JP3830095B2 - Three-phase imbalance suppression method for distribution system - Google Patents
Three-phase imbalance suppression method for distribution system Download PDFInfo
- Publication number
- JP3830095B2 JP3830095B2 JP2002148696A JP2002148696A JP3830095B2 JP 3830095 B2 JP3830095 B2 JP 3830095B2 JP 2002148696 A JP2002148696 A JP 2002148696A JP 2002148696 A JP2002148696 A JP 2002148696A JP 3830095 B2 JP3830095 B2 JP 3830095B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- adjustment device
- reactive power
- power adjustment
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/10—Flexible AC transmission systems [FACTS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/50—Arrangements for eliminating or reducing asymmetry in polyphase networks
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、静止型無効電力調整装置を利用した配電系統の三相不平衡抑制方法に関するものである。
【0002】
【従来の技術】
静止型無効電力調整装置(SVG:Static Var Generator)は、図1に示すように進み位相を与えるコンデンサ1とインバータ2と、遅れ位相を与える連系リアクトル3とからなるものである。この静止型無効電力調整装置は配電系統4に並列に接続され、負荷5の変動によって生じる系統の電圧変動を打ち消す電圧調整器として用いられている。
【0003】
このため静止型無効電力調整装置は配電系統4の電流と電圧とを検出できる電流・電圧センサ6を備え、系統に発生した無効電力を検出するとともに、制御回路7の指令により、検出された無効電力を打ち消すことができる進み位相または遅れ位相の電力を配電系統4に供給して系統電圧(正相電圧)を一定に保っている。このように静止型無効電力調整装置は電圧一定制御方式により運転されるのが普通であるが、系統の力率を常に一定に保つことを目的として、力率一定制御方式による運転も行なわれている。
【0004】
しかし配電系統4においては、上記した正相電圧の変動の他に、特定の二相間に負荷が集中的に接続される等の原因によって三相不平衡電圧が発生することがあり、これに伴って逆相電圧が発生する。そこでこの逆相電圧を抑制するための専用の三相不平衡電力出力変換器も提案されているが、電圧調整用に機器のほかに新たに三相不平衡電力出力変換器を設置しなければならず、設備費用が嵩むという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決して、電圧一定制御または力率一定制御のために使用されている静止型無効電力調整装置を利用して、配電系統の三相不平衡電圧を抑制する方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた第1の発明は、配電系統に電流・電圧センサと静止型無効電力調整装置とを接続し、電流・電圧センサによる測定値から三相間の逆相電圧を演算し、演算された逆相電圧を打ち消す電力を静止型無効電力調整装置から配電系統に出力することにより、三相不平衡電圧を抑制する三相不平衡抑制方法であって、静止型無効電力調整装置を電圧一定制御方式により運転しつつ、検出された正相電圧と電圧設定値との偏差をなくすに要する静止型無効電力調整装置の正相電圧対応分の出力Qaを定格出力から差し引いた静止型無効電力調整装置の出力の余力の範囲内で、三相不平衡電圧を抑制することを特徴とするものである。なお、静止型無効電力調整装置の平均出力量に応じて電圧一定制御の電圧設定値を経時的変更し、静止型無効電力調整装置の出力の余力分を確保することが好ましい。
【0007】
また第2の発明は、配電系統に電流・電圧センサと静止型無効電力調整装置とを接続し、電流・電圧センサによる測定値から三相間の逆相電圧を演算し、演算された逆相電圧を打ち消す電力を静止型無効電力調整装置から配電系統に出力することにより、三相不平衡電圧を抑制する三相不平衡抑制方法であって、静止型無効電力調整装置を力率一定制御方式により運転しつつ、検出された力率と力率設定値との偏差をなくすに要する静止型無効電力調整装置の正相電圧対応分の出力Qaを定格出力から差し引いた静止型無効電力調整装置の出力の余力の範囲内で、三相不平衡電圧を抑制することを特徴とするものである。
