JPH09312930A - Detection of defect in power system and protection of the system from the defect - Google Patents

Detection of defect in power system and protection of the system from the defect

Info

Publication number
JPH09312930A
JPH09312930A JP8125256A JP12525696A JPH09312930A JP H09312930 A JPH09312930 A JP H09312930A JP 8125256 A JP8125256 A JP 8125256A JP 12525696 A JP12525696 A JP 12525696A JP H09312930 A JPH09312930 A JP H09312930A
Authority
JP
Japan
Prior art keywords
component signal
phase
power
defect
fundamental wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8125256A
Other languages
Japanese (ja)
Inventor
Masayoshi Tamura
公良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8125256A priority Critical patent/JPH09312930A/en
Publication of JPH09312930A publication Critical patent/JPH09312930A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Inverter Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize stress applied to a device when an accident occurs and prevent a bad influence on a system and a load by judging a system defect using an arithmetic value for conducting a control in a power converter and immediately protecting the device from the defect. SOLUTION: A power converter 10 is constituted of an inverter section 11, a high harmonic wave suppressing and controlling block 12, a negative-phase-sequence component compensating and controlling block 13, a supply voltage constant controlling block 14, and a common operating section 15. A defect operating section 20 receives the results of operations from the higher harmonic wave suppressing and controlling block 12 and the negative-phase-sequence component compensating and controlling block 13 and then computates a defect and displays it and then outputs a gate control command signal Gbs to a PWM controlling section 11a to block a gate of the inverter section 11 and stop the operation of the inverter section 11. By collecting information about a defect using a control operation result and blocking the inverter section immediately after an accident appears in the system, stress applied to a device can be minimized when the accident occurs and a bad influence on the system and a connected load can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統に半導体
電力変換装置を接続し、この半導体電力変換装置に電圧
一定制御,アクティブフィルタ,不平衡電圧抑制,フリ
ッカ補償等の機能を持たせた電力系統の系統側事故の故
障検出保護方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric power system in which a semiconductor power converter is connected to a power system and the semiconductor power converter is provided with functions such as constant voltage control, active filter, unbalance voltage suppression, and flicker compensation. The present invention relates to a failure detection and protection system for a system side accident.

【0002】[0002]

【従来の技術】電力系統(以下、系統と略称)におい
て、負荷のとる無効電力の増加や変動は、系統や系統に
接続されている負荷に種々の悪影響を及ぼす。この無効
電力の影響としては、電源系統の定常および過渡電圧変
動,フリッカ,電圧不平衡,高調波障害などがあげられ
る。
2. Description of the Related Art In a power system (hereinafter abbreviated as a system), an increase or fluctuation of reactive power taken by a load has various adverse effects on the system or a load connected to the system. The effects of this reactive power include steady and transient voltage fluctuations in the power system, flicker, voltage imbalance, and harmonic interference.

【0003】これらの悪影響を除去するために、半導体
素子を用いた電力変換装置を系統に接続し、無効電力の
補償や高調波電流の補償を行って系統の安定化が図られ
ている。
In order to eliminate these adverse effects, a power converter using a semiconductor element is connected to the system to compensate the reactive power and the harmonic current to stabilize the system.

【0004】図3は電力変換装置を用いて高調波電流を
補償するアクティブフィルタの基本構成図で、同図は電
圧形インバータを用いた場合の例を示している。
FIG. 3 is a basic configuration diagram of an active filter for compensating a harmonic current by using a power converter, and FIG. 3 shows an example in which a voltage type inverter is used.

【0005】図3において、1は電力変換装置で、該電
力変換装置1は、インバータ部IVを中心とした主回路
部2と、アクティブフィルタとしての動作を制御する制
御回路部3とからなる。インバータIVは、サイリス
タ,トランジスタ又はIGBT等の半導体素子から成
り、また、制御回路部3は、アクティブフィルタの出力
すべき電流波形を演算する電流指令部演算回路3aと、
インバータ部の出力電流が、その指令値に追従動作する
ようにゲート信号を制御する電流制御回路3bとからな
る。
In FIG. 3, reference numeral 1 denotes a power converter, which is composed of a main circuit section 2 centering on an inverter section IV and a control circuit section 3 for controlling the operation as an active filter. The inverter IV is composed of a semiconductor element such as a thyristor, a transistor, or an IGBT, and the control circuit unit 3 includes a current command unit calculation circuit 3a for calculating a current waveform to be output from the active filter.
The output current of the inverter unit is composed of the current control circuit 3b that controls the gate signal so that the output current follows the command value.

【0006】電流指令演算回路3aは、アクティブフィ
ルタの補償対象とする電流波形の演算及び機能選択を行
い、電流制御回路3bは等価的な可変電流源動作を行
う。
The current command calculation circuit 3a calculates a current waveform to be compensated for by the active filter and selects a function, and the current control circuit 3b performs an equivalent variable current source operation.

【0007】この電力変換装置1は受電遮断器4を介し
て系統5に並列接続される。
This power conversion device 1 is connected in parallel to a system 5 via a power receiving circuit breaker 4.

