JP2008210145A - Control method for power conversion system, and power conversion system using control method - Google Patents

Control method for power conversion system, and power conversion system using control method Download PDF

Info

Publication number
JP2008210145A
JP2008210145A JP2007046170A JP2007046170A JP2008210145A JP 2008210145 A JP2008210145 A JP 2008210145A JP 2007046170 A JP2007046170 A JP 2007046170A JP 2007046170 A JP2007046170 A JP 2007046170A JP 2008210145 A JP2008210145 A JP 2008210145A
Authority
JP
Japan
Prior art keywords
current
fluctuation
reactive current
reactive
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007046170A
Other languages
Japanese (ja)
Other versions
JP4805186B2 (en
Inventor
Naoki Giho
直樹 宜保
Kiyoshi Takenaka
清 竹中
Kenji Yukihira
謙二 雪平
Nobuhiko Hatano
伸彦 羽田野
Katsuhiko Kochi
勝彦 胡内
Yasunori Takeuchi
保憲 武内
Hironori Kadoi
弘典 角井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Chugoku Electric Power Co Inc
Original Assignee
Central Research Institute of Electric Power Industry
Kansai Electric Power Co Inc
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kansai Electric Power Co Inc, Chugoku Electric Power Co Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007046170A priority Critical patent/JP4805186B2/en
Publication of JP2008210145A publication Critical patent/JP2008210145A/en
Application granted granted Critical
Publication of JP4805186B2 publication Critical patent/JP4805186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress voltage flickers which are generated by an arc furnace, a rolling mill, or the like, and in which a plurality of frequency components coexist, in a power conversion system. <P>SOLUTION: Voltage fluctuations are adjusted by synthesizing: fluctuation adjustment for calculating a feedforward loop canceling current command value Iref1, by calculating a canceling current Ifr from a current If before fluctuation adjustment, and performing dq inverse transformation on the difference ΔI1 between an output Ifr' obtained by applying a feedforward filter 2 to the canceling current Ifr and a command 5 for suppressing current fluctuation to zero; and fluctuation adjustment for calculating a feedback loop canceling current command value Iref2, by calculating a canceling current Ibr from a current Ib after the fluctuation adjustment, and performing the dq inverse transformation on an output Iref2' after the stabilization of the feedback loop for the difference ΔI2 between an output Ibr' obtained by applying a feedback filter 4 to the canceling current Ibr and a command 6 for suppressing current fluctuation to zero. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力変換システムの制御方法並びにその制御方法を用いた電力変換システムに関する。さらに詳述すると、本発明は、電圧フリッカの対策に用いて好適な電力変換システムの制御方法並びにその制御方法を用いた電力変換システムに関する。   The present invention relates to a power conversion system control method and a power conversion system using the control method. More specifically, the present invention relates to a method for controlling a power conversion system suitable for use as a countermeasure for voltage flicker, and a power conversion system using the control method.

本明細書において、電圧フリッカとは、10Hz成分前後で振動する電圧成分を意味するものとして用いている。   In this specification, voltage flicker is used to mean a voltage component that oscillates around a 10 Hz component.

アーク炉や圧延機などによって生じる電圧フリッカは照明のちらつき等を引き起こすという問題がある。このため、電圧変動を効果的に抑制することが必要とされる。   There is a problem that voltage flicker generated by an arc furnace or a rolling mill causes flickering of illumination. For this reason, it is necessary to effectively suppress voltage fluctuation.

従来の電圧変動を抑制する技術としては、例えば無効電力補償装置の制御方式がある(特許文献1)。この制御方式は、図3に示すように、系統母線101に接続された変動負荷102の無効電力QLを検出すると共にこれに対応する大きさでサイリスタ制御リアクトルTCRが系統母線101に供給する無効電力QTCRを増減して系統母線101の電圧Vsの変動を抑制する無効電力補償装置SVCにおいて、変動負荷102の無効電力QLを検出した主制御信号とは別に、系統全体の合成無効電力QTを検出すると共にこれを一次遅れ要素103に通したものを制御誤差修正用の従制御信号として取り出し、主制御信号と従制御信号との加算値でサイリスタ制御リアクトルTCRの位相制御を行なうものである。
実開平6−15115
As a conventional technique for suppressing voltage fluctuation, for example, there is a control method of a reactive power compensator (Patent Document 1). As shown in FIG. 3, this control method detects the reactive power QL of the variable load 102 connected to the system bus 101 and supplies the reactive power supplied to the system bus 101 by the thyristor control reactor TCR with a size corresponding to this. In the reactive power compensator SVC that suppresses fluctuations in the voltage Vs of the system bus 101 by increasing / decreasing QTCR, the combined reactive power QT of the entire system is detected separately from the main control signal that has detected the reactive power QL of the variable load 102. At the same time, a signal obtained by passing this through the first-order lag element 103 is taken out as a sub control signal for correcting the control error, and the phase control of the thyristor control reactor TCR is performed by the added value of the main control signal and the sub control signal.
6-15115

しかしながら、特許文献1の無効電力補償装置の制御方式は、アーク炉などの変動負荷102の状態量を直接検出してそれをキャンセルするフィードフォワード方式と、キャンセルした後の系統母線101の状態量をフィードバックする方式とを同時に活用して電圧変動を抑制するようにしているが、各方式それぞれにおいて視感度曲線に適応するように設定されたフィルタを適用したものではないために電力変換装置の性能を十分に活用するものとなっていない。このため、複数の周波数成分が混在している電圧フリッカへの対応が十分とは言えず、特許文献1の無効電力補償装置によって電圧フリッカを効果的に抑制することができるとは言い難い。   However, the control method of the reactive power compensator of Patent Document 1 includes a feedforward method in which the state quantity of the variable load 102 such as an arc furnace is directly detected and canceled, and the state quantity of the system bus 101 after the cancellation. Although the voltage fluctuation is suppressed by utilizing the feedback method at the same time, the performance of the power converter is not improved because the filter set to adapt to the visibility curve in each method is not applied. It has not been fully utilized. For this reason, it cannot be said that it is sufficient to cope with voltage flicker in which a plurality of frequency components are mixed, and it is difficult to say that voltage flicker can be effectively suppressed by the reactive power compensator of Patent Document 1.

なお、視感度曲線(ちらつき視感度曲線とも呼ばれる)とは、図2に示す曲線であって、電圧が変動することによって照明のちらつきを感じる人の周波数ごとの割合を表す曲線のことである(例えば、電力系統利用協議会:電力系統利用協議会ルール,平成18年6月13日 第8回改正,p.44)。   Note that the visibility curve (also referred to as flicker visibility curve) is a curve shown in FIG. 2, and is a curve representing a ratio for each frequency of a person who feels illumination flicker due to voltage fluctuation ( For example, Electricity System Utilization Council: Rules for Electricity System Utilization Council, June 13, 2006, 8th revision, p.44).