【0008】
このように本発明によれば、常時は電圧一定制御または力率一定制御のために使用されている静止型無効電力調整装置の余力を利用して、三相間の逆相電圧を打ち消す電力を系統に供給し、配電系統の三相不平衡電圧を抑制することができるので、静止型無効電力調整装置とは別に専用の三相不平衡電力出力変換器を系統に設置する必要はない。
【0009】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
本発明で用いられる装置構成は図1に示したとおりであり、従来と特に変わるところはない。しかし制御回路7に組み込まれた制御ソフトの内容が異なるので、以下に詳細に説明する。このように本発明は、既存の静止型無効電力調整装置の制御ソフトを変更するだけで容易に実施することができる。
【0010】
先ず図2は静止型無効電力調整装置を電圧一定制御方式で運転する場合の制御系統図であり、制御回路7は電流・電圧センサ6により検出された各相の電圧から従来と同様に正相電圧(系統電圧)を演算するとともに、三相不平衡の原因である逆相電圧をも演算する。なお図3に示すように、不平衡な三相電圧は正相電圧と逆相電圧とのベクトル和として表すことができる。検出された正相電圧は従来と同様に電圧設定値と比較され、制御回路7はそれらの間の偏差をなくすように静止型無効電力調整装置の出力Qaを算出する。
【0011】
またこれと同時に、制御回路7は演算された逆相電圧を打ち消すことができる静止型無効電力調整装置の出力Zbを算出する。そしてこの出力Zbを前記の出力Qaと合成した出力指令を静止型無効電力調整装置に与える。これを受けた静止型無効電力調整装置は合成された出力量の電力を配電系統4に出力し、系統電圧を一定に維持しながら同時に三相不平衡を解消することができる。ただし合成した出力量が静止型無効電力調整装置の定格出力を越えると、正相電圧対応分の出力Qaの一部が削減されるおそれがあり、静止型無効電力調整装置の本来の役割である系統電圧を一定に維持することが達成できなくなる。
【0012】
そこで好ましくは、合成に先立ち静止型無効電力調整装置の定格出力から正相電圧対応分の出力Qaを差し引き、静止型無効電力調整装置の余力を算出する。そして出力Zbがその余力の範囲内にあればそのまま出力Zbを出力Qaと合成する。しかし出力Zbが余力を越える場合には、その余力の限度内で逆相電圧を打ち消すように出力Zbを制限する。この場合には静止型無効電力調整装置は系統電圧を一定に維持することはできるが、三相不平衡を完全には解消することはできず、余力に応じて三相不平衡抑制効果を発揮することとなる。
【0013】
このように静止型無効電力調整装置の出力に十分な余裕がない場合には、三相不平衡の抑制効果が低減することとなる。そこで請求項2に示すように、静止型無効電力調整装置の平均出力量に応じて電圧一定制御の電圧設定値を経時的に変更し、静止型無効電力調整装置の出力の余力分を確保することが好ましい。
【0014】
図4はそのための制御フローの一例を示すものであり、サンプリング時間TS中の静止型無効電力調整装置の無効電力出力量QΣの平均値Σ=QΣ/TSを算出し、その値を上限設定値QHや下限設定値QLと比較する。そして平均値Σがこれらの設定値の範囲内にあれば電圧設定値VCはそのままとするが、これらの設定値の範囲を外れる場合には静止型無効電力調整装置の出力に余裕がないことを意味するため、電圧設定値VCを所定のVSずつ段階的に変化させる。
【0015】
図5はその動作例を示すグラフであり、当初は静止型無効電力調整装置の出力は0kVarであるが、負荷の急激な変動により静止型無効電力調整装置の出力が瞬間的に−300kVar付近まで増加している。しかしその後、電圧設定値VCを例えば100Vずつ低下させることによって静止型無効電力調整装置の出力を次第に減少させ、静止型無効電力調整装置の出力の余力を確保する。なお、そのままでは系統電圧は低下したままとなるが、その状態が所定時間(例えば45秒)続くと、配電系統に設けられている自動電圧調整器(SVR: Step Voltage Regulator)のタップが切り替えられ、系統電圧は上昇して元に戻るので問題はない。
【0016】
上記したように、電圧一定制御を行なう場合には静止型無効電力調整装置の平均出力量に応じて電圧設定値を経時的に変更し、静止型無効電力調整装置の出力の余力分を確保することによって、三相不平衡を打ち消すための出力を可能としておくことが好ましい。なおこの場合にも瞬間的な系統電圧の変化に対しては、静止型無効電力調整装置は迅速に対応することができる。
【0017】
図6は静止型無効電力調整装置を力率一定制御方式で運転する場合の制御系統図である。この場合には、電流・電圧センサ6により検出された各相の電流・電圧から制御回路10は力率を算出し、力率設定値をもとに静止型無効電力調整装置の出力Qaを算出する。これと同時に制御回路10は検出された逆相電圧を打ち消すことができる静止型無効電力調整装置の出力Zbを算出する。そしてこの出力Zbを出力Qaと合成した出力指令を静止型無効電力調整装置に与える。これにより静止型無効電力調整装置は系統の力率を一定に維持しながら、同時に三相不平衡電圧を抑制することができる。