【0008】図3は電力変換装置1をアクティブフィル
タとして機能させる場合であるが、高調波抑制に限ら
ず、連続的な無効電力の補償による力率改善,電圧変動
の補償、あるいは不平衡負荷などに伴う逆相電力の補償
といった機能を持たせ得ることは周知である。
FIG. 3 shows the case where the power converter 1 is made to function as an active filter, but not limited to harmonic suppression, power factor improvement by continuous reactive power compensation, voltage fluctuation compensation, unbalanced load, etc. It is well known that a function of compensating the negative-phase power associated with can be added.

【0009】このような電力変換装置1を接続した系統
に、系統の事故が発生した場合の保護は、系統や電力変
換装置に備えられている種々の検出器でその異常は検出
され、受電遮断器4をトリップすることによって行われ
る。例えば、三線地絡事故の場合は、地絡過電圧リレー
で、また、一線短絡の場合は、過電流リレーで検出し、
それらのリレーの動作により受電遮断器4をトリップ
し、電力変換装置1を系統5から切り離(解列)し、系
統,電力変換装置および負荷等の保護を行う。
[0009] When a system accident occurs in the system to which the power conversion device 1 is connected, the protection is detected by various detectors provided in the system or the power conversion device and the abnormality is detected. This is done by tripping the vessel 4. For example, in the case of a three-wire ground fault accident, it is detected by the ground fault overvoltage relay, and in the case of a one-wire short circuit, it is detected by the overcurrent relay,
The operation of these relays trips the power receiving circuit breaker 4, disconnects (disconnects) the power converter 1 from the grid 5, and protects the grid, the power converter, and the load.

【0010】なお、図3において、HCTは光変流器,
ACLは交流リアクトル,Fはリプル除去フィルタ,T
γは変圧器を示す。
In FIG. 3, HCT is an optical current transformer,
ACL is an AC reactor, F is a ripple removal filter, T
γ indicates a transformer.

【0011】[0011]

【発明が解決しようとする課題】上記のように、系統に
事故が発生し、検出器がこれを検出して受電遮断器をト
リップし、電力変換装置を系統から解列する場合、電力
変換装置側に対しては、現状では特別な保護が取られて
いない。そして、リレーが動作してから遮断器がトリッ
プするまでは数百msかかり、この間電力変換装置は故
障状態のままで放置される。変圧器,ディスコン,コン
デンサ,リアクトル等の機器と異なり、電力変換装置は
半導体を用いた高度な制御を行っており、数百msの時
間おくれはハード的にもソフト的にも長すぎる。この結
果、遮断終了時までに制御不能状態が発生し、装置を破
壊する可能性がある。また、系統に対してはその間装置
側から故障電流を供給することになる。
As described above, when an accident occurs in the grid, the detector detects it and trips the power receiving circuit breaker, and the power converter is disconnected from the grid, the power converter is disconnected. There is currently no special protection for the side. Then, it takes several hundred ms until the breaker trips after the relay operates, during which the power conversion device is left in a faulty state. Unlike devices such as transformers, discs, capacitors, and reactors, power converters use semiconductors for advanced control, and the delay of several hundred ms is too long in terms of both hardware and software. As a result, an uncontrollable state may occur by the time the shutoff ends, and the device may be destroyed. Further, a fault current is supplied to the system from the device side during that time.

【0012】これらを防止するには、高速な系統事故検
出による保護を行わなければならないが、しかしながら
現状では高速な系統事故検出保護継電器は存在しない。
In order to prevent these, it is necessary to perform protection by high-speed system fault detection, however, at present, there is no high-speed system fault detection protection relay.

【0013】これらの点に鑑み、本発明は、制御演算結
果を利用して、事故情報抽出し、高速で電力変換装置の
運転を停止し、該装置への事故時ストレスを最小にする
とともに、系統に対しては、事故電流の流出を瞬時に停
止し、系統及び負荷への悪影響を防止する此の種の保護
方式を提供することを目的とするものである。
In view of these points, the present invention utilizes the control calculation result to extract accident information, stop the operation of the power conversion device at high speed, and minimize the stress on the device during an accident. It is an object of the present invention to provide a protection system of this kind that instantaneously stops the outflow of fault current to the system and prevents the system and load from being adversely affected.

【0014】[0014]

【課題を解決するための手段】本発明は、電力変換装置
内部で行う制御のための演算結果と、この演算結果と系
統故障との間に相関関係のあることに着目し、演算値を
用いて系統故障を判別(検出)して瞬時に保護動作を行
うようにするものである。これにより、故障検出は、演
算周期内に行うことができ(数十から数百μs以内)、
従来に比べて大幅な高速化を実現したものである。
SUMMARY OF THE INVENTION The present invention focuses on the fact that there is a correlation between the calculation result for the control performed inside the power converter and this calculation result and the system fault, and the calculated value is used. The system failure is discriminated (detected) and the protection operation is instantaneously performed. This allows fault detection to be performed within the calculation cycle (within several tens to several hundreds of μs),
This is a significant speedup compared to the past.

【0015】電力変換装置は、電圧一定制御,無効電力
補償,逆相分補償,高調波補償等の系統の安定化のため
の種々の機能を有し、これらの機能を選択して選択機能
に合った制御信号の演算を行いインバータ部のゲートを
制御することは従来と同じである。
The power converter has various functions for stabilizing the system such as constant voltage control, reactive power compensation, anti-phase component compensation, and harmonic compensation, and these functions are selected to be selected functions. Controlling the gate of the inverter unit by calculating the matched control signal is the same as in the prior art.

