JPS647123B2 - - Google Patents

Info

Publication number
JPS647123B2
JPS647123B2 JP187085A JP187085A JPS647123B2 JP S647123 B2 JPS647123 B2 JP S647123B2 JP 187085 A JP187085 A JP 187085A JP 187085 A JP187085 A JP 187085A JP S647123 B2 JPS647123 B2 JP S647123B2
Authority
JP
Japan
Prior art keywords
copper
sintered body
based sintered
iron
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP187085A
Other languages
Japanese (ja)
Other versions
JPS61179804A (en
Inventor
Mutsuhiko Sugano
Shunzo Iwahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP187085A priority Critical patent/JPS61179804A/en
Publication of JPS61179804A publication Critical patent/JPS61179804A/en
Publication of JPS647123B2 publication Critical patent/JPS647123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、強固で安定した接合強度を有する
鉄系焼結体と銅系焼結体との接合品の製造方法に
関する。このような接合品は、例えば内側を含油
性を有する銅系焼結体とし、外側を高強度の鉄系
焼結体とした複合軸受や、鉄系焼結体の磁性と強
度、銅系焼結体の非磁性を利用した特殊なステツ
ピングモーター用カバーなどとして有用である。 〔従来の技術〕 従来、このような鉄系材料と銅系材料との組み
合わせ部品を製造するには、ろう付け、かしめ、
焼ばめ等の方法が一般的であるが、量産性やコス
ト面で問題があつた。 〔発明が解決しようとする問題点〕 そこで本発明者らは、量産性に優れ、従つてコ
ストも低下する接合に注目し、約15%の気孔率を
有する鉄系焼結体と、純銅系焼結体とを接合部で
当接し、種々の温度に加熱して接合強度を調べた
ところ、低温に加熱しただけでは接合強度が低
く、しかも不安定(製品間のバラツキが大きい)
であり、それを解決しようと更に高温で加熱する
と、銅系構成部が著しく変形するなどの問題があ
つた。 したがつて、この発明の目的は、銅系構成部を
変形させることなく、接合強度が高く、しかも安
定した鉄系材料と銅系材料の接合品を加熱・接合
により製造する方法を提供することである。 〔問題点を解決するための手段〕 本発明者らは種々検討を重ねた結果、次の知見
を得た。 イ 鉄系材料を5〜20容量%の気孔率を有する焼
結部品とし、銅系材料中にP及びSnのうちの
1種又は2種を添加しておくと、接合のための
加熱時に、P及びSnのうちの1種又は2種と
Cuとの融液が発生し、これが鉄系焼結部品中
の空孔中に浸透し、強固で、かつ安定した接合
がなされること、 ロ 上記のイ)の方法で接合すると、銅系材料の
成形体からの収縮率が2%を越え、寸法制御が
困難となるので、P及びSnのうちの1種又は
2種を添加した銅系材料中に更にCを添加する
と、収縮が抑えられ、収縮率が2%以下となる
こと、 ハ 銅系部分に更に高硬度な特性が求められる場
合、例えば、接合品を複合軸受として用いるよ
うな場合には、更にZnを添加すると効果的で
あること、 ニ 銅系部分に自己潤滑性が求められる場合、例
えば、接合品を複合軸受として用いるような場
合には、更にPbを添加すると効果的であるこ
と。 この発明は、上記知見に基いて発明されたもの
であり、 5〜20容量%の気孔率を有する鉄系焼結体と、 P:0.5〜1.5%及びSn:5〜1.5%のうちの1種
又は2種, C:0.2〜2%, 必要に応じて、Zn:0.1〜20%及びPb: 0.1〜3%のうちの1種又は2種, Cu及び不可避不純物:残り よりなる組成(以上重量%)を有する銅系の焼結
体又は圧粉体とを接合部で当接し、700〜1000℃
の範囲内の温度に加熱して接合することを特徴と
する鉄系焼結体と銅系焼結体の接合品の製造方法 である。 以下、この発明の構成を説明する。 鉄系焼結体の気孔率 気孔率が5容量%より少ないと、P及びSnの
うちの1種又は2種とCuとの融液が鉄系焼結体
内部へ十分浸透しないから、接合強度が不十分と
なり、一方、20容量%を越えると、鉄系焼結体部
分の強度が低くなるので、鉄系焼結体の気孔率を
5〜20容量%と定めた。 銅系の焼結体又は圧粉体 i 組成 a P及びSn これらの成分はCuと反応して融液を生成して、
鉄系焼結体との接合強度の上昇と安定に寄与する
とともに、硬度を高める作用もあるが、それらの
含有量がそれぞれP:0.5重量%未満、Sn:5重
量%未満の場合は、液相量が不十分で十分な接合
強度が得られず、一方、それぞれP:1.5重量%、
Sn:15重量%を越えると、液相量が多くなりす
ぎて、接合に用いるための銅系焼結体あるいは加
熱・接合の結果得られる銅系焼結体部分の形が崩
れたり、Cを添加しても収縮率が2%を越えるの
で、Pの含有量を0.5〜1.5重量%、Snの含有量を
5〜15重量%と定めた。 b C Cは融液とCuとの濡れ性を低下させて、銅系
焼結体の収縮を抑制し、寸法制御を容易にする作
用を有するが、その量が0.2重量%未満では所望
の効果が得られず、一方、2重量%を越えて含有
させると、焼結性が低下しすぎて、銅系焼結体の
強度が低下するので、その含有量を0.2〜2重量
%と定めた。 c Zn ZnもCuと固溶体を形成して硬度を高めるので、
必要に応じて添加されるが、その量が0.1重量%
未満では硬度が十分ではなく、一方、20重量%を
越えると、焼結や接合時のZnの揮散が激しくな
つて、接合に用いる銅系材料が圧粉体であつて
も、あるいは焼結体であつても接合の結果得られ
る銅系焼結体部分に空孔が多くなるとともに脆く
なるので、その含有量を0.1〜20重量%と定めた。 d Pb Pbは銅系合金に潤滑性を付与するので、鉄系
焼結体と銅系焼結体の接合品を、例えば軸受など
の摺動部に使用する場合に、必要に応じて添加さ
れるが、その量が0.1重量%未満では所望の効果
が得られず、一方、3重量%を越えて含有させる
と銅系焼結体部分の強度が低下するようになるの
で、その含有量を0.1〜3重量%と定めた。 圧粉体又は焼結体 加熱・接合に用いる銅系材料は、接合時に融液
を生じればよいので圧粉体でもよいし、焼結体で
もよい。 加熱・接合 加熱によつて、P及びSnのうちの1種又は2
種とCuとの融液が発生して、その融液が銅合金
の焼結体又は圧粉体から接合部(接合すべき部
分)を通つて鉄系焼結体の空孔へ浸透し、強固
で、かつ安定した接合がなされると共に、圧粉体
を用いた場合には同時にその焼結もなされるが、
その温度が700℃より低いと、液相量が少なくて
接合強度が不十分となり、一方、1000℃を越える
と、銅合金部分が軟化しすぎて変形量が大きくな
るので、その加熱温度を700〜1000℃の範囲内の
温度に定めた。 〔実施例〕 実施例 −100メツシユの電解鉄粉、−100メツシユのFe
―18%Cr―2%Niアトマイズ粉、−200メツシユ
のグラフアイト粉、−100メツシユの電解銅粉、−
100メツシユのCu―9%Pアトマイズ粉、−100メ
ツシユのCu−30%Znアトマイズ粉、−100メツシ
ユのCu―20%Snアトマイズ粉、−100メツシユの
Pbアトマイズ粉を用意し、これら粉末をそれぞ
れ第1表のa及びbに示す配合組成となるように
配合して混合後、鉄系材料はプレス圧力5ton/cm2
で直径20mm×厚み10mmの円板に、そして、銅系材
料はプレス圧力5ton/cm2で縦10mm×横10mm×厚み
5mmの角