【0018】
ただし合成した出力が静止型無効電力調整装置の定格出力を越えると、静止型無効電力調整装置の本来の役割である力率を一定に維持できなくなる。そこでこの場合にも前記の電圧一定制御の場合と同様、合成に先立ち静止型無効電力調整装置の定格出力から正相電圧対応分の出力Qaを差し引き、静止型無効電力調整装置の余力を算出する。そして出力Zbがその余力の範囲内にあればそのまま出力Zbを出力Qaと合成する。しかし出力Zbが余力を越える場合には、その余力の限度内で逆相電圧を打ち消すように出力Zbを制限することが好ましい。
【0019】
【実施例】
図7〜図10に本発明の比較例と実施例を示す。この実施例は、系統電圧6600Vの配電系統に取付けた静止型無効電力調整装置(最大出力±300kVar)の制御内容を様々に変更した場合の、相間電圧と不平衡率とを示したグラフである。図7のグラフは比較例を示し、静止型無効電力調整装置の運転を停止した場合の実測値である。横軸の1秒の時点で不平衡負荷を投入することにより、u-wとv-wの2相間の電圧が大きく低下すると同時に、不平衡率が4%を越えていることが判る。
【0020】
図8のグラフは、静止型無効電力調整装置に不平衡抑制機能のみを発揮させた場合の実測値であり、不平衡負荷を投入しても不平衡率は直ぐに0%に戻るが、相間の電圧は全て6200Vにまで低下したままとなっている。しかし図9のグラフに示すように電圧一定制御を行ないつつ不平衡抑制機能を発揮させるようにすれば、相間電圧は全体的にわずかに低下するものの3相間とも全て一致しており、不平衡率は0%に維持される。さらに図10のグラフに示すように、力率一定制御を行ないつつ不平衡抑制機能を発揮させるようにした場合にも、同様の好ましい結果が得られることが確認された。
【0021】
【発明の効果】
以上に説明したように、本発明によれば電圧一定制御または力率一定制御のために使用されている静止型無効電力調整装置を利用して、配電系統の三相不平衡電圧を抑制することができ、三相不平衡を抑制するための特別な設備を設置する必要がないため、設備コストがかからない。また本発明によれば静止型無効電力調整装置の取付点よりも下流側のみならず、上流側についても三相不平衡抑制効果を及ぼすことができるため、多数の機器を配電系統に設置する必要もないなどの利点がある。
【0022】
【図面の簡単な説明】
【図1】本発明で用いられる装置構成を示すブロック図である。
【図2】静止型無効電力調整装置を電圧一定制御方式で運転する場合の制御系統図である。
【図3】不平衡な三相電圧のベクトル図である。
【図4】請求項2の発明の制御フローを示すブロック図である。
【図5】請求項2の発明の動作例を示すグラフである。
【図6】静止型無効電力調整装置を力率一定制御方式で運転する場合の制御系統図である。
【図7】静止型無効電力調整装置の運転を停止した場合の相間電圧と不平衡との変化を示すグラフである。
【図8】静止型無効電力調整装置に不平衡抑制機能を発揮させた場合の相間電圧と不平衡との変化を示すグラフである。
【図9】静止型無効電力調整装置に電圧一定制御を行ないつつ不平衡抑制機能を発揮させた場合の相間電圧と不平衡との変化を示すグラフである。
【図10】静止型無効電力調整装置に力率一定制御を行ないつつ不平衡抑制機能を発揮させた場合の相間電圧と不平衡との変化を示すグラフである。
【符号の説明】
1 コンデンサ、2 インバータ、3 リアクトル、4 配電系統、5 負荷、6 電流・電圧センサ、7 制御回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-phase unbalance suppression method for a distribution system using a static reactive power adjustment device.
[0002]
[Prior art]
As shown in FIG. 1, a static reactive power adjustment device (SVG: Static Var Generator) is composed of a
[0003]
For this reason, the static reactive power adjustment device includes a current / voltage sensor 6 that can detect the current and voltage of the
[0004]
However, in the
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems and suppresses the three-phase unbalanced voltage of the distribution system by using a static reactive power adjustment device used for constant voltage control or constant power factor control. It was made to provide a way to do that.