【0016】本発明のこの演算結果を利用して、系統の
故障を判別することにある。即ち、系統の故障は、停
電,短絡及び地絡に大別される。これらの故障の種別と
演算結果には相関関係があることを見え出し、演算値を
用いて故障の種別を判別するものである。
The purpose of this invention is to determine the fault of the system by using the result of this calculation. That is, system failures are roughly classified into blackouts, short circuits, and ground faults. It is revealed that there is a correlation between the type of these failures and the calculation result, and the type of the failure is determined using the calculated value.

【0017】故障の判別は次のように行う。The failure determination is performed as follows.

【0018】(1)停電時には、電源が喪失することか
ら、すべての電流の入力信号が0に変化するので、入力
信号0のとき停電と判定する。
(1) At the time of a power failure, since the power supply is lost, the input signals of all currents change to 0. Therefore, when the input signal is 0, it is determined that there is a power failure.

【0019】(2)三相短絡時においては、三相短絡電
流はそのほとんどが基本波無効電流であり、短絡時基本
波有効分電流はほとんど存在しなくなるので、基本波無
効電流の突変(増加)と基本波有効電流の突変(減少)
から三相短絡を判定する。
(2) At the time of three-phase short circuit, most of the three-phase short circuit current is the fundamental wave reactive current, and there is almost no fundamental wave active component current at the time of short circuit. Increase) and sudden change in the active current of the fundamental wave (decrease)
Determine the three-phase short circuit from.

【0020】また、二線短絡時には、二線短絡電流は、
基本波無効分電流の増大と、基本波有効電流の減少傾向
は同じであるが、逆相分無効電流の突変(増加)が特徴
的な現象となる。従って、これにより二線短絡を判定す
る。
When a two-wire short circuit occurs, the two-wire short circuit current is
The increase tendency of the reactive current of the fundamental wave and the decreasing tendency of the active current of the fundamental wave are the same, but a sudden change (increase) of the reactive current of the opposite phase is a characteristic phenomenon. Therefore, this determines a two-wire short circuit.

【0021】(3)地絡事故の特色は、三線地絡の場合
は、三相短絡と、二線地絡の場合は、二線短絡と同様の
現象となるが、地絡点抵抗の値によって基本波有効分の
割合が増大する。一般的に完全地絡はほとんど無く、高
抵抗での地絡がほとんどであり、この時は接地抵抗での
電力消費があるため、基本波無効電力と、基本波有効電
力の比の突変量は短絡時に比べて小さい。よって、この
比が、所定のしきい値以内の場合を地絡と判定する。
(3) The characteristic of the ground fault accident is that the same phenomenon as the three-phase short circuit in the case of three-wire ground fault and the two-wire short circuit in the case of two-wire ground fault, but the value of the ground fault resistance This increases the ratio of the fundamental wave effective component. In general, there are almost no complete ground faults, and most ground faults occur at high resistance. At this time, there is power consumption at the grounding resistance, so there is a sudden change in the ratio of the fundamental reactive power to the fundamental active power. Small compared to short circuit. Therefore, when this ratio is within a predetermined threshold value, it is determined to be a ground fault.

【0022】これらの事故を判定したときは、即刻電力
変換装置を構成するインバータ部のゲートをブロック
し、該装置の異常動作を防止すると同時に、電力変換装
置から系統側への故障電流の流出を防止する。
When these accidents are judged, the gate of the inverter section constituting the power converter is immediately blocked to prevent the abnormal operation of the power converter, and at the same time, the outflow of the fault current from the power converter to the system side. To prevent.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
によって説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は本発明のハード部の制御ブロック
図、図2はそのソフト部の故障判別処理フローを示して
いる。
FIG. 1 is a control block diagram of the hardware section of the present invention, and FIG. 2 shows a failure determination processing flow of the software section.

【0025】なお、図3と同一部分又は相当部分には、
これと同じ符号を付して詳細な説明を省略する。
The same or corresponding portions as in FIG.
The same reference numerals are given and the detailed description is omitted.

【0026】図1において、10は半導体電力変換装置
(以下、電力変換装置と称す)で、図の例は高調波抑制
(補償),逆相分補償,電源電圧一定の3つの機能を持
たせた場合を示している。
In FIG. 1, reference numeral 10 is a semiconductor power converter (hereinafter referred to as a power converter), and the example in the figure has three functions of harmonic suppression (compensation), negative phase compensation, and constant power supply voltage. It shows the case.

【0027】電力変換装置10は、インバータ部11
と、高調波抑制制御ブロック12と、逆相分補償制御ブ
ロック13と、電源電圧一定制御ブロック14および共
通演算部15とからなる。
The power converter 10 includes an inverter section 11
A harmonic suppression control block 12, an anti-phase component compensation control block 13, a constant power supply voltage control block 14 and a common calculation unit 15.

【0028】インバータ部11は、サイリスタ,トラン
ジスタ又はIGBT等の半導体素子からなり、直流側に
直流電圧源としてのコンデンサCが接続され、交流側は
トランスTγを介して系統5に接続され、インバータと
して動作する。
The inverter section 11 is composed of a semiconductor element such as a thyristor, a transistor, or an IGBT, a capacitor C as a DC voltage source is connected to the DC side, and an AC side is connected to the grid 5 via a transformer T γ. To work as.

【0029】高調波抑制制御ブロック12は、基本的に
は負荷電流から、その基本波有効分を差引いて負荷電流
の基本波無効分+高調波分を演算し、PWMインバータ
により、それを打ち消すような補償電流を作り出し、こ
の補償電流を系統に注入するものである。構成として
は、変流器CTで検出された系統5の三相電流を入力
し、これを直交α−β座標上に三相/二相変換するαβ
変換部12−1、変換された電流iα,iβと位相同期
回路PLLから電源の角周波数を入力して回転座標変換
してdq軸上二相電流Id,Iqを得るdq変換部12−
2及びローパスフィルタあるいはハイパスフィルタを有
するフィルタ回路12−3とから成る。
The harmonic suppression control block 12 basically subtracts the active component of the fundamental wave from the load current to calculate the reactive component of the load current plus the harmonic component, and cancels it by the PWM inverter. It generates a compensation current and injects this compensation current into the system. As a configuration, an αβ that inputs the three-phase current of the system 5 detected by the current transformer CT and performs a three-phase / two-phase conversion on the orthogonal α-β coordinates
The conversion unit 12-1, the converted currents iα, iβ and the angular frequency of the power supply from the phase synchronization circuit PLL are input to perform rotational coordinate conversion to obtain two-phase currents I d , I q on the dq axes.
2 and a filter circuit 12-3 having a low-pass filter or a high-pass filter.

【0030】dq変換部12−2で求められたdq軸二
相電流Id,Iqは直流分と交流分よりなり、電流Id
直流分は基本波無効電流、交流分が高調波無効電流に対
応し、電流Iqの直流分が基本波有効分、交流分が高調
波有効分に対応することは周知である。
The dq axis two-phase currents I d and I q obtained by the dq converter 12-2 are composed of a direct current component and an alternating current component. The direct current component of the current I d is the fundamental wave reactive current and the alternating current component is the harmonic reactive component. It is well known that the direct current component of the current I q corresponds to the fundamental current effective component and the alternating current component corresponds to the harmonic effective component of the current I q .

【0031】フィルタ回路12−3の出力は加算回路1
5−1を介して共通演算部15のdq逆変換部15−
2、αβ逆変換部15−3で二相/三相変換され、補償
電流指令信号としてPWM制御部11aに入力する。
The output of the filter circuit 12-3 is the addition circuit 1
5-1 through the dq inverse transformation unit 15- of the common calculation unit 15
2. Two-phase / three-phase conversion is performed by the αβ inverse conversion unit 15-3, which is input to the PWM control unit 11a as a compensation current command signal.

【0032】また、フィルタ回路12−3から、故障演
算部20に高調波有効分信号Iq′,高調波無効分信号
d′,基本波有効分信号Iq″、基本波無効分信号
d″を出力する。
Further, from the filter circuit 12-3, the harmonic operation effective component signal I q ′, the harmonic ineffective component signal I d ′, the fundamental effective component signal I q ″, and the fundamental ineffective component signal I are sent to the failure calculation unit 20. Output d ″.

【0033】逆相分補償制御ブロック13は、負荷電流
と系統電圧の瞬時値から、負荷電流を正相直交分および
逆相直交成分に分解し、正相無効分および逆相分を補償
して無効分補償と三相平衡化を図るものである。
The anti-phase component compensation control block 13 decomposes the load current into a positive-phase quadrature component and an anti-phase quadrature component from the instantaneous values of the load current and the system voltage, and compensates the positive-phase reactive component and the anti-phase component. It aims at reactive component compensation and three-phase balancing.

【0034】この逆相分補償制御ブロック13の構成
は、変流器CTで検出された三相電流を入力する逆回転
座標αβ変換部13−1、この出力に接続され、位相同
期回路PLLの出力を入力する逆回転座標dq変換部1
3−2,フィルタ回路13−3、このフィルタ回路の出
力側に接続され、位相同期回路PLLの出力を入力する
逆回転座標dq逆変換部13−4,逆回転座標αβ逆変
換部13−5と順次接続されてなり、逆回転座標αβ変
換部13−5の出力は、高調波抑制制御ブロック12の
入力側に差動的に入力される。また、共通演算部15の
αβ逆変換部15−3の出力側に加算され、PWM制御
指令信号IU′,IV′,IW′を得る。
The anti-phase component compensation control block 13 is constructed such that the inverse rotation coordinate αβ conversion unit 13-1 for inputting the three-phase current detected by the current transformer CT is connected to this output, and is connected to the output of the phase synchronization circuit PLL. Reverse rotation coordinate dq converter 1 for inputting output
3-2, a filter circuit 13-3, an inverse rotation coordinate dq inverse conversion unit 13-4, which is connected to the output side of the filter circuit and inputs the output of the phase locked loop PLL, an inverse rotation coordinate αβ inverse conversion unit 13-5. The output of the reverse rotation coordinate αβ converter 13-5 is differentially input to the input side of the harmonic suppression control block 12. Further, the PWM control command signals I U ′, I V ′ and I W ′ are added to the output side of the αβ inverse conversion unit 15-3 of the common calculation unit 15.

【0035】また、フィルタ回路13−3から、逆相有
効分信号Iq,逆相無効分信号Idを故障演算部20に出
力する。
Further, the anti-phase effective component signal I q and the anti-phase invalid component signal I d are output from the filter circuit 13-3 to the failure calculating section 20.