また、フィードバック方式を活用して電圧変動を抑制する場合には時間遅れを伴った制御状態量を用いることとなるためにフィードバックループの安定性を考慮して安定化補償装置を導入する必要がある。しかしながら、特許文献1の無効電力補償装置の制御方式は、安定化補償装置を有しないためにフィードバック系の安定性を十分に考慮した制御方法とは言えず、このためにフィードバック方式のキャンセル効果が小さくなって電圧変動抑制効果が小さくなり、電圧フリッカ制御の精度が高いとは言い難い。   In addition, when the voltage fluctuation is suppressed by utilizing the feedback method, a control state quantity with a time delay is used. Therefore, it is necessary to introduce a stabilization compensator in consideration of the stability of the feedback loop. . However, the control method of the reactive power compensator of Patent Document 1 is not a control method that sufficiently considers the stability of the feedback system because it does not have a stabilization compensator, and for this reason, the cancellation effect of the feedback method is not effective. It is difficult to say that the accuracy of voltage flicker control is high because the voltage fluctuation suppressing effect is reduced and the voltage flicker control effect is reduced.

さらに、特許文献1の制御方式では、無効電力補償装置の制御に用いる状態量として無効電力を演算して用いるようにしており、この場合には電圧及び電流の二つの情報を用いるために電圧の検出誤差と電流の検出誤差とが掛け合わされて大きなノイズとして現れるという問題があり、電圧フリッカ制御の精度が高いとは言い難い。   Furthermore, in the control method of Patent Document 1, reactive power is calculated and used as a state quantity used for controlling the reactive power compensator. In this case, the voltage information is used to use two pieces of information, voltage and current. There is a problem that the detection error and the current detection error are multiplied to appear as large noise, and it is difficult to say that the accuracy of voltage flicker control is high.

そこで、本発明は、電圧変動を抑制する電力変換システムにおいて、フィードフォワード方式とフィードバック方式とを同時に活用してアーク炉や圧延機などによって生じ複数の周波数成分が混在している電圧フリッカを特に効果的に抑制することができる電力変換システムの制御方法並びにその制御方法を用いた電力変換システムを提供することを目的とする。   Therefore, the present invention is particularly effective in a power conversion system that suppresses voltage fluctuations by using a feed-forward method and a feedback method at the same time to produce a voltage flicker that is generated by an arc furnace, a rolling mill, or the like and that includes a plurality of frequency components. It is an object of the present invention to provide a control method for a power conversion system that can be controlled in a controlled manner and a power conversion system using the control method.

かかる目的を達成するため、請求項1記載の電力変換システムの制御方法は、母線の変動調整前の電流を検出しdq変換を行って無効電流を算出すると共に該変動調整前の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードフォワードフィルタを変動調整前の無効電流に適用して得られる出力とフィードフォワードループの電流変動をゼロに抑える指令との差分にdq逆変換を行うことでフィードフォワードループ無効電流指令値を算出するフィードフォワード方式の変動調整と、母線の変動調整後の電流を検出しdq変換を行って無効電流を算出すると共に該変動調整後の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードバックフィルタを変動調整後の無効電流に適用して得られる出力とフィードバックループの電流変動をゼロに抑える指令との差分についてのフィードバックループの安定化後の出力にdq逆変換を行うことでフィードバックループ無効電流指令値を算出するフィードバック方式の変動調整とを合成して母線の電圧変動を調整するようにしている。   In order to achieve this object, the control method of the power conversion system according to claim 1 detects the current before fluctuation adjustment of the bus, performs dq conversion to calculate the reactive current, and calculates the reactive current before the fluctuation adjustment. The difference between the output obtained by applying the feedforward filter set according to the visibility curve used for calculating the ΔV10 calculation value to the reactive current before fluctuation adjustment and the command for suppressing the current fluctuation of the feedforward loop to zero Fluctuation adjustment of the feedforward method for calculating the feedforward loop reactive current command value by performing dq reverse transformation, and detecting the current after adjusting the fluctuation of the bus and performing dq transformation to calculate the reactive current and after the fluctuation adjustment The feedback filter that is set according to the visibility curve used for calculating the calculated value of ΔV10 for the reactive current is changed to the reactive current after fluctuation adjustment. A feedback method for calculating a feedback loop reactive current command value by performing dq inverse transformation on the output after stabilization of the feedback loop with respect to the difference between the output obtained by applying and the command for suppressing the current fluctuation of the feedback loop to zero. The fluctuation of the bus voltage is adjusted by combining the fluctuation adjustment.

また、請求項2記載の電力変換システムは、母線の変動調整前の電流を検出する第一の変流器と、変動調整前の電流についてdq変換を行って無効電流を算出する第一のdq変換装置と、変動調整前の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードフォワードフィルタと、変動調整前の無効電流にフィードフォワードフィルタを適用した後の無効電流とフィードフォワードループの電流変動をゼロに抑える指令との差分にdq逆変換を行ってフィードフォワードループ無効電流指令値を算出する第一のdq逆変換装置と、母線の変動調整後の電流を検出する第二の変流器と、変動調整後の電流についてdq変換を行って無効電流を算出する第二のdq変換装置と、変動調整後の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードバックフィルタと、変動調整後の無効電流にフィードバックフィルタを適用した後の無効電流とフィードバックループの電流変動をゼロに抑える指令との差分についてのフィードバックループの安定化を行う安定化補償器と、安定化補償器の出力にdq逆変換を行ってフィードバックループ無効電流指令値を算出する第二のdq逆変換装置と、フィードフォワードループ無効電流指令値とフィードバックループ無効電流指令値とが加算された三相電流指令値に基づいて電力変換装置にパルスを出力するパルス発生装置とを有するようにしている。   The power conversion system according to claim 2 is a first current transformer for detecting a current before fluctuation adjustment of a bus, and a first dq for calculating a reactive current by performing dq conversion on the current before fluctuation adjustment. Conversion device, feedforward filter set according to the visibility curve used to calculate ΔV10 calculation value for reactive current before fluctuation adjustment, and invalidity after applying feedforward filter to reactive current before fluctuation adjustment A first dq reverse conversion device that calculates a feedforward loop reactive current command value by performing dq reverse conversion on the difference between the current and the command that suppresses the current fluctuation of the feedforward loop to zero, and the current after adjusting the fluctuation of the bus A second current transformer to be detected, a second dq converter for calculating a reactive current by performing dq conversion on the current after fluctuation adjustment, and ΔV1 with respect to the reactive current after fluctuation adjustment. The difference between the feedback filter that is set according to the visibility curve used to calculate the zero calculation value, the reactive current after applying the feedback filter to the reactive current after fluctuation adjustment, and the command that suppresses the current fluctuation of the feedback loop to zero A stabilization compensator that stabilizes the feedback loop with respect to, a second dq inverse converter that calculates a feedback loop reactive current command value by performing dq inverse transformation on the output of the stabilizing compensator, and a feedforward loop invalid A pulse generator that outputs a pulse to the power converter based on the three-phase current command value obtained by adding the current command value and the feedback loop reactive current command value is provided.

