し、電流が変化した、そのサイクル内にTCRを制御しなければならない ため、オープンループ制御を採用している。 As described above, in the control of the SVC for a load that fluctuates significantly, the fluctuation must be detected at high speed and the TCR must be controlled within the cycle in which the current has changed, so open-loop control is adopted.

【0011】 しかし、このオープンループ制御は、TCRに発生させる無効電力QTCRが、 負荷の無効電力QLの演算値で直接決定されるので、高調波発生により系統電圧 VSと負荷電流ILの波形の乱れる等の原因で、演算したQLに誤差が含まれる場 合に、TCRの補償量にエラーが生じる。そして、変動負荷による電圧変動を完 全に抑制できず、母線3に電圧変動ΔVを残留させる欠点があった。[0011] However, this open-loop control, reactive power Q TCR to be generated in the TCR, since it is directly determined by the calculated value of the reactive power Q L of the load by harmonic generation and system voltage V S load current I L When the calculated Q L includes an error due to the disturbance of the waveform of, etc., an error occurs in the compensation amount of TCR. Further, there is a drawback that the voltage fluctuation due to the fluctuating load cannot be completely suppressed and the voltage fluctuation ΔV remains on the bus bar 3.

【0012】 この残留した電圧変動ΔVは、制御結果を制御側にフィードバックしないオー プンループ制御では、原理的に取除けない。In principle, the remaining voltage fluctuation ΔV cannot be removed by the open loop control in which the control result is not fed back to the control side.

【0013】 そこで、この考案は、このように残留していた電圧変動ΔVを、高速制御が可 能な上記オープンループ制御を行いながら除去できる制御方式を提供することを 目的とする。Therefore, an object of the present invention is to provide a control method capable of removing the residual voltage fluctuation ΔV while performing the open loop control capable of high-speed control.

【0014】[0014]

【課題を解決するための手段】[Means for Solving the Problems]

この考案が提供する無効電力補償装置の制御方式は、母線に接続された変動負 荷の無効電力を検出し、これが打消されるように、サイリスタ制御リアクトルが 母線に供給する無効電力を増減して、系統母線の電圧変動を抑制する無効電力補 償装置において、 The control system of the reactive power compensator provided by this device detects the reactive power of the fluctuating load connected to the bus and increases or decreases the reactive power supplied to the bus by the thyristor control reactor so as to cancel it. In a reactive power compensation device that suppresses voltage fluctuations on the system bus,

【0015】 負荷の無効電力QLを検出した主制御信号とは別に、系統全体(負荷の無効電 力QLと無効電力補償装置の発生する補償無効電力QSVC)の合成無効電力QTを 検出し、これを一次遅れ要素に通したものを制御誤差補正用の従制御信号として 取り出し、 上記主制御信号と従制御信号の加算値で、上記サイリスタ制御リアクトルの位 相制御を行なうようにしたことを特徴とする。[0015] Apart from the main control signal detected reactive power Q L of the load, a synthetic reactive power Q T of the entire system (the compensation reactive power Q SVC generated by the reactive power Q L and reactive power compensator of the load) It is detected and passed through a first-order lag element and extracted as a slave control signal for control error correction, and the phase control of the thyristor control reactor is performed by the added value of the master control signal and slave control signal. It is characterized by

【0016】[0016]

【作用】[Action]

演算・検出された変動負荷の無効電力QLは、主制御信号として、TCRのオ ープンループの位相制御に使用され、商用周波の半サイクル毎に負荷電流ILに 対応した高速制御を行い、急激な負荷変動に対応した電圧変動抑制を行う。Reactive power Q L of the operation-detected variable load as a main control signal is used to phase control Oh Punrupu in TCR, and every half-cycle of the commercial frequency provides fast control corresponding to the load current I L, abruptly It suppresses voltage fluctuations corresponding to various load fluctuations.

【0017】 これとは別に検出される系統全体の無効電力(負荷の無効電力とSVCの合成 無効電力QT)は、この主制御の誤差分を表している。 これを上記主制御信号に加算してTCRの位相制御を行えば、電圧変動の残留 を除去できるわけである。Aside from this, the reactive power of the entire system (combined reactive power Q T of the reactive power of the load and the SVC) detected separately represents the error amount of this main control. By adding this to the main control signal to control the phase of the TCR, the residual voltage fluctuation can be removed.