【0036】電源電圧一定制御ブロック14は、電源電
圧を設定電圧に一定制御するもので、構成は、系統5に
接続され、基本波成分を取り出すフィルタ14−1、該
フィルタ14−1の出力を実効値に変換する実効値変換
部14−2、この変換された実効値を設定電圧と比較す
る比較部14−3、比較部14−3の出力を比例積分演
算する比例積分演算部14−4より成り、その出力は共
通演算部15の加算部15−1に入力される。
The power source voltage constant control block 14 is for controlling the power source voltage to a set voltage at a constant level. The configuration is connected to the system 5, and a filter 14-1 for extracting a fundamental wave component and an output of the filter 14-1 are provided. An effective value conversion unit 14-2 for converting into an effective value, a comparison unit 14-3 for comparing the converted effective value with a set voltage, and a proportional-plus-integral calculation unit 14-4 for performing proportional-integral calculation of the output of the comparison unit 14-3. And the output thereof is input to the addition unit 15-1 of the common calculation unit 15.

【0037】なお、15−4はインバータ部の直流コン
デンサCの電圧を一定制御するためのもので、コンデン
サ電圧−Vdcとコンデンサ電圧設定値Vscとを比較し、
その差電圧を平滑にして加算部15−1に入力する。
Reference numeral 15-4 is for constant control of the voltage of the DC capacitor C of the inverter section, and compares the capacitor voltage -V dc with the capacitor voltage set value V sc ,
The difference voltage is smoothed and input to the addition unit 15-1.

【0038】故障演算部20は、高調波抑制制御ブロッ
ク12および逆相分補償制御ブロック13からの演算結
果の出力を入力し、故障を演算して表示するとともに、
ゲート制御指令信号Gbsを出力し、PWM制御部11a
に信号を出し、インバータ部11のゲートをブロック
し、インバータの機能を停止させる。
The failure calculator 20 receives the output of the calculation results from the harmonic suppression control block 12 and the anti-phase component compensation control block 13, calculates and displays the failure, and
The gate control command signal G bs is output, and the PWM control unit 11a
Signal to block the gate of the inverter unit 11 and stop the function of the inverter.

【0039】次に、系統故障時に高調波抑制制御ブロッ
ク12および逆相分補償制御ブロック13から故障演算
回路20に入力される故障時の信号について説明する。
Next, a signal at the time of a failure input from the harmonic suppression control block 12 and the anti-phase component compensation control block 13 at the time of a system failure will be described.

【0040】系統の故障は、前述したように停電,短
絡,地絡に大別される。この故障による停電の場合は、
電源が喪失することから上記の制御ブロック12および
13から故障演算部20に入力されるすべての信号は0
に変化する。よって、これらの信号で停電事故が判定す
ることができる。
The system failures are roughly classified into power failure, short circuit, and ground fault as described above. In case of power failure due to this failure,
Since the power supply is lost, all the signals input from the control blocks 12 and 13 to the failure calculation unit 20 are 0.
Changes to Therefore, a power failure accident can be determined from these signals.

【0041】また、三相短絡事故の場合は、三相短絡電
流はそのほとんどが基本波無効電流であり、短絡時基本
波有効分電流はほとんど存在しなくなる。よって、基本
波無効分電流信号Id″が突変(増加)し、同時に基本
波有効分信号Iq″が突変(減少)する。よって、この
現象が生じたときは、三相短絡と判定することができ
る。
In the case of a three-phase short-circuit accident, most of the three-phase short-circuit currents are fundamental wave reactive currents, and there is almost no fundamental wave active current during a short circuit. Therefore, the fundamental reactive component current signal I d ″ suddenly changes (increases), and at the same time, the fundamental effective component current signal I q ″ suddenly changes (decreases). Therefore, when this phenomenon occurs, it can be determined that a three-phase short circuit has occurred.

【0042】二線短絡事故の場合は、二線短絡電流は、
基本波無効分電流の増大と、基本波有効電流の減少傾向
は同じであるが、逆相無効分電流が突変し、その信号I
dが突変(増加)する。よって、この現象を生じたとき
は、二線短絡と判定することができる。
In the case of a two-wire short-circuit accident, the two-wire short-circuit current is
The fundamental wave reactive current increases and the fundamental active current decreases in the same tendency, but the reverse-phase reactive current suddenly changes and its signal I
d suddenly changes (increases). Therefore, when this phenomenon occurs, it can be determined that a two-wire short circuit has occurred.

【0043】次に地絡事故の場合は、三線地絡と二線地
絡があるが、三線地絡は三線短絡と、二線地絡は二線短
絡と同様な現象となる。しかし、地絡の場合は、地絡点
抵抗の値によって基本波有効分の割合が増大する。一般
的には完全地絡はほとんど無く、高抵抗での地絡がほと
んどであり、この時は接地抵抗での電力消費があるた
め、基本波無効分信号Id″と、基本波有効分信号Iq
との比の突変量は短絡時に比べて小さい。よって、この
比が所定(設定)のしきい値以内の場合を地絡と判定す
ることができる。
Next, in the case of a ground fault accident, there are a three-wire ground fault and a two-wire ground fault, but a three-wire ground fault is the same phenomenon as a three-wire short circuit, and a two-wire ground fault is the same phenomenon as a two-wire short circuit. However, in the case of a ground fault, the ratio of the fundamental wave effective component increases with the value of the ground fault point resistance. Generally, there is almost no complete ground fault, and most of them are high resistance ground faults. At this time, since there is power consumption by the ground resistance, the fundamental reactive component signal I d ″ and the fundamental effective component signal are I q
The amount of sudden change in the ratio to is smaller than that at the time of short circuit. Therefore, when this ratio is within a predetermined (set) threshold value, it can be determined as a ground fault.

【0044】これらの故障の判定は、故障演算部20で
行われる。
The determination of these faults is performed by the fault calculator 20.

【0045】図2にこの故障判定処理フローを示す。FIG. 2 shows the flow of this failure judgment processing.

【0046】ステップS1で常時基本波無効分電流信号
d″を監視し、事故判定パラメータ(以下設定値と略
称する)ε1と比較し、以下となったとき、ステップS
2〜S4で順次基本波有効分信号Iq″,高調波無効分
信号Id′,高調波有効分信号Iq′を夫々の設定値ε
2,ε3,ε4と比較し、すべてが設定値以下のときス
テップS5で停電と判定し、保護シーケンス(S6)に
信号を送る。なお、ステップS7は、これらの電流が設
定値以上の場合は無事故と判定し、ステップS1に戻
し、監視を繰り返す。
In step S1, the fundamental wave reactive current signal I d ″ is constantly monitored and compared with an accident determination parameter (hereinafter abbreviated as a set value) ε1.
2 to S4, the fundamental wave effective component signal I q ″, the harmonic ineffective component signal I d ′, and the harmonic effective component signal I q ′ are set to respective set values ε.
2, .epsilon.3, .epsilon.4, and when all are less than or equal to the set values, it is determined in step S5 that there is a power failure, and a signal is sent to the protection sequence (S6). In step S7, if these currents are equal to or more than the set values, it is determined that there is no accident, the process returns to step S1, and the monitoring is repeated.

【0047】ステップS1で基本波無効分信号Id″の
突変が設定値ε1より大の場合は、ステップS8で、こ
の基本波無効分信号Id″が短絡を判定するための設定
値ε5と比較し、増大しているときは、ステップS9で
基本波有効分信号Iq″を設定値ε6と比較し、設定値
より減少しているときは、次に、逆相無効分信号Id
逆相有効分信号Iqを順次設定値ε7,ε8と比較し、
ともに設定値より大きい場合は、二相短絡と判定(S1
0,S11,S12)し、保護シーケンスに二相短絡信
号を送る。
If the sudden change of the fundamental wave invalid signal I d ″ is larger than the set value ε1 in step S1, the set value ε5 for determining the short circuit of the fundamental wave invalid signal I d ″ is determined in step S8. compared to, when you are increasing, the fundamental wave active component signal I q "is compared with a set value ε6 in step S9, when is decreasing than the set value, then reverse-phase reactive component signal I d
The negative-phase effective component signal I q is sequentially compared with the set values ε7 and ε8,
If both are larger than the set values, it is determined that there is a two-phase short circuit (S1
0, S11, S12) and sends a two-phase short circuit signal to the protection sequence.

【0048】ステップ10,11で逆相無効分および逆
相有効分信号Id,Iqが共に設定値ε7,ε8より小さ
い場合はステップS13で三相短絡と判定する。
When the anti-phase invalid component and the anti-phase effective component signals I d and I q are both smaller than the set values ε7 and ε8 in steps 10 and 11, it is determined in step S13 that a three-phase short circuit has occurred.

【0049】ステップS8で基本波無効分信号Id″が
設定値ε5より減少している場合、又は基本波有効分信
号Iq″が設定値ε6より増大した場合は、ステップS
14で、基本波有効分と基本波有効分信号の比Id″/
q″を演算し、その突変量が設定値ε9より大きくε
10より小さい範囲内の場合はステップS15で地絡と
判定し、判定外の場合はステップS16で無事故と判定
する。
If the fundamental invalid signal I d ″ has decreased from the set value ε5 in step S8, or if the fundamental effective signal I q ″ has increased from the set value ε6, step S8.
At 14, the ratio of the fundamental wave effective component to the fundamental wave effective component signal I d ″ /
I q ″ is calculated, and the sudden variation is larger than the set value ε 9 and is ε.
If it is within the range smaller than 10, it is determined to be a ground fault in step S15, and if it is not determined, it is determined to be no accident in step S16.

【0050】このように演算結果の信号で系統事故の判
別を行うことができる。
In this way, the system fault can be determined by the signal of the calculation result.

【0051】事故時の制御としては、故障演算部20か
ら、インバータ部11のPWM制御部11aに、ゲート
ブロック信号Gbsを出し、インバータ部のゲートをブロ
ックさせる。
As a control at the time of an accident, the failure calculation section 20 outputs a gate block signal G bs to the PWM control section 11a of the inverter section 11 to block the gate of the inverter section.

【0052】[0052]

【発明の効果】本発明は以上のように、制御演算結果を
利用して事故情報を抽出し、系統の事故発生時には、電
力変換装置を構成するインバータ部のゲートを瞬間にブ
ロックするので、次の効果を奏する。
As described above, according to the present invention, since the accident information is extracted by using the control calculation result and the gate of the inverter section constituting the power conversion device is instantaneously blocked when a system accident occurs, Produce the effect of.

