JPS6227148B2 - - Google Patents

Info

Publication number
JPS6227148B2
JPS6227148B2 JP57233041A JP23304182A JPS6227148B2 JP S6227148 B2 JPS6227148 B2 JP S6227148B2 JP 57233041 A JP57233041 A JP 57233041A JP 23304182 A JP23304182 A JP 23304182A JP S6227148 B2 JPS6227148 B2 JP S6227148B2
Authority
JP
Japan
Prior art keywords
powder
sintered alloy
raw material
alloy
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57233041A
Other languages
Japanese (ja)
Other versions
JPS59123739A (en
Inventor
Yoshio Nishino
Tooru Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57233041A priority Critical patent/JPS59123739A/en
Publication of JPS59123739A publication Critical patent/JPS59123739A/en
Publication of JPS6227148B2 publication Critical patent/JPS6227148B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、圧粉体を焼結して焼結体とするに
際して、前記焼結による寸法変化がきわめて小さ
い実質的に炭素(C)を含有しないFe―Cu―P系焼
結合金部材、すなわち合金成分として少なくとも
CuおよびPを含有するFe系焼結合金部材の製造
法に関するものである。 一般に、実質的にCを含有しないFe―Cu―P
系焼結合金部材が機械部品として広く用いられて
いることはよく知られるところである。 通常、この種のFe―Cu―P系焼結合金部材
は、原料粉末として、Fe粉末およびCu3P粉末を
使用し、さらに必要に応じてNi粉末、Mo粉末、
Cr粉末、およびMn粉末なども使用し、これら原
料粉末を適宜組成に配合し、混合し、圧粉体に成
形した後、真空中、あるいは不活性ガスや還元性
ガスなどの非酸化性雰囲気中、1100〜1150℃の範
囲内の所定温度で焼結することからなる通常の粉
末冶金法によつて製造されている。 しかし、この結果得られたFe―Cu―P系焼結
合金部材は、焼結前の圧粉体に比して寸法変化の
きわめて大きいものである。これは、原料粉末と
して、融点:約1030℃を有するCu3P粉末(P:
約14%含有)を使用することに原因するものであ
ると考えられている。すなわち、焼結工程におけ
る昇温過程で、焼結雰囲気が前記Cu3P粉末の融
点である約1030℃に達すると、このCu3P粉末は
一度に溶融し、液相となつたCu3Pの大部分が原
料粉末であるFe粉末間に一気に浸入してFe粉末
の相互間隔を押し広げる、いわゆるカツパー・グ
ロース(Copper Growth)現象(銅膨脹現象)
によるものであると云われている。このような圧
粉体に対する焼結体の大きな寸法変化が、その製
造上大きな問題となつているのである。 そこで、本発明者等は、上述のような観点か
ら、圧粉体に対する焼結体の寸法変化が小さい実
質的にCを含有しないFe―Cu―P系焼結合金部
材を製造すべく研究を行なつた結果、通常の粉末
冶金法によつて実質的にCを含有しないFe―Cu
―P系焼結合金部材を製造するに際して、原料粉
末としてCu3P粉末に代つてP:3.5〜7.0重量%
(以下%は重量%を示す)を含有するCu―P合金
粉末を使用すると、前記Cu―P合金粉末は、Cu
―P2元状態図からも明らかなように、焼結工程
における昇温過程で、その共晶温度である約714
℃で溶融を開始し、この溶融はCuの融点である
約1083℃までの温度範囲に亘つて連続して徐々に
起ることになるため、Cu―P液相の発生はわず
かづつ起ることになり、このためFe粉末間への
前記Cu―P液相の侵入はきわめてゆつくりした
ものとなることから、前記Cu―P液相によつて
Fe粉末間の間隔が押し広げられることがなく、
この結果焼結体の寸法変化もきわめて小さいもの
となるという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、原料粉末たるCu―P合金粉末のP
含有量を3.5〜7.0%に限定したのは、その含有量
が3.5%未満であつたり、また7.0%を越えたりす
ると、焼結工程における昇温過程でのCu―P液
相発生が狭い温度範囲で起るようになり、この結
果カツパー・グロース現象を抑制することができ
なくなるからである。 つぎに、この発明の方法を実施例により具体的
に説明する。 実施例 原料粉末として、粒度:−100meshのアトマイ
ズFe粉末、同一350meshのCu―P合金(P:
3.64%含有)粉末、同一350meshのCu―P合金
(P:5.13%含有)粉末、同一350meshのCu―P
合金(P:6.83%含有)粉末、同一350meshのNi
粉末、同一350meshのMo粉末、同一350meshの
Cr粉末、および同一350meshのMn粉末を用意
し、さらに同一350meshの従来Cu3P粉末(P:
13.8%含有)も用意し、これら原料粉末をそれぞ
れ第1表に示される配合割合に配合し、V型混合
機にて0.5時間混合した後、6ton/cm2の圧力にて
幅:10mm×厚さ:10mm×長さ:55mmの寸法をもつ
た圧粉体に成形し、ついでこれら圧粉体をアンモ
ニア分解ガス中、1120℃の温度に10℃/minの昇
温速度で加熱し、30分間保持の条件で焼結するこ
とによつて本発明焼結合金部材1〜10および従来
焼結合金部材1〜4をそれぞれ製造した。なお、
第1表に示されるように、本発明焼結合金部材1
〜10は、いずれも原料粉末としてCu―P合金粉
末を使用したもので
The present invention provides an Fe--Cu--P based sintered alloy member which substantially does not contain carbon (C) and whose dimensional change due to the sintering is extremely small when a green compact is sintered into a sintered compact. As an alloying component, at least
The present invention relates to a method for manufacturing an Fe-based sintered alloy member containing Cu and P. Generally, Fe-Cu-P does not contain substantially C.
It is well known that sintered alloy members are widely used as mechanical parts. Usually, this kind of Fe-Cu-P based sintered alloy member uses Fe powder and Cu 3 P powder as raw material powder, and if necessary, Ni powder, Mo powder,
Cr powder, Mn powder, etc. are also used, and these raw material powders are blended into an appropriate composition, mixed, and formed into a green compact, then in vacuum or in a non-oxidizing atmosphere such as inert gas or reducing gas. , by a conventional powder metallurgy process consisting of sintering at a predetermined temperature within the range of 1100-1150°C. However, the resulting Fe--Cu--P based sintered alloy member has extremely large dimensional changes compared to the green compact before sintering. This is Cu 3 P powder (P:
It is believed that this is due to the use of 14% That is, when the sintering atmosphere reaches approximately 1030°C, which is the melting point of the Cu 3 P powder, during the temperature raising process in the sintering process, the Cu 3 P powder melts at once, and the Cu 3 P that has become a liquid phase melts. The so-called Copper Growth phenomenon (copper expansion phenomenon) occurs in which most of the Fe powder infiltrates between the Fe powders, which are the raw material powder, and expands the mutual spacing between the Fe powders.
It is said that this is due to. This large dimensional change of the sintered body relative to the green compact poses a major problem in its manufacture. Therefore, from the above-mentioned viewpoint, the present inventors conducted research in order to manufacture a Fe-Cu-P based sintered alloy member that does not substantially contain C, and the dimensional change of the sintered compact with respect to the green compact is small. As a result, Fe--Cu containing substantially no C was produced by ordinary powder metallurgy.
- When manufacturing P-based sintered alloy parts, P: 3.5 to 7.0% by weight is used instead of Cu 3 P powder as the raw material powder.
(Hereinafter, % indicates weight %) When using a Cu-P alloy powder containing Cu, the Cu-P alloy powder
-As is clear from the P2 phase diagram, during the temperature increase process in the sintering process, the eutectic temperature of approximately 714
Melting starts at ℃, and this melting occurs continuously and gradually over the temperature range up to approximately 1083℃, which is the melting point of Cu, so the generation of the Cu-P liquid phase occurs little by little. Therefore, the penetration of the Cu--P liquid phase into the Fe powder is extremely slow.
The spacing between Fe powders is not widened,
As a result, they found that the dimensional change in the sintered body was extremely small. This invention was made based on the above knowledge, and is based on the P of Cu-P alloy powder, which is the raw material powder.
The reason for limiting the content to 3.5% to 7.0% is that if the content is less than 3.5% or exceeds 7.0%, the generation of Cu-P liquid phase during the heating process in the sintering process will occur at a narrow temperature. As a result, it becomes impossible to suppress the katsupa growth phenomenon. Next, the method of the present invention will be specifically explained using examples. Examples As raw material powders, atomized Fe powder with a particle size of -100mesh and a Cu-P alloy (P:
3.64%) powder, same 350mesh Cu-P alloy (P: 5.13% content) powder, same 350mesh Cu-P
Alloy (containing 6.83% P) powder, same 350mesh Ni
Powder, same 350mesh Mo powder, same 350mesh
Prepared Cr powder and Mn powder of the same 350 mesh, and also conventional Cu 3 P powder of the same 350 mesh (P:
13.8%) was prepared, and these raw material powders were mixed in the proportions shown in Table 1, mixed for 0.5 hours in a V-type mixer, and then mixed at a pressure of 6 tons/cm 2 (width: 10 mm x thickness). The compact was formed into a compact with dimensions of 10 mm x 55 mm, and then heated in an ammonia decomposition gas to a temperature of 1120°C at a heating rate of 10°C/min for 30 minutes. Sintered alloy members 1 to 10 of the present invention and conventional sintered alloy members 1 to 4 were manufactured by sintering under conditions of holding. In addition,
As shown in Table 1, the sintered alloy member 1 of the present invention
-10 all use Cu-P alloy powder as the raw material powder.