【0018】 しかし、この合成無効電力QTは、制御対象であるTCRの発生する無効電力 QTCRを含むので、これを直接フィードバックするとハンチングを起す結果とな る。そこで、一次遅れ要素を通し、従制御信号として、主制御信号に加える。However, since this combined reactive power Q T includes the reactive power Q TCR generated by the TCR that is the control target, direct feedback of this results in hunting. Therefore, it is added to the main control signal as a slave control signal through a first-order delay element.

【0019】 これによって、残留していた電圧変動は、一次遅れ要素の増幅率と時定数で決 まる所定の感度と応答性をもって取除かれ、電圧変動抑制の精度を向上させる。As a result, the remaining voltage fluctuation is removed with a predetermined sensitivity and responsiveness determined by the amplification factor of the first-order lag element and the time constant, and the accuracy of voltage fluctuation suppression is improved.

【0020】[0020]

【実施例】【Example】

この考案を、図1に示す一実施例について説明する。図1において、図2と同 一符号を付した部分は同等物を示し、以下追加された部分を説明する。 This invention will be described with reference to an embodiment shown in FIG. In FIG. 1, the parts designated by the same reference numerals as those in FIG. 2 indicate the equivalent parts, and the added parts will be described below.

【0021】 13は負荷4とSVCの合成電流Iを検出するCT、14は負荷4とSVCの 合成の無効電力(QT)を検出するQT検出回路で、この検出原理は従来例で説明 したQL検出回路11における無効電力QLの算出法と同じである。Reference numeral 13 is a CT that detects a combined current I of the load 4 and SVC, and 14 is a Q T detection circuit that detects a reactive power (Q T ) of the combination of the load 4 and the SVC. is the same as the method for calculating the reactive power Q L in Q L detection circuit 11 that.

【0022】 15は1次遅れ要素からなる平均値検出回路で、QT検出回路14の出力信号 (QT)の平均値を、従制御信号として出力する。この平均値の検出スピード( 応答性)及び感度(ゲイン)は伝達関数K/(1+ST)のTとKによって決定 され、これらの調整により制御状態を最適化する。 16は加算回路で、主制御信号であるQL検出回路11の出力信号(QL)と、 従制御信号である平均値検出回路15の出力信号(QT)を加算する。Reference numeral 15 is an average value detection circuit composed of a first-order lag element, which outputs the average value of the output signal (Q T ) of the Q T detection circuit 14 as a slave control signal. The detection speed (responsiveness) and sensitivity (gain) of this average value are determined by T and K of the transfer function K / (1 + ST), and the control state is optimized by these adjustments. 16 is a summing circuit, for adding as a main control signal Q L detection circuit 11 output signal (Q L), the output signal of the average value detecting circuit 15 is a slave control signal (Q T).

【0023】 17はバイアス回路で、そのバイアス電圧VBを、上記加算回路16に減算す る極性で加えている。これは、制御信号から、系統母線3にブランチする進相分 をカットするためのものである。すなわち、電源に流れる残留電流には、SVC や負荷4に接続される進相コンデンサの電流が含まれ、この電流による無効電力 は、負荷4やTCRの無効電力と極性が反対で、一定の無効電力として流れ、丁 度QTにバイアスがかかったのと同じ働きとして表れ、QT検出にとって不要な信 号であるため、この進相無効電力に相当する信号をキャンセルしている。Reference numeral 17 denotes a bias circuit, which adds the bias voltage V B to the adder circuit 16 with a polarity to be subtracted. This is for cutting the phase-advancing component branched to the system bus 3 from the control signal. That is, the residual current flowing in the power supply includes the current of the phase-advancing capacitor connected to the SVC and the load 4, and the reactive power due to this current has a polarity opposite to that of the reactive power of the load 4 and the TCR and a certain reactive It flows as power, appear as the same function as the biased Ding degree Q T, since it is unnecessary signal for Q T detected, and cancel the signal corresponding to the phase advancing reactive power.

【0024】 パルス発生回路12は、加算回路16の出力信号を基に、サイリスタ回路6の トリガパルスを発生する。したがってTCRは、従来から用いられている主制御 信号であるQL信号、この考案で付加されたQT信号およびバイアス電圧VBの合 成信号により制御されることになる。The pulse generating circuit 12 generates a trigger pulse for the thyristor circuit 6 based on the output signal of the adding circuit 16. Thus the TCR, Q L signal which is a main control signal which has been conventionally used, is to be controlled by the synthesis signal Q T signals and bias voltage V B that is added in this invention.