【0053】(1)従来の保護継電器に比較して超高速
の事故検出が可能。
(1) Compared with the conventional protective relay, it is possible to detect accidents at an ultra-high speed.

【0054】(2)制御演算結果を利用して事故情報を
抽出するためソフトの追加が少なくてすむ。
(2) Since the accident information is extracted using the control calculation result, the addition of software can be reduced.

【0055】(3)高速検出により超高速に電力変換装
置を停止できるので、装置への事故時ストレスは最小で
すむ。
(3) Since the power conversion device can be stopped at an extremely high speed by high-speed detection, stress on the device at the time of an accident can be minimized.

【0056】(4)系統にたいしては、事故時に電力変
換装置側からの事故電流の流出を瞬時に停止し、系統及
び接続される負荷への悪影響を防ぐことができる。
(4) With respect to the system, it is possible to instantaneously stop the outflow of the fault current from the power converter side in the event of an accident, and prevent the system and the connected load from being adversely affected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明するための制御ブロック図。FIG. 1 is a control block diagram for explaining the present invention.

【図2】本発明の故障判別処理フロー。FIG. 2 is a flow chart of a failure determination process of the present invention.

【図3】系統の安定化機能を有する電力変換装置の基本
構成図。
FIG. 3 is a basic configuration diagram of a power conversion device having a system stabilizing function.

【符号の説明】[Explanation of symbols]

1…電力変換装置 2…主回路部 3…制御回路部 4…受電遮断器 5…電力系統 10…電力変換装置 11…インバータ部 12…高調波抑制制御ブロック 13…逆相分補償制御ブロック 14…電源電圧一定制御ブロック 15…共通演算部 20…故障演算部 DESCRIPTION OF SYMBOLS 1 ... Electric power converter 2 ... Main circuit part 3 ... Control circuit part 4 ... Power receiving circuit breaker 5 ... Electric power system 10 ... Power converter device 11 ... Inverter part 12 ... Harmonic suppression control block 13 ... Reverse phase compensation control block 14 ... Power supply voltage constant control block 15 ... Common operation unit 20 ... Failure operation unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02M 7/48 9181−5H H02M 7/48 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication H02M 7/48 9181-5H H02M 7/48 R

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に、該系統の安定化を補償する
複数の機能を有する電力変換装置を接続し、これらの補
償機能を選択して、選択機能に合った制御信号を演算
し、この演算結果の制御信号で前記電力変換装置を制御
して選択機能を実現するようにした電力系統の故障検出
保護方式において、前記演算結果から故障の種別を判別
するとともに、故障判定の結果により前記電力変換装置
を構成するインバータ部のゲートをブロックして該イン
バータ部の動作を停止させるようにしたことを特徴とす
る電力系統の故障検出保護方式。
1. A power conversion device having a plurality of functions for compensating for stabilization of the power system is connected to the power system, these compensation functions are selected, and a control signal suitable for the selection function is calculated. In a fault detection and protection method for a power system that controls the power conversion device by a control signal of a calculation result to realize a selection function, the type of fault is determined from the calculation result, and the power consumption is determined based on the result of the fault determination. A fault detection and protection system for a power system, characterized in that a gate of an inverter unit that constitutes a converter is blocked to stop the operation of the inverter unit.
【請求項2】 前記故障種別の判別は、演算結果の制御
信号の内、少なくとも基本波有効分信号と、基本波無効
分信号と、逆相無効分信号を取り出し、これらの信号の
すべてが設定値より減少した場合に停電事故と判定し、
基本波無効分信号の突変(増加)と基本波有効分信号の
突変(減少)のときに三相短絡、基本波無効分信号の増
大と、基本波有効分信号の減少傾向と逆相無効分信号の
突変(増加)のときに二相短絡と判定し、基本波無効分
信号と、基本波有効分信号の比が設定範囲内のときに地
絡事故と判定するようにしたことを特徴とする請求項1
記載の電力系統の故障検出保護方式。
2. The determination of the failure type is performed by extracting at least a fundamental wave effective component signal, a fundamental wave ineffective component signal, and a negative phase ineffective component signal out of the control signals of the calculation result, and all of these signals are set. If it is less than the value, it is judged as a power failure accident,
Three-phase short circuit when there is a sudden change (increase) in the fundamental wave reactive component signal and a sudden change (decrease) in the fundamental wave effective component signal, an increase in the fundamental wave reactive component signal, and a decreasing trend and reverse phase in the fundamental effective component signal A two-phase short circuit was determined when the reactive component signal suddenly changed (increased), and a ground fault accident was determined when the ratio of the fundamental reactive component signal and the fundamental effective component signal was within the set range. Claim 1 characterized by the above-mentioned.
Fault detection and protection method for the power system described.
JP8125256A 1996-05-21 1996-05-21 Detection of defect in power system and protection of the system from the defect Pending JPH09312930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8125256A JPH09312930A (en) 1996-05-21 1996-05-21 Detection of defect in power system and protection of the system from the defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8125256A JPH09312930A (en) 1996-05-21 1996-05-21 Detection of defect in power system and protection of the system from the defect

Publications (1)

Publication Number Publication Date
JPH09312930A true JPH09312930A (en) 1997-12-02