【表】 あり、従来焼結合金部材1〜4は、Cu3P粉末を
原料粉末として使用したものである。 この結果得られた本発明焼結合金部材1〜10お
よび従来焼結合金部材1〜4の長さ方向寸法をそ
れぞれ測定し、圧粉体長さに対する変化割合、す
なわち、 (焼結体長さ−圧粉体長さ)/(圧粉体長さ)×100
(%) を算出した。これらの結果を第1表に示した。 第1表に示される結果から、本発明焼結合金部
材1〜10は、いずれも従来焼結合金部材1〜4に
比して相対的に寸法変化がきわめて小さいことが
明らかである。 上述のように、この発明の方法によれば、寸法
変化のきわめて小さい実質的にCを含有しない
Fe―Cu―P系焼結合金部材を製造することがで
き、したがつて前記部材の製造に際しては、あま
り膨張代などを考慮することなく、寸法精度の著
しい向上がはかれるなど工業上有用な効果がもた
らされるのである。
[Table] Conventional sintered alloy members 1 to 4 use Cu 3 P powder as the raw material powder. The longitudinal dimensions of the sintered alloy members 1 to 10 of the present invention and the conventional sintered alloy members 1 to 4 obtained as a result were measured, respectively, and the change rate with respect to the green compact length was determined, that is, (sintered compact length - Green compact length)/(Green compact length) x 100
(%) was calculated. These results are shown in Table 1. From the results shown in Table 1, it is clear that the sintered alloy members 1 to 10 of the present invention have very small dimensional changes relative to the conventional sintered alloy members 1 to 4. As mentioned above, according to the method of the present invention, the dimensional change is extremely small and substantially no C is contained.
It is possible to manufacture Fe-Cu-P based sintered alloy parts, and therefore, when manufacturing the said parts, industrially useful effects such as a remarkable improvement in dimensional accuracy can be achieved without considering the expansion allowance too much. is brought about.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末冶金法にて実質的に炭素を含有しない
Fe―Cu―P系焼結合金部材を製造するに際し
て、原料粉末として、P:3.5〜7.0重量%を含有
するCu―P合金粉末を使用することを特徴とす
る寸法変化の小さいFe―Cu―P系焼結合金部材
の製造法。
1 Contains virtually no carbon using powder metallurgy
When manufacturing Fe-Cu-P based sintered alloy members, a Cu-P alloy powder containing 3.5 to 7.0% by weight of P is used as the raw material powder. A method for manufacturing P-based sintered alloy members.
JP57233041A 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member with slight dimensional change Granted JPS59123739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233041A JPS59123739A (en) 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member with slight dimensional change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233041A JPS59123739A (en) 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member with slight dimensional change

Publications (2)

Publication Number Publication Date
JPS59123739A JPS59123739A (en) 1984-07-17
JPS6227148B2 true JPS6227148B2 (en) 1987-06-12

Family

ID=16948870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233041A Granted JPS59123739A (en) 1982-12-28 1982-12-28 Manufacture of sintered fe-cu-p alloy member with slight dimensional change

Country Status (1)

Country Link
JP (1) JPS59123739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583700B2 (en) * 1987-03-17 1993-11-29 Gantan Beauty Kogyo Kk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583700B2 (en) * 1987-03-17 1993-11-29 Gantan Beauty Kogyo Kk

Also Published As

Publication number Publication date
JPS59123739A (en) 1984-07-17

Similar Documents

Publication Publication Date Title
US6277326B1 (en) Process for liquid-phase sintering of a multiple-component material
JP2741199B2 (en) High density sintered iron alloy
US2467675A (en) Alloy of high density
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
EP0151185B1 (en) Tin-containing iron powder and process for its production
JPS6227148B2 (en)
EP0323628B1 (en) Fine grain tungsten heavy alloys containing additives
US4808225A (en) Method for producing an alloy product of improved ductility from metal powder
JPS6033335A (en) Heat resistant molybdenum material
JPS6227149B2 (en)
US4986961A (en) Fine grain tungsten heavy alloys containing additives
JPS647123B2 (en)
US2033710A (en) Copper alloys
JP2552264B2 (en) Method for producing W-based alloy sintered body having high toughness
JP3300420B2 (en) Alloy for sintered sealing material
JPS6032708B2 (en) Fe-based sintered alloy with high strength and toughness
US2944893A (en) Method for producing tool steels containing titanium carbide
JP2789786B2 (en) Ni-base alloy powder with excellent corrosion resistance for manufacturing structural members
SE446541B (en) NICKEL IRON ALLOY AND WAY TO MAKE IT SAME
CA1239812A (en) Tin-containing iron base powder and process for making
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JP2735132B2 (en) Manufacturing method of high density Elinvar type Fe-based sintered alloy
JPS591761B2 (en) stainless steel powder for powder metallurgy
JPH0140081B2 (en)
JPH01180902A (en) Fe powder for sintering