したがって、この電力変換システムの制御方法並びにその制御方法を用いた電力変換システムによると、フィードフォワードフィルタがΔV10演算値の計算に用いる視感度曲線に基づいて設計されると共にフィードバックフィルタがΔV10演算値の計算に用いる視感度曲線に基づいて設計されるようにしているので、フィードフォワード方式とフィードバック方式とのそれぞれにおいて視感度曲線に適応するように設定されたフィルタが適用される。   Therefore, according to the control method of the power conversion system and the power conversion system using the control method, the feedforward filter is designed based on the visibility curve used for calculating the ΔV10 calculated value, and the feedback filter is set to the ΔV10 calculated value. Since the design is based on the visibility curve used for the calculation, a filter set to adapt to the visibility curve is applied in each of the feedforward method and the feedback method.

なお、ΔV10演算値は、アーク炉フリッカに対して一般的に用いられるフリッカの表示尺度である(例えば、電力系統利用協議会:電力系統利用協議会ルール,平成18年6月13日 第8回改正,p.44)。ΔV10演算値は、具体的には、電圧変動による100V−60W白熱電灯の光束変化とそれが人間の視覚に及ぼすちらつき感とを表し、数式1により表される。   Note that the ΔV10 calculated value is a display scale of flicker generally used for arc furnace flicker (for example, Power System Utilization Council: Power System Utilization Council Rules, June 13, 2006, 8th meeting. Amendment, p. 44). More specifically, the ΔV10 calculated value represents a change in luminous flux of a 100V-60W incandescent lamp due to voltage fluctuation and a flickering feeling that affects human vision.

Figure 2008210145
ここに、a:変動周波数fに対応するちらつき視感度係数,ΔV:変動周波数fに対応する成分の振れ幅。
Figure 2008210145
Here, a n is a flickering visibility coefficient corresponding to the fluctuation frequency f n , and ΔV n is a fluctuation width of the component corresponding to the fluctuation frequency f n .

また、上記電力変換システムの制御方法並びにその制御方法を用いた電力変換システムによると、フィードバックループの安定性を考慮して安定化補償装置が導入されるので、フィードバック方式の状態量によってフィードフォワード方式の状態量が適切にキャンセルされる。   In addition, according to the control method of the power conversion system and the power conversion system using the control method, a stabilization compensator is introduced in consideration of the stability of the feedback loop. The amount of state is canceled appropriately.

さらに、電力変換システムの制御に用いる状態量として無効電流を用いるようにしているので、電力を用いる場合と比べて状態量の検出誤差が小さくなる。   Furthermore, since the reactive current is used as the state quantity used for the control of the power conversion system, the detection error of the state quantity is smaller than when using power.

本発明の電力変換システムの制御方法並びにその制御方法を用いた電力変換システムによれば、フィードフォワード方式とフィードバック方式とのそれぞれにおいて視感度曲線に基づいて設計されたフィルタが適用されるので、電力変換装置の性能を十分に活用して複数の周波数成分が混在している電圧フリッカへの対応を適切に図ることが可能であり、電圧フリッカの抑制性能の向上を図ることができる。   According to the control method of the power conversion system of the present invention and the power conversion system using the control method, the filter designed based on the visibility curve is applied in each of the feedforward method and the feedback method. By fully utilizing the performance of the converter, it is possible to appropriately cope with voltage flicker in which a plurality of frequency components are mixed, and it is possible to improve voltage flicker suppression performance.

また、本発明によれば、制御対象システム全体の安定性を考慮して安定化補償装置が導入されるので、フィードバック方式の状態量によってフィードフォワード方式の状態量を適切にキャンセルすることが可能であり、電圧フリッカ制御の精度の向上を図ることができる。   Further, according to the present invention, since the stabilization compensator is introduced in consideration of the stability of the entire control target system, it is possible to appropriately cancel the feedforward type state quantity by the feedback type state quantity. Yes, the accuracy of voltage flicker control can be improved.

さらに、本発明によれば、制御のための状態量として無効電流を用いるようにしているので、電力を用いる場合と比べて状態量の検出誤差を小さくすることが可能であり、電圧フリッカ制御の精度の向上を図ることができる。   Further, according to the present invention, since the reactive current is used as the state quantity for control, it is possible to reduce the detection error of the state quantity as compared with the case of using power, and the voltage flicker control The accuracy can be improved.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明の電力変換システムの制御方法並びにその制御方法を用いた電力変換システムの実施形態の一例を示す。この電力変換システムの制御方法は、母線18の変動調整前の電流Ifを検出しdq変換を行って無効電流Ifrを算出すると共に変動調整前の無効電流Ifrに対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードフォワードフィルタ2を変動調整前の無効電流Ifrに適用して得られる出力Ifr’とフィードフォワードループの電流変動をゼロに抑える指令5との差分ΔI1にdq逆変換を行うことでフィードフォワードループ無効電流指令値Iref1を算出するフィードフォワード方式の変動調整と、母線18の変動調整後の電流Ibを検出しdq変換を行って無効電流Ibrを算出すると共に変動調整後の無効電流Ibrに対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードバックフィルタ4を変動調整後の無効電流Ibrに適用して得られる出力Ibr’とフィードバックループの電流変動をゼロに抑える指令6との差分ΔI2についてのフィードバックループの安定化後の出力Iref2’にdq逆変換を行うことでフィードバックループ無効電流指令値Iref2を算出するフィードバック方式の変動調整とを合成して母線18の電圧変動を調整するようにしている。   FIG. 1 shows an example of an embodiment of a power conversion system control method and a power conversion system using the control method of the present invention. This control method of the power conversion system detects the current If before fluctuation adjustment of the bus 18 and performs dq conversion to calculate the reactive current Ifr and uses it for calculating the ΔV10 calculation value for the reactive current Ifr before fluctuation adjustment. The difference ΔI1 between the output Ifr ′ obtained by applying the feedforward filter 2 set according to the visibility curve to the reactive current Ifr before fluctuation adjustment and the command 5 for suppressing the current fluctuation in the feedforward loop to zero is dq reverse. Fluctuation adjustment of the feedforward system that calculates the feedforward loop reactive current command value Iref1 by performing conversion, and the current Ib after fluctuation adjustment of the bus 18 is detected and dq conversion is performed to calculate the reactive current Ibr and the fluctuation adjustment The feedback filter 4 set according to the visibility curve used to calculate the ΔV10 calculation value for the subsequent reactive current Ibr is adjusted. By performing dq inverse transformation on the output Iref2 ′ after stabilization of the feedback loop with respect to the difference ΔI2 between the output Ibr ′ obtained by applying to the subsequent reactive current Ibr and the command 6 for suppressing the current fluctuation of the feedback loop to zero. The voltage fluctuation of the bus 18 is adjusted by combining the fluctuation adjustment of the feedback method for calculating the feedback loop reactive current command value Iref2.