【0025】 上記構成において、CT8で検出された負荷電流ILと、遅相回路10で90 °遅らせたPT9の出力電圧VS′からQL検出回路11が算出した負荷の無効電 力QLは、主制御信号として、パルス発生回路12に与えられ、従来と同様にT CRをオープンループで制御する。この主制御ルートは、QL検出回路11の演 算遅れが無視できる程度に小さいので高速である。[0025] In the above structure, the load current I L is detected by the CT8, reactive power Q L of the load calculated QL detection circuit 11 from the slow circuit 10 at 90 ° the output voltage V S of PT9 that delayed 'is , Is supplied to the pulse generation circuit 12 as a main control signal and controls the TCR in an open loop as in the conventional case. The main control route is faster because computation delay of Q L detection circuit 11 is negligibly small.

【0026】 この主制御ルートのみで制御した場合に、TCRが負荷電流を完全に補償でき ず、電源1に負荷電流の残留電流が流れることによって生じる母線3の残留電圧 ΔVは、電源の残留無効電力QTの平均値をパルス発生回路12に与える従制御 ルートによって解消する。すなわちCT13によって、負荷電流ILとSVC電 流ISVCの合成電流Iを検出し、この合成電流Iと遅相回路10で90°遅らせ たPT9の出力電圧VS′からQT検出回路14と平均値検出回路15が算出した 負荷の無効電力QTの平均値は、パルス発生回路12に与えられ、所定の応答性 と感度で、上記母線3の残留電圧ΔVを取除く。When the control is performed only by this main control route, the TCR cannot completely compensate the load current, and the residual voltage ΔV of the bus 3 caused by the residual current of the load current flowing in the power source 1 is the residual voltage of the power source. The average value of the electric power Q T is canceled by the slave control route which gives the pulse generating circuit 12. That is, the combined current I of the load current I L and the SVC current I SVC is detected by the CT 13, and the combined current I and the output voltage V S ′ of the PT 9 delayed by 90 ° in the phase delay circuit 10 are changed to the Q T detection circuit 14. The average value of the reactive power Q T of the load calculated by the average value detection circuit 15 is given to the pulse generation circuit 12, and the residual voltage ΔV of the bus bar 3 is removed with a predetermined response and sensitivity.

【0027】 ここで、フィードバック制御となる従制御ルートの平均値検出回路15は一次 遅れ要素を持ち、フィードバック信号であるQT検出信号に直接の制御対象であ るTCR電流ITCRが含まれていることによるハンチングを防止している。Here, the average value detection circuit 15 of the secondary control route for feedback control has a first-order lag element, and the Q T detection signal which is a feedback signal includes the TCR current I TCR which is a direct control target. Prevents hunting due to the presence of

【0028】 以上の構成でTCRを制御することによって、従来補償できずに残留していた 無効電力を小さくし、制御精度を向上できる。By controlling the TCR with the above-described configuration, it is possible to reduce the reactive power that remains uncompensated in the past and reduce the control accuracy.

【0029】[0029]

【考案の効果】[Effect of device]

この考案によれば、応答速度を確保するため主制御として採用されるオープン ループ制御において生じる誤差を、従制御であるフィードバック制御によって修 正し、補償性能、すなわち電圧変動抑制効果を向上できる。 According to this invention, the error that occurs in the open loop control that is adopted as the main control to secure the response speed can be corrected by the feedback control that is the sub control, and the compensation performance, that is, the voltage fluctuation suppressing effect can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例を説明する制御回路の構成
例を示す図
FIG. 1 is a diagram showing a configuration example of a control circuit for explaining an embodiment of the present invention.

【図2】従来の制御方式を説明する制御回路を示す図FIG. 2 is a diagram showing a control circuit for explaining a conventional control method.

【図3】無効電力算出の原理を説明する波形図FIG. 3 is a waveform diagram illustrating the principle of reactive power calculation.