Family

ID=14905606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8125256A Pending JPH09312930A (en) 1996-05-21 1996-05-21 Detection of defect in power system and protection of the system from the defect

Country Status (1)

Country Link
JP (1) JPH09312930A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134802A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Power system interlock controller
JP2008210145A (en) * 2007-02-26 2008-09-11 Central Res Inst Of Electric Power Ind Control method for power conversion system, and power conversion system using control method
JP2010081798A (en) * 2001-04-18 2010-04-08 Tokyo Electric Power Co Inc:The Controller for system-interconnected power converting system
KR20130142909A (en) * 2012-06-20 2013-12-30 페어차일드코리아반도체 주식회사 Short sensing circuit, short sensing method and power supply device comprising the short sensing circuit
CN104635085A (en) * 2015-02-04 2015-05-20 南京南瑞继保电气有限公司 Method for distinguishing load from fault
CN104934943A (en) * 2015-06-17 2015-09-23 广东美的制冷设备有限公司 Overvoltage protection device, overvoltage protection method and electrolytic-capacitor-free motor driving system
CN105699846A (en) * 2016-03-10 2016-06-22 武汉理工大学 Monitoring device for power quality pollution source of electric propulsion ship
KR20190096622A (en) * 2018-02-09 2019-08-20 한전케이디엔주식회사 Apparattus for monitoring of power system
JP2020162213A (en) * 2019-03-25 2020-10-01 東京電力ホールディングス株式会社 Short-circuit monitoring device, short-circuit monitoring method, and program
WO2023206897A1 (en) * 2022-04-26 2023-11-02 国网四川省电力公司营销服务中心 Method and system for identifying single-phase grounding fault on the basis of multi-dimensional electric-energy information fusion
WO2024057625A1 (en) * 2022-09-13 2024-03-21 株式会社日立産機システム Power conversion device and method for detecting electric system anomaly by power conversion device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134802A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Power system interlock controller
JP2010081798A (en) * 2001-04-18 2010-04-08 Tokyo Electric Power Co Inc:The Controller for system-interconnected power converting system
JP2008210145A (en) * 2007-02-26 2008-09-11 Central Res Inst Of Electric Power Ind Control method for power conversion system, and power conversion system using control method
KR20130142909A (en) * 2012-06-20 2013-12-30 페어차일드코리아반도체 주식회사 Short sensing circuit, short sensing method and power supply device comprising the short sensing circuit
CN104635085A (en) * 2015-02-04 2015-05-20 南京南瑞继保电气有限公司 Method for distinguishing load from fault
CN104934943A (en) * 2015-06-17 2015-09-23 广东美的制冷设备有限公司 Overvoltage protection device, overvoltage protection method and electrolytic-capacitor-free motor driving system
CN105699846A (en) * 2016-03-10 2016-06-22 武汉理工大学 Monitoring device for power quality pollution source of electric propulsion ship
KR20190096622A (en) * 2018-02-09 2019-08-20 한전케이디엔주식회사 Apparattus for monitoring of power system
JP2020162213A (en) * 2019-03-25 2020-10-01 東京電力ホールディングス株式会社 Short-circuit monitoring device, short-circuit monitoring method, and program
WO2023206897A1 (en) * 2022-04-26 2023-11-02 国网四川省电力公司营销服务中心 Method and system for identifying single-phase grounding fault on the basis of multi-dimensional electric-energy information fusion
WO2024057625A1 (en) * 2022-09-13 2024-03-21 株式会社日立産機システム Power conversion device and method for detecting electric system anomaly by power conversion device

Similar Documents

Publication Publication Date Title
US9054589B2 (en) Method and apparatus for detecting power converter capacitor degradation using negative sequence currents
WO2020136699A1 (en) Power conversion device
US8902616B2 (en) Active front end power converter with diagnostic and failure prevention using peak detector with decay
EP2443732B1 (en) An arrangement for exchanging power
US20090009005A1 (en) Control method for parallel redundant power system
JPS6056388B2 (en) Controlled current inverter device
JPH09312930A (en) Detection of defect in power system and protection of the system from the defect
CN110492499B (en) Coordinated optimization control method for multi-feed-in direct-current auxiliary power/frequency combined controller
CN107528495B (en) A kind of control method and system improving PWM inverter impact resistance
CN107346003B (en) Voltage source converter fault detection and positioning method and system
Zhang et al. Current-Limiting Strategy for Asymmetric Short-Circuit of Three-Phase Inverter for Continuous Power Supply of Non-Faulty Loads
WO2020136698A1 (en) Power conversion device
US20230369988A1 (en) Modular multilevel power converter and variable speed generator-motor
JP2002238163A (en) Power converter
JP3830095B2 (en) Three-phase imbalance suppression method for distribution system
JP2002335632A (en) System linkage inverter
JP4034458B2 (en) Self-excited AC / DC converter control device and circuit breaker circuit control device
US20230188030A1 (en) Power conversion device and control device
JPH06113460A (en) Method for limiting overcurrent of active filter
JP3950083B2 (en) Ground fault distance relay
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
CN117394281B (en) Protection method and system for open-phase and three-phase voltage unbalance of frequency converter
JP2004064980A (en) Control system of self-excitation converter
CN116938022B (en) MMC type energy converter fault control method, device, system and medium
JP3926980B2 (en) Series capacitor controlled protection device controlled by thyristor