上記電力変換システムの制御方法は、本発明の電力変換システムとして実現される。本実施形態の電力変換システム1は、母線18の変動調整前の電流Ifを検出する第一の変流器10と、変動調整前の電流Ifについてdq変換を行って無効電流Ifrを算出する第一のdq変換装置11と、変動調整前の無効電流Ifrに対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードフォワードフィルタ2と、変動調整前の無効電流Ifrにフィードフォワードフィルタ2を適用した後の無効電流Ifr’とフィードフォワードループの電流変動をゼロに抑える指令5との差分ΔI1にdq逆変換を行ってフィードフォワードループ無効電流指令値Iref1を算出する第一のdq逆変換装置12と、母線18の変動調整後の電流Ibを検出する第二の変流器13と、変動調整後の電流Ibについてdq変換を行って無効電流Ibrを算出する第二のdq変換装置14と、変動調整後の無効電流Ibrに対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードバックフィルタ4と、変動調整後の無効電流Ibrにフィードバックフィルタ4を適用した後の無効電流Ibr’とフィードバックループの電流変動をゼロに抑える指令6との差分ΔI2についてのフィードバックループの安定化を行う安定化補償器3と、安定化補償器3の出力Iref2’にdq逆変換を行ってフィードバックループ無効電流指令値Iref2を算出する第二のdq逆変換装置15と、フィードフォワードループ無効電流指令値Iref1とフィードバックループ無効電流指令値Iref2とが加算された三相電流指令値Irefに基づいて電力変換装置8にパルスを出力するパルス発生装置7とを備えている。   The method for controlling the power conversion system is realized as the power conversion system of the present invention. The power conversion system 1 according to the present embodiment calculates the reactive current Ifr by performing dq conversion on the first current transformer 10 that detects the current If before the fluctuation adjustment of the bus 18 and the current If before the fluctuation adjustment. One dq converter 11, a feedforward filter 2 set in accordance with the visibility curve used for calculating the ΔV10 calculation value for the reactive current Ifr before fluctuation adjustment, and feedforward to the reactive current Ifr before fluctuation adjustment The first dq for calculating the feedforward loop reactive current command value Iref1 by performing dq inverse transformation on the difference ΔI1 between the reactive current Ifr ′ after applying the filter 2 and the command 5 for suppressing the current fluctuation of the feedforward loop to zero Inverting device 12, second current transformer 13 for detecting current Ib after fluctuation adjustment of bus 18, and dq conversion for fluctuation-adjusted current Ib to perform reactive power A second dq converter 14 that calculates Ibr, a feedback filter 4 that is set in accordance with a visibility curve used to calculate a ΔV10 calculation value for reactive current Ibr after fluctuation adjustment, and reactive current after fluctuation adjustment A stabilization compensator 3 for stabilizing the feedback loop with respect to a difference ΔI2 between the reactive current Ibr ′ after applying the feedback filter 4 to Ibr and a command 6 for suppressing the current fluctuation of the feedback loop to zero, and a stabilization compensator A second dq inverse converter 15 that performs a dq reverse conversion on the output Iref2 ′ of 3 to calculate a feedback loop reactive current command value Iref2, a feedforward loop reactive current command value Iref1, and a feedback loop reactive current command value Iref2 A pulse generator 7 for outputting a pulse to the power converter 8 based on the added three-phase current command value Iref. That.

そして、電力変換装置8と調相設備9とによって他励式無効電力補償装置が構成される。   The power converter 8 and the phase adjusting equipment 9 constitute a separately excited reactive power compensator.

まず、電力変換システム1のフィードフォワードループによる電圧変動の調整について説明する。   First, the adjustment of the voltage fluctuation by the feedforward loop of the power conversion system 1 will be described.

第一の変流器10は、電圧変動の発生源16が接続している母線18の電力変換システム1による変動調整前の電流Ifを検出する。そして、第一の変流器10は検出した電流Ifの値を第一のdq変換装置11に送る。なお、電流Ifは、日本では50Hz又は60Hzの系統周波数成分とその他の成分とからなる三相電流である。   The first current transformer 10 detects the current If before the fluctuation adjustment by the power conversion system 1 of the bus 18 to which the voltage fluctuation source 16 is connected. Then, the first current transformer 10 sends the value of the detected current If to the first dq converter 11. In Japan, the current If is a three-phase current composed of a system frequency component of 50 Hz or 60 Hz and other components.

電圧変動の発生源16は、電圧フリッカを生じさせる大電力消費設備や施設例えばアーク炉や圧延機などである。また、図1において、符号17は上位系統を示す。   The voltage fluctuation generating source 16 is a high power consumption facility or facility that generates voltage flicker, such as an arc furnace or a rolling mill. Moreover, in FIG. 1, the code | symbol 17 shows a high-order system | strain.

第一のdq変換装置11は、第一の変流器10によって検出された変動調整前の電流Ifについてdq変換を行って無効電流Ifrを算出する。具体的には、第一のdq変換装置11は、電流Ifについて、数式2によってαβ変換即ち三相から二相に変換した変数を用い、数式4によってdq変換即ちα−β軸直交座標系からd−q軸回転座標系への変換を行う。そして、第一のdq変換装置11は算出した無効電流Ifrの値をフィードフォワードフィルタ2に送る。   The first dq conversion device 11 calculates the reactive current Ifr by performing dq conversion on the current If before the fluctuation adjustment detected by the first current transformer 10. Specifically, the first dq conversion device 11 uses the variable converted from αβ conversion, that is, three-phase to two-phase, using Equation 2 for the current If, and dq conversion, that is, from the α-β axis orthogonal coordinate system using Equation 4. Conversion to the dq axis rotation coordinate system is performed. Then, the first dq converter 11 sends the calculated value of the reactive current Ifr to the feedforward filter 2.