【符号の説明】[Explanation of symbols]

1 電源 2 電源側インピ−ダンス 3 母線 4 変動負荷 5 SVC用リアクトル 6 SVC用サイリスタ装置 10 遅相回路 11 QL検出回路 12 パルス発生回路 14 QT検出回路 15 平均値検出回路(1次遅れ要素) 16 加算回路 QL 主制御信号となる負荷の無効電力 QT 従制御信号で系統全体の無効電力1 power supply 2 power supply side Inpi - Dance 3 busbar 4 variable load 5 SVC reactor 6 SVC thyristor device 10 slow circuit 11 Q L detection circuit 12 pulse generator 14 Q T detector 15 the average value detecting circuit (primary delay element ) 16 adder circuit Q L main control signal and becomes load reactive power Q T従制reactive power of the entire system at the control signal

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 母線に接続された変動負荷の無効電力Q
Lを検出し、これに対応する大きさで、サイリスタ制御
リアクトルが母線に供給する無効電力QTCRを増減し
て、系統母線の電圧変動を抑制する無効電力補償装置に
おいて、 負荷の無効電力QLを検出した主制御信号とは別に、系
統全体の合成無効電力QTを検出し、これを一次遅れ要
素に通したものを制御誤差修正用の従制御信号として取
り出し、 上記主制御信号と従制御信号の加算値で、上記サイリス
タ制御リアクトルの位相制御を行なうようにしたことを
特徴とする無効電力補償装置の制御方式。
1. A reactive power Q of a fluctuating load connected to a bus bar.
Detecting L, and the a size corresponding thereto, by increasing or decreasing the reactive power Q TCR thyristor controlled reactor is supplied to the bus, the reactive power compensator for suppressing a voltage fluctuation of the system bus, invalid load power Q L In addition to the main control signal that detected, the combined reactive power Q T of the entire system was detected, and the one that passed through the primary delay element was taken out as a slave control signal for correcting the control error. A control system for a reactive power compensator, characterized in that the phase of the thyristor control reactor is controlled by the added value of signals.
JP5156692U 1992-07-23 1992-07-23 Control system of reactive power compensator Withdrawn JPH0615115U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156692U JPH0615115U (en) 1992-07-23 1992-07-23 Control system of reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156692U JPH0615115U (en) 1992-07-23 1992-07-23 Control system of reactive power compensator

Publications (1)

Publication Number Publication Date
JPH0615115U true JPH0615115U (en) 1994-02-25

Family

ID=12890523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156692U Withdrawn JPH0615115U (en) 1992-07-23 1992-07-23 Control system of reactive power compensator

Country Status (1)

Country Link
JP (1) JPH0615115U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923585A (en) * 1995-07-07 1997-01-21 East Japan Railway Co Control of reactive power compensation
JP2008210145A (en) * 2007-02-26 2008-09-11 Central Res Inst Of Electric Power Ind Control method for power conversion system, and power conversion system using control method
JP2013118804A (en) * 2011-10-31 2013-06-13 Panasonic Corp Voltage control device, voltage control method, power adjustment device, and voltage control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923585A (en) * 1995-07-07 1997-01-21 East Japan Railway Co Control of reactive power compensation
JP2008210145A (en) * 2007-02-26 2008-09-11 Central Res Inst Of Electric Power Ind Control method for power conversion system, and power conversion system using control method
JP2013118804A (en) * 2011-10-31 2013-06-13 Panasonic Corp Voltage control device, voltage control method, power adjustment device, and voltage control program

Similar Documents

Publication Publication Date Title
JP4614439B2 (en) Uninterruptible power supply and input current control method thereof
JPH06233464A (en) Apparatus for suppressing voltage fluctuations and harmonics
JPH0615115U (en) Control system of reactive power compensator
JP2674402B2 (en) Parallel operation control device for AC output converter
JP3343711B2 (en) Static var compensator
JPH0687631B2 (en) Control Method of Active Filter in Reactive Power Compensation System
JP2001211551A (en) Voltage-compensation device
JPH0947040A (en) Dc flow-out correction circuit for transformerless inverter
JPH03222016A (en) Control system for reactive power compensator
JPS6295618A (en) Reactive power compensating device
JPH0731301Y2 (en) Controller for reactive power compensator
JP3125354B2 (en) Active filter control device
JP2000152504A (en) Reactive power compensating device
JPH0923585A (en) Control of reactive power compensation
JP2581459Y2 (en) Control method of voltage fluctuation suppression device
JPH0711847U (en) Control method of voltage fluctuation suppression device
JPH0736138B2 (en) Reactive power compensator
JPH0625911U (en) Reactive power compensator
JP2792085B2 (en) Control method of reactive power compensator
JP3128985B2 (en) Control circuit of harmonic compensator
JPH0713014U (en) Control method of voltage fluctuation suppression device
JPH07212976A (en) Controller of voltage fluctuation handling equipment
JP2551206B2 (en) Control method of reactive power compensator
JPH09201071A (en) Control method for self-excited reactive power compensation apparatus
JPS6368916A (en) Controller for reactive power compensation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19961003