[Industrial Field of Application] The present invention relates to a method for manufacturing a bonded product of an iron-based sintered body and a copper-based sintered body having strong and stable bonding strength. Such bonded products include, for example, composite bearings with an oil-retaining copper-based sintered body on the inside and a high-strength iron-based sintered body on the outside; It is useful as a special stepping motor cover that takes advantage of the non-magnetic properties of the solid. [Conventional technology] Conventionally, in order to manufacture such combination parts of iron-based materials and copper-based materials, brazing, caulking,
Methods such as shrink fitting are common, but they pose problems in terms of mass production and cost. [Problems to be Solved by the Invention] Therefore, the present inventors focused on joining, which is superior in mass production and reduces costs, and developed an iron-based sintered body with a porosity of about 15% and a pure copper-based When we examined the bonding strength by abutting the sintered body at the joint and heating it to various temperatures, we found that the bonding strength was low and unstable if only heated to a low temperature (there was large variation between products).
To solve this problem, heating at even higher temperatures resulted in problems such as significant deformation of the copper-based components. Therefore, an object of the present invention is to provide a method for manufacturing a bonded product of iron-based materials and copper-based materials that has high bonding strength and is stable without deforming the copper-based components by heating and bonding. It is. [Means for Solving the Problems] As a result of various studies, the present inventors have obtained the following knowledge. (a) If the iron-based material is made into a sintered part with a porosity of 5 to 20% by volume, and one or two of P and Sn are added to the copper-based material, during heating for bonding, One or two of P and Sn
A melt with Cu is generated, which penetrates into the pores in the iron-based sintered parts, resulting in a strong and stable bond. Since the shrinkage rate from the molded product exceeds 2%, making it difficult to control the dimensions, adding C to a copper-based material containing one or two of P and Sn will suppress the shrinkage. , the shrinkage rate should be 2% or less, C. When higher hardness is required for the copper-based part, for example, when the bonded product is used as a composite bearing, it is effective to add Zn. (d) When self-lubricating properties are required in the copper-based parts, for example, when the joined product is used as a composite bearing, it is effective to further add Pb. This invention was invented based on the above findings, and includes: an iron-based sintered body having a porosity of 5 to 20% by volume; and one of P: 0.5 to 1.5% and Sn: 5 to 1.5%. A composition consisting of one or two species, C: 0.2 to 2%, one or two of Zn: 0.1 to 20% and Pb: 0.1 to 3%, Cu and unavoidable impurities: the remainder (or more) % by weight) with a copper-based sintered body or green compact at the joint, and heated to 700 to 1000℃.
This is a method for manufacturing a joined product of an iron-based sintered body and a copper-based sintered body, which is characterized in that the joining is performed by heating to a temperature within the range of . The configuration of this invention will be explained below. Porosity of iron-based sintered body If the porosity is less than 5% by volume, the melt of one or two of P and Sn and Cu will not penetrate sufficiently into the inside of the iron-based sintered body, resulting in poor bonding strength. On the other hand, if it exceeds 20% by volume, the strength of the iron-based sintered body portion decreases, so the porosity of the iron-based sintered body was set at 5 to 20% by volume. Copper-based sintered body or green compact i Composition a P and Sn These components react with Cu to produce a melt,
It contributes to the increase and stability of the bonding strength with the iron-based sintered body, and also has the effect of increasing the hardness, but if the content of these is less than 0.5% by weight of P and less than 5% by weight of Sn, the liquid P: 1.5% by weight, respectively.
Sn: If it exceeds 15% by weight, the amount of liquid phase will become too large and the shape of the copper-based sintered body used for bonding or the copper-based sintered body obtained as a result of heating and bonding may collapse, or the carbon content may become too large. Even if added, the shrinkage rate would exceed 2%, so the content of P was determined to be 0.5 to 1.5% by weight, and the content of Sn was determined to be 5 to 15% by weight. b C C has the effect of reducing the wettability between the melt and Cu, suppressing the shrinkage of the copper-based sintered body, and facilitating dimensional control, but if the amount is less than 0.2% by weight, the desired effect is not achieved. On the other hand, if the content exceeds 2% by weight, the sinterability will be too low and the strength of the copper-based sintered body will decrease, so the content was set at 0.2 to 2% by weight. . c Zn Zn also forms a solid solution with Cu to increase hardness, so
It is added as needed, but the amount is 0.1% by weight.
If it is less than 20% by weight, the hardness will not be sufficient, while if it exceeds 20% by weight, the volatilization of Zn during sintering or joining will be severe, and even if the copper-based material used for joining is a compact, or the sintered Even if the copper-based sintered body is bonded, the resulting copper-based sintered body will have more pores and become brittle, so the content was set at 0.1 to 20% by weight. d Pb Pb imparts lubricity to copper-based alloys, so it is added as necessary when joining products of iron-based sintered bodies and copper-based sintered bodies, for example, in sliding parts such as bearings. However, if the amount is less than 0.1% by weight, the desired effect cannot be obtained, while if the content exceeds 3% by weight, the strength of the copper-based sintered body portion will decrease. The content was determined to be 0.1 to 3% by weight. Powder compact or sintered compact The copper-based material used for heating and bonding may be a compact or a sintered compact as long as it produces a melt during bonding. Heating/Joining One or two of P and Sn can be bonded by heating.
A melt of the seeds and Cu is generated, and the melt penetrates from the copper alloy sintered body or green compact through the joint (the part to be joined) into the pores of the iron-based sintered body, A strong and stable bond is created, and when a green compact is used, it is also sintered at the same time.
If the temperature is lower than 700℃, the amount of liquid phase will be small and the bonding strength will be insufficient.On the other hand, if the temperature exceeds 1000℃, the copper alloy part will become too soft and the amount of deformation will increase, so the heating temperature should be reduced to 700℃. The temperature was set within the range of ~1000℃. [Example] Example -100 mesh electrolytic iron powder, -100 mesh Fe
-18% Cr-2% Ni atomized powder, -200 mesh graphite powder, -100 mesh electrolytic copper powder, -
100 mesh Cu-9%P atomized powder, -100 mesh Cu-30% Zn atomized powder, -100 mesh Cu-20% Sn atomized powder, -100 mesh
Prepare Pb atomized powder, mix these powders so that they have the composition shown in a and b in Table 1, and then press the iron-based material at a pressure of 5 ton/cm 2
The copper material was pressed into a circular plate with a diameter of 20 mm x 10 mm thick, and the copper material was made into a square plate with a length of 10 mm x width of 10 mm x 5 mm of thickness using a press pressure of 5 tons/cm 2.

【表】【table】

【表】 板にプレス成形し、1気圧のH2とN2の混合雰囲
気(H2とN2の分圧比=1:3)中、それぞれ第
1表のa及びbに示す条件で焼結した。ただし、
鉄系材料Dのみ真空(真空度:0.08torr)中で焼
結した。そして、銅系材料を焼結したものについ
ては第1表のbに示す配合組成と実質的に同じ組
成を有する銅系焼結体を得た。 得られた鉄系焼結体の気孔率を第1表のaに示
した。又、得られた銅系焼結体の収縮率は第1表
のbに示した。 これらの第1表のaに示される鉄系材料と第1
表のbに示される銅系材料を用いて、第2表に示
す組み合わせで、鉄系焼結体の円表面の中央に銅
系焼結体又は圧粉体の正方形の面の中央が一致す
るように配置し、1気圧のH2雰囲気中、第2表
に示す条件に加熱して接合した。 得られた接合品10個につき、接合部の剪断強度
を測定し、銅系材料部の圧粉体に対する収縮率も
測定し、10個の剪断強度の平均値及びそのバラツ
キと銅系材料部の収縮率の結果を第2表に示
[Table] Press-formed into a plate and sintered in a mixed atmosphere of H 2 and N 2 at 1 atm (partial pressure ratio of H 2 and N 2 = 1:3) under the conditions shown in a and b of Table 1, respectively. did. however,
Only iron-based material D was sintered in vacuum (degree of vacuum: 0.08 torr). As for the sintered copper-based material, a copper-based sintered body having substantially the same composition as shown in b in Table 1 was obtained. The porosity of the obtained iron-based sintered body is shown in a in Table 1. Further, the shrinkage rate of the obtained copper-based sintered body is shown in b of Table 1. These iron-based materials shown in a of Table 1 and
Using the copper-based materials shown in b of the table, and using the combinations shown in Table 2, the center of the square surface of the copper-based sintered body or green compact matches the center of the circular surface of the iron-based sintered body. They were placed as shown in Table 2 and heated and bonded in an H 2 atmosphere of 1 atm under the conditions shown in Table 2. For each of the 10 bonded products obtained, the shear strength of the joint was measured, and the shrinkage rate of the copper-based material relative to the compact was also measured, and the average value and variation of the shear strength of the 10 pieces and the copper-based material were determined. The shrinkage rate results are shown in Table 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第2表から明らかなように、本発明方法による
接合品は接合部の剪断強度が高くて安定してお
り、しかも銅系材料部の収縮率も小さく、寸法制
御が容易であるのに対し、鉄系材料の気孔率が本
発明範囲より多いEを用いた場合は、剪断強度測
定時に鉄系材料部が破損してしまい、逆に気孔率
の低すぎるFを用いた場合には融液が十分浸透せ
ず強度が低かつた。一方、銅系材料のP,Sn量
が本発明範囲よりも少ない21,23を用いた場合に
は強度が低く、それらの量が多すぎる22,24を用
いた場合には融液量が多くなりすぎて、銅系材料
部の形状が崩れてしまつた。また、C量が本発明
範囲より少ない銅系材料25を用いた場合には、強
度は高いが収縮率が大きく、その量が多すぎる銅
系材料26を用いた場合には強度測定時に銅系材料
部が破損して接合部の剪断強度を測定できなかつ
た。 そして、PもSnも含まない27の銅系材料を用
いたB―27の組み合わせでは、接合強度が低く、
そのばらつきも大きい。 したがつて、この発明の方法によれば、上記の
ように高くて安定した接合強度を持ち、精度の高
い複合部品を安価かつ大量に生産できるのであ
る。
As is clear from Table 2, the products joined by the method of the present invention have high and stable shear strength at the joint, and the shrinkage rate of the copper-based material part is small, making it easy to control dimensions. If E is used, the porosity of which is higher than the range of the present invention, the iron material will be damaged during the shear strength measurement, and conversely, if F, which has a porosity that is too low, is used, the melt will be damaged. It did not penetrate sufficiently and its strength was low. On the other hand, when copper-based materials 21 and 23 are used, in which the amounts of P and Sn are lower than the range of the present invention, the strength is low, and when 22 and 24, in which the amounts of P and Sn are too large, are used, the amount of melt is large. This caused the shape of the copper-based material to collapse. In addition, when a copper-based material 25 with a lower C content than the range of the present invention is used, the strength is high but the shrinkage rate is large, and when a copper-based material 26 with an excessive amount of C is used, the copper-based material 25 is used when measuring the strength. The material part was damaged and the shear strength of the joint could not be measured. In combination B-27, which uses 27 copper-based materials that do not contain P or Sn, the bonding strength is low;
The variation is also large. Therefore, according to the method of the present invention, composite parts having high and stable bonding strength as described above and high precision can be produced in large quantities at low cost.

Claims (1)

【特許請求の範囲】 1 5〜20容量%の気孔率を有する鉄系焼結体
と、 P:0.5〜1.5%及びSn:5〜15%のうちの1種
又は2種, C:0.2〜2%, Cu及び不可避不純物:残り よりなる組成(以上重量%)を有する銅系の焼結
体又は圧粉体とを接合部で当接し、700〜1000℃
の範囲内の温度に加熱して接合することを特徴と
する鉄系焼結体と銅系焼結体の接合品の製造方
法。 2 5〜20容量%の気孔率を有する鉄系焼結体
と、 P:0.5〜1.5%及びSn:5〜15%のうちの1種
又は2種, C:0.2〜2%, Zn:0.1〜20%, Cu及び不可避不純物:残り よりなる組成(以上重量%)を有する銅系の焼結
体又は圧粉体とを接合部で当接し、700〜1000℃
の範囲内の温度に加熱して接合することを特徴と
する鉄系焼結体と銅系焼結体の接合品の製造方
法。 3 5〜20容量%の気孔率を有する鉄系焼結体
と、 P:0.5〜1.5%及びSn:5〜15%のうちの1種
又は2種, C:0.2〜2%, Pb:0.1〜3%, Cu及び不可避不純物:残り よりなる組成(以上重量%)を有する銅系の焼結
体又は圧粉体とを接合部で当接し、700〜1000℃
の範囲内の温度に加熱して接合することを特徴と
する鉄系焼結体と銅系焼結体の接合品の製造方
法。 4 5〜20容量%の気孔率を有する鉄系焼結体
と、 P:0.5〜1.5%及びSn:5〜15%のうちの1種
又は2種, C:0.2〜2%, Zn:0.1〜20%, Pb:0.1〜3%, Cu及び不可避不純物:残り よりなる組成(以上重量%)を有する銅系の焼結
体又は圧粉体とを接合部で当接し、700〜1000℃
の範囲内の温度に加熱して接合することを特徴と
する鉄系焼結体と銅系焼結体の接合品の製造方
法。
[Claims] 1. An iron-based sintered body having a porosity of 5 to 20% by volume, one or two of P: 0.5 to 1.5% and Sn: 5 to 15%, and C: 0.2 to 15%. 2%, Cu and unavoidable impurities: the rest is a copper-based sintered body or green compact having a composition (more than 2% by weight) in contact at the joint, and heated at 700 to 1000℃.
1. A method for manufacturing a bonded product of an iron-based sintered body and a copper-based sintered body, which comprises heating and bonding to a temperature within the range of . 2 An iron-based sintered body having a porosity of 5 to 20% by volume, one or two of P: 0.5 to 1.5% and Sn: 5 to 15%, C: 0.2 to 2%, Zn: 0.1 ~20%, Cu and unavoidable impurities: the rest is in contact with a copper-based sintered body or green compact at the joint, and heated at 700 to 1000℃.
1. A method for manufacturing a bonded product of an iron-based sintered body and a copper-based sintered body, which comprises heating and bonding to a temperature within the range of . 3 An iron-based sintered body having a porosity of 5 to 20% by volume, one or two of P: 0.5 to 1.5% and Sn: 5 to 15%, C: 0.2 to 2%, Pb: 0.1 ~3%, Cu and unavoidable impurities: the rest is a copper-based sintered body or green compact having a composition (more than % by weight) in contact at the joint, and heated at 700 to 1000℃.
1. A method for manufacturing a bonded product of an iron-based sintered body and a copper-based sintered body, which comprises heating and bonding to a temperature within the range of . 4 An iron-based sintered body having a porosity of 5 to 20% by volume, one or two of P: 0.5 to 1.5% and Sn: 5 to 15%, C: 0.2 to 2%, Zn: 0.1 ~20%, Pb: 0.1~3%, Cu and unavoidable impurities: the rest (weight%) is brought into contact with a copper-based sintered body or green compact at the joint, and heated at 700~1000℃.
1. A method for manufacturing a bonded product of an iron-based sintered body and a copper-based sintered body, the method comprising heating to a temperature within the range of .
JP187085A 1985-01-09 1985-01-09 Production of joined part of ferrous sintered body and cuprous sintered body Granted JPS61179804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP187085A JPS61179804A (en) 1985-01-09 1985-01-09 Production of joined part of ferrous sintered body and cuprous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP187085A JPS61179804A (en) 1985-01-09 1985-01-09 Production of joined part of ferrous sintered body and cuprous sintered body

Publications (2)

Publication Number Publication Date
JPS61179804A JPS61179804A (en) 1986-08-12
JPS647123B2 true JPS647123B2 (en) 1989-02-07

Family

ID=11513585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP187085A Granted JPS61179804A (en) 1985-01-09 1985-01-09 Production of joined part of ferrous sintered body and cuprous sintered body

Country Status (1)

Country Link
JP (1) JPS61179804A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128102A (en) * 1986-11-18 1988-05-31 Mitsubishi Motors Corp Production of connecting rod having bearing part
JPH0684528B2 (en) * 1988-09-06 1994-10-26 大同メタル工業株式会社 Graphite-containing lead bronze multilayer sliding material and method for producing the same
JP3045460B2 (en) * 1995-04-19 2000-05-29 株式会社小松製作所 Sintering joining method and sintered composite member using the method
JP4430468B2 (en) * 2004-07-05 2010-03-10 東海カーボン株式会社 Copper-based sintered friction material
JP4849462B2 (en) * 2006-11-15 2012-01-11 日立粉末冶金株式会社 Method of manufacturing composite sintered machine part and cylinder block
CN113528887A (en) * 2021-06-01 2021-10-22 镇江天一合金材料有限公司 High-performance phosphorus-copper alloy based on rare earth modification

Also Published As

Publication number Publication date
JPS61179804A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
JP2741199B2 (en) High density sintered iron alloy
US4090875A (en) Ductile tungsten-nickel-alloy and method for manufacturing same
JPS647123B2 (en)
US4432795A (en) Sintered powdered titanium alloy and method of producing same
US4236945A (en) Phosphorus-iron powder and method of producing soft magnetic material therefrom
US4047983A (en) Process for producing soft magnetic material
EP0200691B1 (en) Iron-based powder mixture for a sintered alloy
US4569822A (en) Powder metal process for preparing computer disk substrates
JP3090963B2 (en) Insert material for joining
JP5403707B2 (en) Cu-based infiltration powder
JP2004100034A (en) Copper infiltrated iron powder product and its manufacturing method
EP0601042A1 (en) Powder-metallurgical composition having good soft magnetic properties
Berry Factors affecting the growth of 90/10 copper/tin mixes based on atomized powders
US3451809A (en) Method of sintering maraging steel with boron additions
RU2300446C2 (en) Method for producing composition material for electrical- engineering designation
RU2300445C2 (en) Method for producing composition material for electrical engineering designation
US4603028A (en) Method of manufacturing sintered components
JPH0751721B2 (en) Low alloy iron powder for sintering
US3272603A (en) Refractory metal composite
US3429696A (en) Iron powder infiltrant
JP2932658B2 (en) Powder sintered titanium and method for producing powder sintered titanium base alloy
JP2679267B2 (en) Manufacturing method of brazing material
JPH055141A (en) Copper or copper-silver alloy metal oxide composite material and production thereof
JPS61153247A (en) Free-cutting ti alloy and its manufacture
JPH04176838A (en) Manufacture of al alloy powder and sintered al alloy