Figure 2008210145
ここに、Ifα:電流Ifの無効電流Ifrの直交座標系α軸成分,Ifβ:電流Ifの無効電流Ifrの直交座標系β軸成分,Ifa:電流Ifの無効電流Ifrのa相無効電流値,Ifb:電流Ifの無効電流Ifrのb相無効電流値,Ifc:電流Ifの無効電流Ifrのc相無効電流値。単位はいずれもpu(per unitのこと)。なお、対象とするシステムの容量をS[VA]とし、線間電圧をV[V](実効値)とすると、測定器で検出された電流[A](波高値)を数式3で割ることでpuの無次元の単位となる。
Figure 2008210145
Here, Ifα: Cartesian coordinate system α-axis component of reactive current Ifr of current If, Ifβ: Cartesian coordinate system β-axis component of reactive current Ifr of current If, Ifa: a-phase reactive current value of reactive current Ifr of current If, Ifb: b-phase reactive current value of the reactive current Ifr of the current If, Ifc: c-phase reactive current value of the reactive current Ifr of the current If. All units are pu (per unit). When the capacity of the target system is S [VA] and the line voltage is V [V] (effective value), the current [A] (peak value) detected by the measuring instrument is divided by Equation 3. Becomes a dimensionless unit of pu.

Figure 2008210145
Figure 2008210145

Figure 2008210145
ここに、Ifd:電流Ifの無効電流Ifrの回転座標系d軸成分[pu],Ifq:電流Ifの無効電流Ifrの回転座標系q軸成分[pu],Ifα:電流Ifの無効電流Ifrの直交座標系α軸成分[pu],Ifβ:電流Ifの無効電流Ifrの直交座標系β軸成分[pu],θ:直交座標系の軸と回転座標系の軸とがなす角[ラジアン](以下、位相と呼ぶ)。
Figure 2008210145
Here, Ifd: rotational coordinate system d-axis component [pu] of reactive current Ifr of current If, Ifq: rotational coordinate system q-axis component [pu] of reactive current Ifr of current If, Ifα: reactive current Ifr of current If Orthogonal coordinate system α-axis component [pu], Ifβ: Orthogonal coordinate system β-axis component [pu] of reactive current Ifr of current If, θ: Angle [radian] formed by the axis of the orthogonal coordinate system and the axis of the rotational coordinate system (radian) ( Hereinafter referred to as phase).

ここで、数式2の位相θについては、電力変換システム1が接続されている系統電圧の位相を用いる必要はない。θ=2πf(ここに、fは系統周波数[Hz])として計算すれば良い。なお、系統周波数成分は、数式2で計算された無効電流Ifrのd軸成分Ifd及びq軸成分Ifqは直流成分になっており、その他の成分は系統周波数を引いた周波数成分になっている。   Here, for the phase θ in Equation 2, it is not necessary to use the phase of the system voltage to which the power conversion system 1 is connected. What is necessary is just to calculate as (theta) = 2 (pi) f (here, f is system frequency [Hz]). The system frequency component is a DC component of the d-axis component Ifd and the q-axis component Ifq of the reactive current Ifr calculated by Equation 2, and the other components are frequency components obtained by subtracting the system frequency.

フィードフォワードフィルタ2は、第一のdq変換装置11によって算出された無効電流Ifrに対してΔV10演算値の計算に用いる視感度曲線(図2)に適切に対応するように設定される。具体的には、フィードフォワードフィルタ2として数式5に示す帯域通過フィルタが用いられる。そして、フィードフォワードフィルタ2は、無効電流Ifrにフィルタを適用した後の無効電流Ifr’を出力する。   The feedforward filter 2 is set so as to appropriately correspond to the visibility curve (FIG. 2) used for calculating the ΔV10 calculation value with respect to the reactive current Ifr calculated by the first dq converter 11. Specifically, a band pass filter represented by Formula 5 is used as the feedforward filter 2. The feedforward filter 2 outputs the reactive current Ifr 'after applying the filter to the reactive current Ifr.

Figure 2008210145
ここに、S:ラプラス演算子,Q:尖鋭さを表す[pu],K:ゲイン[pu],ω:角周波数[ラジアン/秒]。
Figure 2008210145
Here, S: Laplace operator, Q: [pu] representing sharpness, K: gain [pu], ω 0 : angular frequency [radians / second].

なお、K=1,ω=2π10である。また、Qは、図2に示す10Hzにピークとなる視感度曲線を考慮して0.3〜0.5程度に設定される。このフィルタにより、回転座標系で直流成分となっている基本波成分が除去されると共に電圧フリッカに影響する10Hz前後の成分が効果的に抽出される。 Note that K = 1 and ω 0 = 2π10. Further, Q is set to about 0.3 to 0.5 in consideration of the visibility curve that peaks at 10 Hz shown in FIG. With this filter, a fundamental wave component that is a direct current component in the rotating coordinate system is removed, and a component around 10 Hz that affects voltage flicker is effectively extracted.

そして、第一のdq逆変換装置12は、フィードフォワードフィルタ2の出力であるフィルタ適用後の無効電流Ifr’とフィードフォワードループの電流変動をゼロに抑える指令5との差分ΔI1についてdq逆変換を行ってフィードフォワードループの無効電流指令値Iref1を算出する。具体的には、第一のdq逆変換装置12は、差分ΔI1について、数式6によってdq逆変換即ちd−q軸回転座標系からα−β軸直交座標系に変換した変数を用い、数式7によってαβ逆変換即ち二相から三相への変換を行う。   Then, the first dq inverse converter 12 performs dq inverse conversion on the difference ΔI1 between the reactive current Ifr ′ after application of the filter that is the output of the feedforward filter 2 and the command 5 that suppresses the current fluctuation of the feedforward loop to zero. Then, the reactive current command value Iref1 of the feedforward loop is calculated. Specifically, the first dq inverse transformation device 12 uses the variable obtained by converting the difference ΔI1 by dq inverse transformation, that is, the dq-axis rotational coordinate system to the α-β-axis orthogonal coordinate system, using the formula 7 The inverse transformation of αβ, that is, the transformation from two phases to three phases is performed.

Figure 2008210145
ここに、Irefα1:フィードフォワードループの無効電流指令値Iref1の直交座標系α軸成分[pu],Irefβ1:無効電流指令値Iref1の直交座標系β軸成分[pu],Idref1:フィードフォワードループの電流変動をゼロに抑える指令の回転座標系d軸成分であり値はゼロ[pu],Iqref1:フィードフォワードループの電流変動をゼロに抑える指令の回転座標系q軸成分であり値はゼロ[pu],Ifrd’:フィードフォワードフィルタ適用後の無効電流Ifr’の回転座標系d軸成分[pu],Ifrq’:フィードフォワードフィルタ適用後の無効電流Ifr’の回転座標系q軸成分[pu],θ:位相[ラジアン]。
Figure 2008210145
Where Irefα1: Cartesian coordinate system α-axis component [pu] of reactive current command value Iref1 of feedforward loop, Irefβ1: Cartesian coordinate system β-axis component [pu] of reactive current command value Iref1, Idref1: Current of feedforward loop The rotational coordinate system d-axis component of the command that suppresses the fluctuation to zero and the value is zero [pu], Iqref1: The rotational coordinate system q-axis component of the command that suppresses the current fluctuation of the feedforward loop to zero and the value is zero [pu] , Ifrd ': Rotational coordinate system d-axis component [pu] of reactive current Ifr' after applying the feedforward filter, Ifrq ': Rotational coordinate system q-axis component [pu] of reactive current Ifr' after applying the feedforward filter, θ : Phase [radian].