[0006]
[Means for Solving the Problems]
A first invention made to solve the above problem is to connect a current / voltage sensor and a static reactive power adjustment device to a distribution system, and to calculate a reverse phase voltage between three phases from a measurement value by the current / voltage sensor. A three-phase unbalance suppression method that suppresses three-phase unbalanced voltage by calculating and outputting power that cancels the calculated negative-phase voltage from the static-type reactive power adjustment device to the distribution system. While operating the regulator using the constant voltage control method, the output Qa corresponding to the positive phase voltage of the static reactive power regulator required to eliminate the deviation between the detected positive phase voltage and the voltage set value was subtracted from the rated output. The three-phase unbalanced voltage is suppressed within the range of the remaining capacity of the output of the static reactive power adjustment device . In addition, it is preferable to change the voltage setting value of the constant voltage control over time according to the average output amount of the static reactive power adjustment device, and to secure the remaining capacity of the output of the static reactive power adjustment device.
[0007]
The second aspect of the invention connects a current / voltage sensor and a static reactive power adjustment device to a power distribution system, calculates a reverse phase voltage between three phases from a measured value by the current / voltage sensor, and calculates the calculated reverse phase voltage. Is a three-phase unbalance suppression method that suppresses the three-phase unbalance voltage by outputting the power to cancel the power to the distribution system from the static reactive power adjustment device, and the static reactive power adjustment device is controlled by a constant power factor control method. The output of the static reactive power adjustment device obtained by subtracting the output Qa corresponding to the positive phase voltage of the static reactive power adjustment device required to eliminate the deviation between the detected power factor and the power factor set value while operating. The three-phase unbalanced voltage is suppressed within the range of the remaining power.
[0008]
As described above, according to the present invention, the power for canceling the reverse phase voltage between the three phases is utilized using the remaining power of the static reactive power adjustment device that is normally used for constant voltage control or constant power factor control. Since the three-phase unbalanced voltage of the distribution system can be suppressed, it is not necessary to install a dedicated three-phase unbalanced power output converter in the system separately from the static reactive power adjustment device.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are shown below.
The apparatus configuration used in the present invention is as shown in FIG. 1 and is not particularly different from the conventional one. However, since the content of the control software incorporated in the
[0010]
First, FIG. 2 is a control system diagram in the case where the static reactive power adjustment device is operated by the constant voltage control method. In addition to calculating the voltage (system voltage), it also calculates the reverse-phase voltage that causes the three-phase imbalance. As shown in FIG. 3, an unbalanced three-phase voltage can be expressed as a vector sum of a positive-phase voltage and a negative-phase voltage. The detected positive phase voltage is compared with the voltage set value as in the conventional case, and the
[0011]
At the same time, the
[0012]
Therefore, preferably, prior to synthesis, the output Qa corresponding to the positive phase voltage is subtracted from the rated output of the static reactive power adjustment device to calculate the remaining capacity of the static reactive power adjustment device. If the output Zb is within the remaining power range, the output Zb is directly combined with the output Qa. However, when the output Zb exceeds the surplus power, the output Zb is limited so as to cancel the reverse phase voltage within the limit of the surplus power. In this case, the static reactive power adjustment device can maintain the system voltage constant, but it cannot completely eliminate the three-phase unbalance, and exhibits a three-phase unbalance suppression effect according to the remaining power. Will be.
[0013]
Thus, when there is not enough margin in the output of the static reactive power adjustment device, the effect of suppressing the three-phase unbalance is reduced. Therefore , as shown in
[0014]
FIG. 4 shows an example of a control flow for the, an average value Σ = Q Σ / T S of the reactive power output quantity Q sigma of static reactive power regulator device during the sampling time T S, the value Is compared with the upper limit set value QH and the lower limit set value Q L. If the average value Σ is within the range of these set values, the voltage set value V C is left as it is. However, if the average value Σ is out of the range of these set values, there is no margin in the output of the static reactive power adjustment device. Therefore, the voltage setting value V C is changed step by step by a predetermined V S.
[0015]
FIG. 5 is a graph showing an example of the operation. Initially, the output of the static reactive power adjustment device is 0 kVar, but the output of the static reactive power adjustment device instantaneously reaches around −300 kVar due to a sudden change in the load. It has increased. However, the output of the static reactive power adjustment device is gradually reduced by decreasing the voltage set value V C by, for example, 100 V, and the remaining output of the static reactive power adjustment device is ensured. In addition, the system voltage remains lowered as it is, but when the state continues for a predetermined time (for example, 45 seconds), the tap of the automatic voltage regulator (SVR: Step Voltage Regulator) provided in the distribution system is switched. There is no problem because the system voltage rises and returns.
[0016]
As described above, when performing constant voltage control, the voltage setting value is changed over time according to the average output amount of the static reactive power adjustment device, and the remaining power of the static reactive power adjustment device is secured. Thus, it is preferable to enable output for canceling the three-phase imbalance. In this case as well, the static reactive power adjustment device can quickly respond to instantaneous changes in the system voltage.
[0017]
FIG. 6 is a control system diagram when the static reactive power adjustment device is operated by the constant power factor control method. In this case, the
[0018]
However, if the combined output exceeds the rated output of the static reactive power adjustment device, the power factor that is the original role of the static reactive power adjustment device cannot be maintained constant. Therefore, in this case as well, as in the case of the constant voltage control described above, the output Qa corresponding to the positive phase voltage is subtracted from the rated output of the static reactive power adjustment device prior to synthesis to calculate the remaining power of the static reactive power adjustment device. . If the output Zb is within the remaining power range, the output Zb is directly combined with the output Qa. However, when the output Zb exceeds the surplus power, it is preferable to limit the output Zb so as to cancel the reverse phase voltage within the limit of the surplus power.
[0019]
【Example】
7 to 10 show comparative examples and examples of the present invention. This example is a graph showing the interphase voltage and the unbalance rate when the control contents of a static reactive power adjustment device (maximum output ± 300 kVar) attached to a distribution system with a system voltage of 6600 V are variously changed. . The graph of FIG. 7 shows a comparative example, and is an actual measurement value when the operation of the static reactive power adjustment device is stopped. It can be seen that by applying an unbalanced load at 1 second on the horizontal axis, the voltage between the two phases u-w and v-w is greatly reduced, and at the same time, the unbalance rate exceeds 4%.
[0020]
The graph of FIG. 8 is an actual measurement value when only the unbalance suppression function is exerted on the static reactive power adjustment device. Even when an unbalanced load is applied, the unbalance rate immediately returns to 0%. All voltages remain reduced to 6200V. However, as shown in the graph of FIG. 9, if the unbalance suppression function is performed while performing constant voltage control, the interphase voltage decreases slightly overall, but all three phases are in agreement, and the unbalance rate Is maintained at 0%. Furthermore, as shown in the graph of FIG. 10, it was confirmed that the same preferable result can be obtained even when the unbalance suppression function is performed while performing the constant power factor control.
[0021]
【The invention's effect】
As explained above, according to the present invention, the static reactive power adjustment device used for constant voltage control or constant power factor control is used to suppress the three-phase unbalanced voltage of the distribution system. Since there is no need to install special equipment for suppressing three-phase imbalance, there is no equipment cost. In addition, according to the present invention, it is possible to exert a three-phase imbalance suppression effect not only on the downstream side but also on the upstream side of the attachment point of the static reactive power adjustment device, so it is necessary to install a large number of devices in the power distribution system. There are advantages such as not.
[0022]
[Brief description of the drawings]
FIG. 1 is a block diagram showing an apparatus configuration used in the present invention.
FIG. 2 is a control system diagram when the static reactive power adjustment device is operated by a constant voltage control method.
FIG. 3 is a vector diagram of an unbalanced three-phase voltage.
FIG. 4 is a block diagram showing a control flow of the invention of
FIG. 5 is a graph showing an operation example of the invention of
FIG. 6 is a control system diagram when the static reactive power adjustment device is operated by a constant power factor control method.
FIG. 7 is a graph showing changes in interphase voltage and unbalance when the operation of the static reactive power adjustment device is stopped.
FIG. 8 is a graph showing a change between an interphase voltage and an unbalance when the static reactive power adjustment device exhibits an unbalance suppression function.
FIG. 9 is a graph showing a change between the interphase voltage and the unbalance when the static reactive power adjustment device performs the constant voltage control and exhibits the unbalance suppression function.
FIG. 10 is a graph showing the change between the interphase voltage and the unbalance when the static reactive power adjustment device performs the unbalance suppression function while performing constant power factor control.
[Explanation of symbols]
1 Capacitor, 2 Inverter, 3 Reactor, 4 Distribution system, 5 Load, 6 Current / voltage sensor, 7 Control circuit
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148696A JP3830095B2 (en) | 2002-05-23 | 2002-05-23 | Three-phase imbalance suppression method for distribution system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148696A JP3830095B2 (en) | 2002-05-23 | 2002-05-23 | Three-phase imbalance suppression method for distribution system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003348755A JP2003348755A (en) | 2003-12-05 |
JP3830095B2 true JP3830095B2 (en) | 2006-10-04 |
Family
ID=29767137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002148696A Expired - Lifetime JP3830095B2 (en) | 2002-05-23 | 2002-05-23 | Three-phase imbalance suppression method for distribution system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3830095B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943461A (en) * | 2019-11-25 | 2020-03-31 | 国网辽宁省电力有限公司本溪供电公司 | Intelligent integrated power distribution device applied to low-voltage transformer area and method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103227471B (en) * | 2013-04-03 | 2016-08-03 | 河北旭辉电气股份有限公司 | The method that during single-phase earthing, SVG is normally carried out reactive-load compensation |
JP5868935B2 (en) * | 2013-12-27 | 2016-02-24 | 中国電力株式会社 | Reactive power adjustment device installation position and adjustment amount determination method, program, reactive power adjustment device installation position and adjustment amount determination device |
CN104410083B (en) * | 2014-12-12 | 2017-01-18 | 山东电力工程咨询院有限公司 | Capacitance midpoint potential balancing device on SVG (Static VAR Generator) direct current side and control method of capacitance midpoint potential balancing device |
CN106329545A (en) * | 2016-09-09 | 2017-01-11 | 海特尔机电工程技术(马鞍山)有限公司 | Static var compensator SVG |
CN107196263B (en) * | 2017-07-21 | 2018-12-18 | 国网湖南省电力公司 | SVG control method when intensive deicing device reactive compensation and ice-melt are parallel |
CN107394801B (en) * | 2017-09-06 | 2024-04-02 | 国网安徽省电力公司宣城供电公司 | Station transformer unbalance current treatment device based on three-phase four-wire system three-level SVG |
CN108539767B (en) * | 2018-04-28 | 2020-10-09 | 武汉科力源电气有限公司 | Novel voltage feedforward control method for static var generator and static var generator |
CN110994649A (en) * | 2019-12-10 | 2020-04-10 | 东北电力大学 | Three-phase unbalanced load current active compensation control method |
CN115000975B (en) * | 2022-08-04 | 2022-12-30 | 杭州得诚电力科技股份有限公司 | Reactive compensation method of power distribution system and power distribution system |
-
2002
- 2002-05-23 JP JP2002148696A patent/JP3830095B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943461A (en) * | 2019-11-25 | 2020-03-31 | 国网辽宁省电力有限公司本溪供电公司 | Intelligent integrated power distribution device applied to low-voltage transformer area and method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2003348755A (en) | 2003-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6411066B1 (en) | Method to control the flow of active power in a high voltage direct current transmission system and device for the same | |
US8483885B2 (en) | System stabilizing device | |
US8560136B2 (en) | System stabilizing device | |
KR20080050997A (en) | Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program | |
CN109698507B (en) | Phase modulator and static var compensator coordinated control method and system | |
JP3830095B2 (en) | Three-phase imbalance suppression method for distribution system | |
KR20120030556A (en) | Controlling an inverter device of a high voltage dc system for supporting an ac system | |
JP3411462B2 (en) | Control device for power converter | |
WO1996003683A1 (en) | Transmission line power controller with a continuously controllable voltage source responsive to a real power demand and a reactive power demand | |
CN106063102B (en) | Voltage source converter | |
Hammad et al. | Advanced scheme for AC voltage control at HVDC converter terminals | |
JPH09312930A (en) | Detection of defect in power system and protection of the system from the defect | |
JP2012231606A (en) | System interconnection power conversion device | |
JP2002238163A (en) | Power converter | |
JP4034458B2 (en) | Self-excited AC / DC converter control device and circuit breaker circuit control device | |
JPH0923657A (en) | Controlling of inverter device | |
JP3570913B2 (en) | Control device for semiconductor switch | |
JP2023086352A (en) | Power converter controller and control method | |
JP2809833B2 (en) | Excitation controller for synchronous machine | |
JP2022148986A (en) | Grid-connected power conversion device and control method for grid-connected power conversion device | |
US11855548B2 (en) | Power conversion device and power conversion control device | |
JPH11206021A (en) | Distributed power generation system | |
JPH0698469A (en) | Control system of voltage detection-type reactive-power compensation apparatus | |
JP7222146B1 (en) | power converter | |
JP3480123B2 (en) | Compensation method for reactive power etc. of power supply system with power generation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060707 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060707 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3830095 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110721 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120721 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120721 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130721 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |