JPS6227149B2 - - Google Patents

Info

Publication number
JPS6227149B2
JPS6227149B2 JP57233042A JP23304282A JPS6227149B2 JP S6227149 B2 JPS6227149 B2 JP S6227149B2 JP 57233042 A JP57233042 A JP 57233042A JP 23304282 A JP23304282 A JP 23304282A JP S6227149 B2 JPS6227149 B2 JP S6227149B2
Authority
JP
Japan
Prior art keywords
powder
content
sintered alloy
dimensional
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57233042A
Other languages
Japanese (ja)
Other versions
JPS59123740A (en
Inventor
Yoshio Nishino
Tooru Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57233042A priority Critical patent/JPS59123740A/en
Publication of JPS59123740A publication Critical patent/JPS59123740A/en
Publication of JPS6227149B2 publication Critical patent/JPS6227149B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、炭素含有量が変化しても焼結体寸
法に変化が起らず、一定の焼結体寸法を保持する
Fe―Cu―P―C系焼結合金部材、すなわち合金
成分として少なくともCu,P,およびCを含有
するFe系焼結合金部材の製造法に関するもので
ある。 一般に、Fe―Cu―P―C系焼結合金部材が機
械部品として広く用いられていることは良く知ら
れるところである。 通常、この種のFe―Cu―P―C系焼結合金部
材は、原料粉末として、Fe粉末、Cu3P粉末、お
よび黒鉛粉末を使用し、さらに必要に応じてNi
粉末、Mo粉末、Cr粉末、およびMn粉末なども使
用し、これら原料粉末を適宜組成に配合し、混合
し、圧粉体に成形した後、還元雰囲気中、1100〜
1150℃の範囲内の所定温度で焼結することからな
る通常の粉末冶金法によつて製造されている。 しかし、この結果得られたFe―Cu―P―C系
焼結合金部材は、焼結前の圧粉体に比して寸法変
化がきわめて大きく、かつ寸法バラツキの大きい
ものである。このうち、焼結体が圧粉体に比して
大きく寸法変化する理由は、原料粉末として、融
点:約1030℃を有するCu3P粉末(P:約14%含
有)を使用することに原因するものであると考え
られている。すなわち、焼結工程における昇温過
程で、焼結雰囲気が前記Cu3P粉末の融点である
約1030℃に達すると、このCu3P粉末は一度に溶
融し、液相となつたCu3Pの大部分が原料粉末で
あるFe粉末間に一気に浸入してFe粉末の相互間
隔を押し広げる、いわゆるカツパー・グロース
(Copper Growth)現象(銅膨脹現象)によるも
のであると云われている。 一方、この銅膨脹現象は、焼結体のC含有量に
密接な関係があり、C含有量が高くなるほど低減
する傾向を示すものである。このことは、第1図
のCu:3.0%、P:0.49%(以上重量%、以下%
は重量%を示す)を含有するFe―Cu―P―C焼
結合金部材のC含有量と、圧粉体に対する寸法変
化割合(算出は後述)との関係を示したグラフに
よつても明らかである。すなわち、第1図に示さ
れるように、Fe―Cu―P―C焼結合金部材にお
けるC含有量が増すにつれて銅膨脹現象が低減
し、C:1.0%以上の含有でほとんど銅膨脹現象
の発生が起らなくなるのである。これは、焼結過
程で原料粉末としての黒鉛粉末が、Cu3P粉末が
溶融する以前にFe粉末中に拡散して、Fe粉末の
Cu3P液相に対するぬれ性を悪くすることに原因
し、これによつてCu3P液相のFe粉末相互間への
一気の侵入が阻止されるためであると考えられて
いる。 しかし、Fe―Cu―P―C系焼結合金部材は、
C含有量が通常1%以下の範囲にあり、かつその
製造上、粉末混合時の黒鉛粉末配合量のバラツキ
や、焼結雰囲気のカーボンポテンシアルのバラツ
キを避けることができず、この結果得られた焼結
体のC含有量は目標C含有量に対して個々にバラ
ツクことになり、これに付随して寸法バラツキも
大きなものとなることは第1図から容易に理解さ
れるところである。 このように従来Fe―Cu―P―C系焼結合金部
材においては、銅膨脹現象によつて圧粉体に対す
る焼結体の寸法変化が大きく、さらに変動するC
含有量によつて寸法バラツキも大きくなり、焼結
体の寸法を所定の寸法精度におさめることはきわ
めて困難であるのが現状である。 そこで、本発明者等は、上述のような観点か
ら、圧粉体に対する焼結体の寸法変化が小さく、
かつC含有量に変動があつても寸法バラツキのな
いFe―Cu―P―C系焼結合金部材を製造すべく
研究を行なつた結果、通常の粉末冶金法によつて
Fe―Cu―P―C系焼結合金部材を製造するに際
して、従来原料粉末として使用されているCu3P
粉末に代つて、P:3.5〜7.0%を含有するCu―P
合金粉末を使用すると、このCu―P合金粉末
は、Cu―P2元状態図からも明らかなように、焼
結工程における昇温過程で、その共晶温度である
約714℃で溶融を開始し、この溶融はCuの融点で
ある約1083℃までの温度範囲に亘つて連続して
徐々に起ることになるため、Cu―P液相の発生
はわずかづつ起ることになり、このためFe粉末
間への前記Cu―P液相の侵入はきわめてゆつく
りしたものとなることから、前記Cu―P液相に
よつてFe粉末間の間隔が押し広げられることが
なく、この結果焼結体の寸法変化もきわめて小さ
いものとなり、また焼結体のC含有量に製造上バ
ラツキが生じても、前記のCu―P液相の作用に
よつて補正され、この結果Fe―Cu―P―C系焼
結合金部材におけるC含有量が如何に変化しても
得られる焼結体の圧粉体に対する寸法変化は常に
ほぼ一定となるという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、原料粉末たるCu―P合金粉末のP
含有量を3.5〜7.0%に限定したのは、その含有量
が3.5%未満であつても、また7.0%を越えても、
焼結工程における昇温過程でのCu―P液相発生
が狭い温度範囲で起るようになつて銅膨脹現象の
発生原因となるからである。 つぎに、この発明の方法を実施例により具体的
に説明する。 実施例 原料粉末として、粒度:−100meshのアトマイ
ズFe粉末、同一350meshのCu―P合金(P:
3.64%含有)粉末、同一350meshのCu―P合金
(P:5.13%含有)粉末、同一350meshのCu―P
(P:6.83%含有)粉末、同一200meshの天然黒
鉛粉末、同一350meshのNi粉末、同一350meshの
Mo粉末、同一350meshのCr粉末、および同一
350meshのMn粉末を用意し、さらに同一
350meshの従来Cu3P粉末(P:13.8%含有)も用
意し、これら原料粉末を、それぞれ第1表に示さ
れる配合割合に配合し、V型混合機にて0.5時間
混合した後、6ton/cm2の圧力にて幅:10mm×厚
さ:10mm×長さ:55mmの寸法をもつた圧粉体に成
形し、ついでこれら圧粉体をアンモニア分解ガス
中、1120℃の温度に10℃/minの昇温速度で加熱
し、30分間保持の条件で焼結することによつて本
発明焼結合金部材1〜30および従来焼結合金部材
1〜15をそれぞれ製造した。なお、第1表に示
されるように、本発明焼結合金部材1〜30は、
いずれも原料粉末としてCu―P合金粉末を使用
したものであり、従来焼結合金部材1〜15は、
Cu3P粉末を原料粉末として使用したものであ
る。 この結果得られた本発明焼結合金部材1〜30
および従来焼結合金部材1〜15の長さ方向寸法
This invention maintains constant sintered body dimensions without causing any change in sintered body dimensions even if the carbon content changes.
The present invention relates to a method for producing a Fe--Cu--P--C based sintered alloy member, that is, an Fe-based sintered alloy member containing at least Cu, P, and C as alloy components. It is generally well known that Fe--Cu--P--C based sintered alloy members are widely used as mechanical parts. Normally, this type of Fe-Cu-P-C based sintered alloy member uses Fe powder, Cu 3 P powder, and graphite powder as raw material powder, and if necessary, Ni
Powder, Mo powder, Cr powder, Mn powder, etc. are also used, and after blending these raw material powders into an appropriate composition, mixing, and forming into a green compact, in a reducing atmosphere,
It is produced by a conventional powder metallurgy process consisting of sintering at a predetermined temperature in the range of 1150°C. However, the resulting Fe--Cu--P--C based sintered alloy member has extremely large dimensional changes and large dimensional variations compared to the green compact before sintering. Among these, the reason why the size of the sintered body changes significantly compared to the green compact is due to the use of Cu 3 P powder (contains about 14% P) with a melting point of about 1030°C as the raw material powder. It is considered to be something that does. That is, when the sintering atmosphere reaches approximately 1030°C, which is the melting point of the Cu 3 P powder, during the temperature raising process in the sintering process, the Cu 3 P powder melts at once, and the Cu 3 P that has become a liquid phase melts. It is said that most of this is due to the so-called Copper Growth phenomenon (copper expansion phenomenon), in which the Fe powder, which is the raw material powder, penetrates at once between the Fe powders and expands the mutual spacing between the Fe powders. On the other hand, this copper expansion phenomenon is closely related to the C content of the sintered body, and tends to decrease as the C content increases. This corresponds to Cu: 3.0%, P: 0.49% (more than % by weight, less % by weight) in Figure 1.
This is also clear from the graph showing the relationship between the C content of the Fe-Cu-P-C sintered alloy member, which contains Fe-Cu-P-C sintered alloy members (indicates weight %), and the dimensional change ratio (calculation will be described later) with respect to the green compact. It is. That is, as shown in Fig. 1, as the C content in the Fe-Cu-P-C sintered alloy member increases, the copper expansion phenomenon decreases, and when the C content is 1.0% or more, the copper expansion phenomenon almost never occurs. will no longer occur. This is because during the sintering process, graphite powder as a raw material powder diffuses into the Fe powder before the Cu 3 P powder melts, causing the Fe powder to melt.
This is thought to be due to poor wettability with the Cu 3 P liquid phase, which prevents the Cu 3 P liquid phase from penetrating between the Fe powders at once. However, Fe-Cu-P-C based sintered alloy members,
The C content is usually in the range of 1% or less, and due to the manufacturing process, it is impossible to avoid variations in the amount of graphite powder blended during powder mixing and variations in the carbon potential of the sintering atmosphere. It can be easily understood from FIG. 1 that the C content of the sintered body varies individually with respect to the target C content, and accordingly, the dimensional variation also becomes large. As described above, in conventional Fe-Cu-P-C based sintered alloy members, the dimensional change of the sintered compact relative to the green compact is large due to the copper expansion phenomenon, and the C
Dimensional variations increase depending on the content, and it is currently extremely difficult to keep the dimensions of the sintered body within a predetermined dimensional accuracy. Therefore, from the above-mentioned viewpoint, the inventors of the present invention have developed a method in which the dimensional change of the sintered body with respect to the green compact is small, and
As a result of conducting research to produce Fe-Cu-P-C based sintered alloy members that have consistent dimensions even when the C content varies, we found that
Cu 3 P, which is conventionally used as a raw material powder when manufacturing Fe-Cu-P-C based sintered alloy parts.
Cu--P containing 3.5-7.0% P instead of powder
When alloy powder is used, this Cu-P alloy powder starts to melt at its eutectic temperature of approximately 714°C during the heating process in the sintering process, as is clear from the Cu-P binary phase diagram. Since this melting occurs continuously and gradually over a temperature range up to approximately 1083℃, which is the melting point of Cu, the generation of the Cu-P liquid phase occurs little by little. Since the Cu-P liquid phase penetrates between the powders very slowly, the distance between the Fe powders is not expanded by the Cu-P liquid phase, and as a result, the sintered body The dimensional change in the Fe-Cu-P-C becomes extremely small, and even if there is a manufacturing variation in the C content of the sintered body, it is compensated for by the action of the Cu-P liquid phase, and as a result, the Fe-Cu-P-C It was found that no matter how the C content in the sintered alloy member changes, the dimensional change of the resulting sintered body relative to the green compact is always approximately constant. This invention was made based on the above knowledge, and is based on the P of Cu-P alloy powder, which is the raw material powder.
The reason for limiting the content to 3.5% to 7.0% is that even if the content is less than 3.5% or exceeds 7.0%,
This is because Cu--P liquid phase generation occurs in a narrow temperature range during the temperature increase process in the sintering process, causing the copper expansion phenomenon. Next, the method of the present invention will be specifically explained using examples. Examples As raw material powders, atomized Fe powder with a particle size of -100mesh and a Cu-P alloy (P:
3.64%) powder, same 350mesh Cu-P alloy (P: 5.13% content) powder, same 350mesh Cu-P
(Contains P: 6.83%) Powder, Natural graphite powder of the same 200mesh, Ni powder of the same 350mesh, Ni powder of the same 350mesh
Mo powder, same 350mesh Cr powder, and same
Prepare 350mesh Mn powder and
350mesh conventional Cu 3 P powder (P: 13.8% content) was also prepared, and these raw material powders were blended in the proportions shown in Table 1. After mixing for 0.5 hours in a V-type mixer, 6 tons/ The compacts were formed into compacts with dimensions of width: 10 mm x thickness: 10 mm x length: 55 mm at a pressure of cm 2 , and then these compacts were heated at a temperature of 1120°C in an ammonia decomposition gas at 10°C/10°C. Sintered alloy members 1 to 30 of the present invention and conventional sintered alloy members 1 to 15 were manufactured by heating at a temperature increase rate of min and sintering under conditions of holding for 30 minutes. In addition, as shown in Table 1, the sintered alloy members 1 to 30 of the present invention are as follows:
All of them use Cu-P alloy powder as raw material powder, and conventional sintered alloy members 1 to 15 are
Cu 3 P powder is used as the raw material powder. The resulting sintered alloy members 1 to 30 of the present invention
and the longitudinal dimension of conventional sintered alloy members 1 to 15

【表】【table】

【表】 をそれぞれ5個の試験片について測定し、圧粉体
長さに対する変化割合、すなわち、 (焼結体長さ−圧粉体長さ)/(圧粉体長さ)×100
(%) を算出した。これらの結果にもとづき、第1表に
は最大寸法変化割合、最小寸法変化割合、および
平均寸法変化割合をそれぞれ示した。 第1表に示される結果から、本発明焼結合金部
材1〜30は、いずれも寸法変化が従来焼結合金部
材に比して相対的に小さく、かつC含有量が変化
してもほぼ一定の寸法変化を示すのに対して、従
来焼結合金部材1〜15は、相対的に寸法変化が
大きく、しかも寸法バラツキも著しく大きなもの
になつていることが明らかである。 上述のように、この発明の方法によれば、相対
的に寸法変化が小さく、かつ寸法バラツキのほと
んどないFe―Cu―P―C系焼結合金部材を製造
することができるので、前記部材の製造に際して
は、焼結体の膨脹代などをあまり考慮する必要が
なく、さらにC含有量のバラツキ原因となる製造
条件にもほとんど影響されることなく、寸法精度
の高い製品が得られるなど工業上有用な効果がも
たらされるのである。
[Table] was measured for each of five test pieces, and the change rate with respect to the green compact length, that is, (sintered compact length - green compact length) / (green compact length) × 100
(%) was calculated. Based on these results, Table 1 shows the maximum dimensional change rate, minimum dimensional change rate, and average dimensional change rate, respectively. From the results shown in Table 1, the dimensional changes in all of the sintered alloy members 1 to 30 of the present invention are relatively small compared to the conventional sintered alloy members, and are almost constant even when the C content changes. It is clear that the conventional sintered alloy members 1 to 15 have a relatively large dimensional change and also have a significantly large dimensional variation. As described above, according to the method of the present invention, it is possible to produce a Fe--Cu--P--C based sintered alloy member with relatively small dimensional changes and almost no dimensional variation. During manufacturing, there is no need to take into account the expansion allowance of the sintered body, and it is also almost unaffected by manufacturing conditions that cause variations in C content, making it possible to obtain products with high dimensional accuracy. It brings about useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe―Cu―P―C焼結合金部材のC含
有量と寸法変化割合との関係を示したグラフであ
る。
FIG. 1 is a graph showing the relationship between C content and dimensional change rate of Fe-Cu-P-C sintered alloy members.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末冶金法にてFe―Cu―P―C系焼結合金
部材を製造するに際して、原料粉末として、P:
3.5〜7.0重量%を含有するCu―P合金粉末を使用
することを特徴とする炭素含有量変化に対して焼
結体寸法が一定のFe―Cu―P―C系焼結合金部
材の製造法。
1. When producing Fe-Cu-P-C based sintered alloy members by powder metallurgy, P:
A method for producing a Fe--Cu--P--C based sintered alloy member whose sintered body dimensions remain constant despite changes in carbon content, characterized by using Cu--P alloy powder containing 3.5 to 7.0% by weight. .
JP57233042A 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member having uniform dimension independently of change in carbon content Granted JPS59123740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233042A JPS59123740A (en) 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member having uniform dimension independently of change in carbon content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233042A JPS59123740A (en) 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member having uniform dimension independently of change in carbon content

Publications (2)

Publication Number Publication Date
JPS59123740A JPS59123740A (en) 1984-07-17
JPS6227149B2 true JPS6227149B2 (en) 1987-06-12

Family

ID=16948887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233042A Granted JPS59123740A (en) 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member having uniform dimension independently of change in carbon content

Country Status (1)

Country Link
JP (1) JPS59123740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4704949B2 (en) * 2006-04-26 2011-06-22 株式会社神戸製鋼所 Mixed powder for producing iron-based sintered body and iron-based sintered body

Also Published As

Publication number Publication date
JPS59123740A (en) 1984-07-17

Similar Documents

Publication Publication Date Title
US6277326B1 (en) Process for liquid-phase sintering of a multiple-component material
US2467675A (en) Alloy of high density
US2491866A (en) Alloy of high density
US2313070A (en) Metal composition
US2902755A (en) Method of making brazing material
JP3792714B2 (en) Sintered products with improved density
US2807542A (en) Method of making high density sintered alloys
US3977841A (en) Ruthenium powder metal alloy and method for making same
JPS6227149B2 (en)
US4824734A (en) Tin-containing iron base powder and process for making
JPS6033335A (en) Heat resistant molybdenum material
US3859085A (en) Method for producing iron-base sintered alloys with high density
JPS6227148B2 (en)
JPS61179804A (en) Production of joined part of ferrous sintered body and cuprous sintered body
US2082126A (en) Method of manufacturing porous metallic bodies
US3272603A (en) Refractory metal composite
JPH0751721B2 (en) Low alloy iron powder for sintering
JP3694968B2 (en) Mixed powder for powder metallurgy
JP2910326B2 (en) Mixed powder for powder metallurgy and its sintered body
JP2560816B2 (en) Method for producing reaction-bonded gold for surface hardening
US2162380A (en) Metal composition
JPH0114985B2 (en)
JP3300420B2 (en) Alloy for sintered sealing material
JPS6049079B2 (en) Joining method for metal parts
JPS6055580B2 (en) Method for manufacturing sintered molded parts with few pores mainly composed of chromium and copper