Figure 2008210145
ここに、Irefa1:フィードフォワードループの無効電流指令値Iref1のa相電流値,Irefb1:無効電流指令値Iref1のb相電流値,Irefc1:無効電流指令値Iref1のc相電流値,Irefα1:無効電流指令値Iref1の直交座標系α軸成分,Irefβ1:無効電流指令値Iref1の直交座標系β軸成分。単位はいずれもpu。
Figure 2008210145
Where Irefa1: a phase current value of reactive current command value Iref1 of feed forward loop, Irefb1: b phase current value of reactive current command value Iref1, Irefc1: c phase current value of reactive current command value Iref1, Irefα1: reactive current Cartesian coordinate system α-axis component of command value Iref1, Irefβ1: Cartesian coordinate system β-axis component of reactive current command value Iref1. The unit is pu.

続いて、電力変換システム1のフィードバックループによる電圧変動の調整について説明する。   Next, adjustment of voltage fluctuation by the feedback loop of the power conversion system 1 will be described.

第二の変流器13は、母線18の電力変換システム1による変動調整後の電流Ibを検出する。そして、第二の変流器13は検出した電流Ibの値を第二のdq変換装置14に送る。   The second current transformer 13 detects the current Ib after fluctuation adjustment by the power conversion system 1 of the bus 18. Then, the second current transformer 13 sends the value of the detected current Ib to the second dq converter 14.

第二のdq変換装置14は、第二の変流器13によって検出された変動調整後の電流Ibについてdq変換を行って無効電流Ibrを算出する。具体的には、第二のdq変換装置13は、電流Ibについて、数式2及び数式4の関係式における行列を用いてαβ変換した変数を用いてdq変換する。そして、第二のdq変換装置14は算出した無効電流Ibrの値をフィードバックフィルタ4に送る。   The second dq converter 14 performs dq conversion on the current Ib after fluctuation adjustment detected by the second current transformer 13 to calculate the reactive current Ibr. Specifically, the second dq conversion device 13 performs dq conversion on the current Ib using a variable that has been αβ converted using the matrix in the relational expressions of Expression 2 and Expression 4. Then, the second dq converter 14 sends the calculated value of the reactive current Ibr to the feedback filter 4.

フィードバックフィルタ4は、第二のdq変換装置14によって算出された無効電流Ibrに対してΔV10演算値の計算に用いる視感度曲線に適切に対応するように設定される。具体的には、フィードバックフィルタ4として数式5に示す帯域通過フィルタが用いられる。そして、フィードバックフィルタ4は、無効電流Ibrにフィルタを適用した後の無効電流Ibr’を出力する。   The feedback filter 4 is set so as to appropriately correspond to the visibility curve used for calculating the ΔV10 calculation value with respect to the reactive current Ibr calculated by the second dq converter 14. Specifically, a band pass filter shown in Formula 5 is used as the feedback filter 4. Then, the feedback filter 4 outputs the reactive current Ibr ′ after applying the filter to the reactive current Ibr.

なお、K=1,ω=2π10である。また、Qは0.3〜0.5程度に設定される。このフィルタにより、回転座標系で直流成分となっている基本波成分が除去されると共に電圧フリッカに影響する10Hz前後の成分が効果的に抽出される。 Note that K = 1 and ω 0 = 2π10. Q is set to about 0.3 to 0.5. With this filter, a fundamental wave component that is a direct current component in the rotating coordinate system is removed, and a component around 10 Hz that affects voltage flicker is effectively extracted.

フィードバックフィルタ4の出力であるフィルタ適用後の無効電流Ibr’とフィードバックループの電流変動をゼロに抑える指令6との差分ΔI2が安定化補償器3に入力される。ここで、フィードバックループの電流変動をゼロに抑える指令6の値は、回転座標系d軸成分及び回転座標系q軸成分共にゼロである。   A difference ΔI2 between the reactive current Ibr ′ after application of the filter, which is the output of the feedback filter 4, and the command 6 for suppressing the current fluctuation of the feedback loop to zero is input to the stabilization compensator 3. Here, the value of the command 6 for suppressing the current fluctuation in the feedback loop to zero is zero for both the rotating coordinate system d-axis component and the rotating coordinate system q-axis component.

安定化補償器3は、第二の変流器13と第二のdq変換装置14とフィードバックフィルタ4と安定化補償器3と第二のdq逆変換装置15とパルス発生装置7と電力変換装置8とからなる閉ループ即ちフィードバックループの安定化を行う補償器である。具体的には、安定化補償器3として数式8で表される一次進み遅れ要素であって他励式無効電力補償装置に時間遅れが存在するために位相を進める補償器が二段で用いられる。そして、安定化補償器3は、安定化後の無効電流Iref2’を出力する。   The stabilization compensator 3 includes a second current transformer 13, a second dq converter 14, a feedback filter 4, a stabilization compensator 3, a second dq inverse converter 15, a pulse generator 7, and a power converter. 8 is a compensator for stabilizing the closed loop, ie, the feedback loop. Specifically, as the stabilizing compensator 3, a compensator that is a first-order advance / delay element expressed by Equation 8 and that advances the phase due to the time delay in the separately excited reactive power compensator is used in two stages. The stabilization compensator 3 outputs a stabilized reactive current Iref2 '.

Figure 2008210145
ここに、K:ゲイン[pu],T:時定数[秒],S:ラプラス演算子。また、添字1〜4:時定数を設定するパラメータ。
Figure 2008210145
Here, K: gain [pu], T: time constant [second], S: Laplace operator. Subscripts 1 to 4: Parameters for setting time constants.

そして、第二のdq逆変換装置15は、安定化補償器3の出力である安定化後の無効電流Iref2’について、数式6及び数式7の関係式における行列を用いてdq逆変換した変数を用いてαβ逆変換を行ってフィードバックループの無効電流指令値Iref2を出力する。   Then, the second dq inverse conversion device 15 uses the matrix in the relational expressions of Expressions 6 and 7 for the stabilized reactive current Iref2 ′ after stabilization, which is the output of the stabilization compensator 3, as a variable. The inverse current command value Iref2 of the feedback loop is output by performing αβ reverse conversion.

そして、以上により算出されたフィードフォワードループの無効電流指令値Iref1とフィードバックループの無効電流指令値Iref2とは加算されて三相電流指令値Iref(=Iref1+Iref2)としてパルス発生装置7に入力される。   Then, the reactive current command value Iref1 of the feedforward loop calculated as described above and the reactive current command value Iref2 of the feedback loop are added and input to the pulse generator 7 as a three-phase current command value Iref (= Iref1 + Iref2).

パルス発生装置7は、三相電流指令値Irefに基づいて電力変換装置8に対してパルスを出力する。   The pulse generator 7 outputs a pulse to the power converter 8 based on the three-phase current command value Iref.

以上により、電力変換装置8と調相設備9との合成電流Icは三相電流指令値Irefと等しくなるように流れる。すなわち、母線18の電圧変動が抑えられる。   As described above, the combined current Ic of the power conversion device 8 and the phase adjusting equipment 9 flows so as to be equal to the three-phase current command value Iref. That is, the voltage fluctuation of the bus 18 is suppressed.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention.

本発明の電力変換システムの実施形態の一例の構成を示すブロック図である。It is a block diagram which shows the structure of an example of embodiment of the power conversion system of this invention. 視感度曲線を示す図である。It is a figure which shows a visibility curve. 従来の無効電力補償装置の制御方式の制御回路を示す図である。It is a figure which shows the control circuit of the control system of the conventional reactive power compensation apparatus.

符号の説明Explanation of symbols

1 電力変換システム
2 フィードフォワードフィルタ
3 安定化補償器
4 フィードバックフィルタ
5 フィードフォワードループの電流変動をゼロに抑える指令
6 フィードバックループの電流変動をゼロに抑える指令
7 パルス発生装置
8 電力変換装置
9 調相設備
10 第一の変流器
11 第一のdq変換装置
12 第一のdq逆変換装置
13 第二の変流器
14 第二のdq変換装置
15 第二のdq逆変換装置
16 電圧変動の発生源
17 上位系統
18 母線
DESCRIPTION OF SYMBOLS 1 Power conversion system 2 Feed forward filter 3 Stabilization compensator 4 Feedback filter 5 Command which suppresses current fluctuation of feedforward loop to zero 6 Command which suppresses current fluctuation of feedback loop to zero 7 Pulse generator 8 Power converter 9 Phase adjustment Facility 10 First current transformer 11 First dq converter 12 First dq inverse converter 13 Second current transformer 14 Second dq converter 15 Second dq inverse converter 16 Occurrence of voltage fluctuation Source 17 Host system 18 Bus

Claims (2)

母線の変動調整前の電流を検出しdq変換を行って無効電流を算出すると共に該変動調整前の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードフォワードフィルタを前記変動調整前の無効電流に適用して得られる出力とフィードフォワードループの電流変動をゼロに抑える指令との差分にdq逆変換を行うことでフィードフォワードループ無効電流指令値を算出するフィードフォワード方式の変動調整と、前記母線の変動調整後の電流を検出しdq変換を行って無効電流を算出すると共に該変動調整後の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードバックフィルタを前記変動調整後の無効電流に適用して得られる出力とフィードバックループの電流変動をゼロに抑える指令との差分についてのフィードバックループの安定化後の出力にdq逆変換を行うことでフィードバックループ無効電流指令値を算出するフィードバック方式の変動調整とを合成して前記母線の電圧変動を調整することを特徴とする電力変換システムの制御方法。   A feedforward filter that detects a current before fluctuation adjustment of the bus and performs dq conversion to calculate a reactive current and is set according to a visibility curve used for calculating a ΔV10 calculation value for the reactive current before fluctuation adjustment Feedforward loop reactive current command value is calculated by performing dq inverse transformation on the difference between the output obtained by applying the current to the reactive current before fluctuation adjustment and the command for suppressing the current fluctuation of the feedforward loop to zero. In accordance with the visibility curve used to calculate the ΔV10 calculation value for the reactive adjustment after the fluctuation adjustment of the system and the current after the fluctuation adjustment of the bus is detected and the dq conversion is performed to calculate the reactive current Applying the feedback filter set to the reactive current after the fluctuation adjustment to zero the output fluctuation and the current fluctuation of the feedback loop The voltage fluctuation of the bus is adjusted by synthesizing with the fluctuation adjustment of the feedback method for calculating the feedback loop reactive current command value by performing dq inverse transformation on the output after stabilization of the feedback loop with respect to the difference from the command to be suppressed to A method for controlling a power conversion system. 母線の変動調整前の電流を検出する第一の変流器と、前記変動調整前の電流についてdq変換を行って無効電流を算出する第一のdq変換装置と、前記変動調整前の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードフォワードフィルタと、前記変動調整前の無効電流に前記フィードフォワードフィルタを適用した後の無効電流とフィードフォワードループの電流変動をゼロに抑える指令との差分にdq逆変換を行ってフィードフォワードループ無効電流指令値を算出する第一のdq逆変換装置と、前記母線の変動調整後の電流を検出する第二の変流器と、前記変動調整後の電流についてdq変換を行って無効電流を算出する第二のdq変換装置と、前記変動調整後の無効電流に対してΔV10演算値の計算に用いる視感度曲線に応じて設定されるフィードバックフィルタと、前記変動調整後の無効電流に前記フィードバックフィルタを適用した後の無効電流とフィードバックループの電流変動をゼロに抑える指令との差分についてのフィードバックループの安定化を行う安定化補償器と、前記安定化補償器の出力にdq逆変換を行ってフィードバックループ無効電流指令値を算出する第二のdq逆変換装置と、前記フィードフォワードループ無効電流指令値と前記フィードバックループ無効電流指令値とが加算された三相電流指令値に基づいて電力変換装置にパルスを出力するパルス発生装置とを有することを特徴とする電力変換システム。   A first current transformer for detecting a current before fluctuation adjustment of the bus, a first dq converter for calculating a reactive current by performing dq conversion on the current before fluctuation adjustment, and a reactive current before fluctuation adjustment A feedforward filter set in accordance with a visibility curve used for calculating a ΔV10 calculation value, a reactive current after applying the feedforward filter to a reactive current before the fluctuation adjustment, and a current fluctuation of a feedforward loop A first dq reverse conversion device that calculates a feedforward loop reactive current command value by performing dq reverse conversion on the difference from the command that suppresses the current to zero, and a second current transformation that detects the current after adjusting the fluctuation of the bus A second dq converter for calculating a reactive current by performing dq conversion on the current after fluctuation adjustment, and calculating a calculated value of ΔV10 for the reactive current after fluctuation adjustment. The difference between the feedback filter set according to the visibility curve used for the calculation, the reactive current after applying the feedback filter to the reactive current after the fluctuation adjustment, and the command for suppressing the current fluctuation of the feedback loop to zero A stabilization compensator for stabilizing the feedback loop, a second dq inverse converter for calculating a feedback loop reactive current command value by performing dq inverse transformation on the output of the stabilization compensator, and the feed forward loop invalid A power conversion system comprising: a pulse generator that outputs a pulse to a power converter based on a three-phase current command value obtained by adding a current command value and the feedback loop reactive current command value.
JP2007046170A 2007-02-26 2007-02-26 Power conversion system control method and power conversion system using the control method Expired - Fee Related JP4805186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046170A JP4805186B2 (en) 2007-02-26 2007-02-26 Power conversion system control method and power conversion system using the control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046170A JP4805186B2 (en) 2007-02-26 2007-02-26 Power conversion system control method and power conversion system using the control method

Publications (2)

Publication Number Publication Date
JP2008210145A true JP2008210145A (en) 2008-09-11
JP4805186B2 JP4805186B2 (en) 2011-11-02

Family

ID=39786387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046170A Expired - Fee Related JP4805186B2 (en) 2007-02-26 2007-02-26 Power conversion system control method and power conversion system using the control method

Country Status (1)

Country Link
JP (1) JP4805186B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243965A (en) * 1975-10-03 1977-04-06 Hitachi Ltd Flicker prevention device
JPS6166566A (en) * 1984-09-05 1986-04-05 Toshiba Corp Cycloconverter device of reactive power control type
JPS6377327A (en) * 1986-09-19 1988-04-07 株式会社東芝 Reactive power control type cycloconverter
JPH01114373A (en) * 1987-10-27 1989-05-08 Mitsubishi Electric Corp Three-phase converter
JPH0336930A (en) * 1989-06-29 1991-02-18 Mitsubishi Electric Corp Three-phase converter
JPH03183324A (en) * 1989-12-08 1991-08-09 Toshiba Corp Voltage variation and harmonic wave suppressor
JPH04273504A (en) * 1991-02-28 1992-09-29 Mitsubishi Electric Corp Instantaneous reactive power compensator
JPH0615115U (en) * 1992-07-23 1994-02-25 日新電機株式会社 Control system of reactive power compensator
JPH08147057A (en) * 1994-11-25 1996-06-07 Mitsubishi Electric Corp Device and method for generating reactive power
JPH0923585A (en) * 1995-07-07 1997-01-21 East Japan Railway Co Control of reactive power compensation
JPH0923584A (en) * 1995-07-05 1997-01-21 Shinko Electric Co Ltd Filter compensating circuit and reactive power compensating apparatus
JPH09312930A (en) * 1996-05-21 1997-12-02 Meidensha Corp Detection of defect in power system and protection of the system from the defect
JPH11103600A (en) * 1997-09-29 1999-04-13 Tokyo Electric Power Co Inc:The Method of controlling voltage of induction generator
JP2001268796A (en) * 2000-03-22 2001-09-28 Ngk Insulators Ltd High speed compensation control method of voltage fluctuation
JP2002034158A (en) * 2000-07-17 2002-01-31 Kyuhen Co Ltd Power converter control device for power storage device
JP2003324847A (en) * 2002-05-09 2003-11-14 Fuji Electric Co Ltd Method and apparatus for compensating voltage flicker

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243965A (en) * 1975-10-03 1977-04-06 Hitachi Ltd Flicker prevention device
JPS6166566A (en) * 1984-09-05 1986-04-05 Toshiba Corp Cycloconverter device of reactive power control type
JPS6377327A (en) * 1986-09-19 1988-04-07 株式会社東芝 Reactive power control type cycloconverter
JPH01114373A (en) * 1987-10-27 1989-05-08 Mitsubishi Electric Corp Three-phase converter
JPH0336930A (en) * 1989-06-29 1991-02-18 Mitsubishi Electric Corp Three-phase converter
JPH03183324A (en) * 1989-12-08 1991-08-09 Toshiba Corp Voltage variation and harmonic wave suppressor
JPH04273504A (en) * 1991-02-28 1992-09-29 Mitsubishi Electric Corp Instantaneous reactive power compensator
JPH0615115U (en) * 1992-07-23 1994-02-25 日新電機株式会社 Control system of reactive power compensator
JPH08147057A (en) * 1994-11-25 1996-06-07 Mitsubishi Electric Corp Device and method for generating reactive power
JPH0923584A (en) * 1995-07-05 1997-01-21 Shinko Electric Co Ltd Filter compensating circuit and reactive power compensating apparatus
JPH0923585A (en) * 1995-07-07 1997-01-21 East Japan Railway Co Control of reactive power compensation
JPH09312930A (en) * 1996-05-21 1997-12-02 Meidensha Corp Detection of defect in power system and protection of the system from the defect
JPH11103600A (en) * 1997-09-29 1999-04-13 Tokyo Electric Power Co Inc:The Method of controlling voltage of induction generator
JP2001268796A (en) * 2000-03-22 2001-09-28 Ngk Insulators Ltd High speed compensation control method of voltage fluctuation
JP2002034158A (en) * 2000-07-17 2002-01-31 Kyuhen Co Ltd Power converter control device for power storage device
JP2003324847A (en) * 2002-05-09 2003-11-14 Fuji Electric Co Ltd Method and apparatus for compensating voltage flicker

Also Published As

Publication number Publication date
JP4805186B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
KR960000802B1 (en) Parallel operation system of ac output inverters
JP5126302B2 (en) 3-level inverter, power conditioner and power generation system
WO2012018112A1 (en) Harmonic current suppression method and harmonic current suppression device of power conversion device
US9871482B2 (en) Power conversion device
JPH08163782A (en) Power system stabilizer
TW536864B (en) Apparatus for controlling an induction motor
Dinh et al. Adaptive notch filter solution under unbalanced and/or distorted point of common coupling voltage for three‐phase four‐wire shunt active power filter with sinusoidal utility current strategy
JP5418961B2 (en) Induction motor control device
JPH10225131A (en) Controller of power converter
JP5025295B2 (en) Semiconductor power converter
JP4568111B2 (en) Power conversion control device
JP4805186B2 (en) Power conversion system control method and power conversion system using the control method
Markadeh et al. Maximum torque per ampere control of sensorless induction motor drives with dc offset and parameter compensation
JP6226833B2 (en) Power converter
JPH0515070A (en) Parallel operation control device
JP2016111810A (en) Control circuit for controlling inverter circuit, and inverter device with control circuit
JP2008011623A (en) Apparatus and method for controlling alternating-current motors
JP2008211912A (en) Control method of power conversion system, and power conversion system using this control method
JP2005065423A (en) Controller for self-excitation converter
JP2009195059A (en) Power conversion method and power conversion apparatus
JPH10111725A (en) System for sharing compensation power 0f power line conditioner
JP2005086973A (en) Control unit for ac/ac direct conversion device
JP2002369533A (en) Pwm converter
JP5622030B2 (en) Power conversion system
JPH0767255A (en) Control circuit for reactive power compensator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4805186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees