JPS6032708B2 - Fe-based sintered alloy with high strength and toughness - Google Patents

Fe-based sintered alloy with high strength and toughness

Info

Publication number
JPS6032708B2
JPS6032708B2 JP54053689A JP5368979A JPS6032708B2 JP S6032708 B2 JPS6032708 B2 JP S6032708B2 JP 54053689 A JP54053689 A JP 54053689A JP 5368979 A JP5368979 A JP 5368979A JP S6032708 B2 JPS6032708 B2 JP S6032708B2
Authority
JP
Japan
Prior art keywords
powder
alloy
toughness
strength
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053689A
Other languages
Japanese (ja)
Other versions
JPS55145149A (en
Inventor
良夫 西野
通 河野
清一 桐ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP54053689A priority Critical patent/JPS6032708B2/en
Publication of JPS55145149A publication Critical patent/JPS55145149A/en
Publication of JPS6032708B2 publication Critical patent/JPS6032708B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、高強度および高靭性を有し、かつ従釆暁結
温度と比較してより低い焼結温度での製造が可能なFe
系暁結合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the production of Fe, which has high strength and toughness and can be manufactured at a lower sintering temperature than the conventional sintering temperature.
This is related to the Akatsuki Coupling.

従来、機械構造部品の製造には、例えば日本粉末冶金工
業会規格(JPNA)の2〜5種に規定されるようなF
e系焼結合金が使用されており、これら従釆Fe系競結
合金は、出発原料粉末としてのFe粉末に、合金成分と
してのC粉末、Cu粉末、あるいはNi粉末を配合し、
混合し、通常約5のn′孫の圧力で圧粉体を成形し、つ
いでこの圧粉体を非酸化性雰囲気中、温度1120〜1
150qoに所定時間加熱保持して暁結することによっ
て製造され、しかもこの結果得られた合金は、10〜5
0k9′嫌以上の引張強さ、1%以上の伸び、および6
.2タ′流以上の密度をもつことが規定されている。こ
の発明は、上記従来Fe系凝結合金の使用分野において
使用するのに適し、一方上記従釆Fe系焼結合金に比し
て一段と低い温度での暁結が可能にして、かつ上記従来
Fe系暁結合金と同等あるいはこれ以上の特性を有し、
特に高強度と高数性を兼ね備えた新規なFe系焼結合金
を提供するもので、重量%で(以下%は重量%を示す)
、P:0.05〜0.25Mh、Ni、Cu、およびS
nのうちの1種または2種以上:0.3〜2.5%、を
含有し、さらに必要に応じて、 C:0.3〜1%、 を含有し、残りがFeと不可避不純物からなる組成、並
びに分散相がFe粒によって構成され、一方結合相が、
Feに、Pと、Mn、Ni、Cu、およびSnのうちの
1種または2種以上と、さらに必要に応じてCとが固溶
した合金相で構成された組織を有し、前記分散相によっ
て級性向上をはかる一方、前記結合相によって強度向上
をはかったFe系燈結合金に特徴を有するものである。
Conventionally, in the production of mechanical structural parts, F as specified in Types 2 to 5 of the Japan Powder Metallurgy Association Standards (JPNA) has been used.
E-based sintered alloys are used, and these competitive Fe-based alloys are made by blending Fe powder as a starting raw material powder with C powder, Cu powder, or Ni powder as an alloying component.
The powder is mixed and formed into a compact at a pressure of about 5 n', and then the compact is heated in a non-oxidizing atmosphere at a temperature of 1120 to 1
It is manufactured by heating and holding at 150 qo for a predetermined time and solidifying, and the resulting alloy has a
Tensile strength of 0k9' or more, elongation of 1% or more, and 6
.. It is specified that the density is 2 ta' or more. The present invention is suitable for use in the field of use of the conventional Fe-based sintered alloys, and on the other hand, allows for freezing at a much lower temperature than the conventional Fe-based sintered alloys, and It has properties equal to or better than Akatsuki Metal,
In particular, it provides a new Fe-based sintered alloy that has both high strength and high number properties, expressed in weight% (hereinafter % indicates weight%).
, P:0.05-0.25Mh, Ni, Cu, and S
Contains one or more of n: 0.3 to 2.5%, and if necessary, further contains C: 0.3 to 1%, with the remainder being Fe and unavoidable impurities. The composition is such that the dispersed phase is composed of Fe particles, while the binder phase is
It has a structure composed of an alloy phase in which Fe, P, one or more of Mn, Ni, Cu, and Sn, and further C as a solid solution, and the dispersed phase This is a Fe-based light alloy that is characterized by improved grade properties and improved strength by the binder phase.

つぎに、この発明のFe系焼結合金において成分組成を
上記の適切こ限定した理由を説明する。{a’ Pと、
Mn、Ni、Cu、およびSnこれらの成分は、いずれ
も結合相を形成する成分で、榛給時にFe中に固落して
Fe−P−(Mn、Ni、Cu、Sn)合金を形成し、
もって合金強度を向上させる作用をもつが、その含有量
がP:0.05%未満、Mn、Ni、Cu、およびSn
:0.3%未満では所望の高強度を確保することができ
ず、一方P:0.25%およびMn、Ni、Cu、およ
びSn:2.5%をそれぞれ越えて含有すると結合相に
腕化傾向が現われるようになって、分散相を形成するF
e粒によってもたらされる高靭性がそこなわれるように
なることから、その含有量を、それぞれP:0.05〜
0.25%、Mn、Ni、Cu、およびSnのうちの1
種または2種以上:0.3〜2.5%と定めた。【b)
C C成分には、上記のFe−P−(Mn、Nj、Cu、S
n)合金からなる結合相に固溶して一段と合金強度を向
上させる作用があるので、より一層の高強度が要求され
る場合に必要に応じて含有させるが、その含有量が0.
3%未満では合金強度に所望の向上効果が得られず、一
方1%を越えて含有させると、結合相が腕化するように
なって合金の鞠性が低下するようになることから、その
含有量を0.3〜1%と定めた。
Next, the reason why the composition of the Fe-based sintered alloy of the present invention is appropriately limited as described above will be explained. {a' P and
Mn, Ni, Cu, and Sn These components are all components that form a binder phase, and during feeding, they fall into Fe to form a Fe-P-(Mn, Ni, Cu, Sn) alloy,
This has the effect of improving alloy strength, but the content is less than 0.05% P, Mn, Ni, Cu, and Sn.
If the content exceeds 0.25% of P and 2.5% of Mn, Ni, Cu, and Sn, the strength of the binder phase will be reduced. The tendency of F to form a dispersed phase appears.
Since the high toughness brought about by e-grains will be impaired, the content should be adjusted to P: 0.05~
0.25%, one of Mn, Ni, Cu, and Sn
Species or two or more types: 0.3 to 2.5%. [b)
The C component includes the above Fe-P-(Mn, Nj, Cu, S
n) Since it acts as a solid solution in the binder phase consisting of the alloy and further improves the alloy strength, it is included as necessary when even higher strength is required, but the content is 0.
If the content is less than 3%, the desired effect of improving the alloy strength cannot be obtained, while if the content exceeds 1%, the binder phase becomes arms and the ballability of the alloy decreases. The content was determined to be 0.3 to 1%.

なお、この発明の合金は「まず、Pと、Mn、Ni、C
u、およびSnのうちの1種または2種以上との共晶合
金粉末または化合物粉末をアトマィズ法などにより製造
し、ついで必要ならばこれをボールミルなどで粉砕して
約40一肌以下の微粉末とし、これらの微粉末とFe粉
末と、さらに必要に応じて炭素粉末とを所定の最終成分
組成をもつように配合し、混合し、技粉体を成形し、つ
いでこの庄粉体を従釆暁結温度と比較してより低い温度
で暁結するとによって製造することができるが、この場
合、前記共晶合金粉末または化合物粉末の液相発生温度
が、例えばMn−7.9%Pであれば960午○、同様
にNi−11%P:880qo、Cu−8.4%P:7
14q0、さらにSn−16.4%P(S〜P3):5
50℃であるように、低温度で前記共晶合金粉末または
化合物粉末は液相となってFe粉末の表面を桶らし、F
e粉末内へ拡散していくが、暁結温度が比較的低いため
にFe粉末の内部まで完全に拡散することはなく、した
がって、Fe粉末の表面部に集中的に、Pと、Mn、N
i、Cu、およびSnのうちの1種または2種以上と、
さらに必要に応じて含有させたCとが固落した状態とな
り、この結果、分散相がFe粒で構成され、一方結合相
が、Fe−P−(Mn、Ni、CリSn)合金、または
Fe−P−(Mh、Ni、Cu、Sn)−C合金で構成
された組織をもつようになるのである。ついで、この発
明の合金を実施例により比較例と対比しながら説明する
In addition, the alloy of this invention "First, P, Mn, Ni, C
A eutectic alloy powder or compound powder with one or more of Sn and U is produced by an atomization method, and then, if necessary, this is ground with a ball mill or the like to obtain a fine powder of about 40 mm or less. Then, these fine powders, Fe powder, and if necessary, carbon powder are blended and mixed to have a predetermined final component composition, formed into a technical powder, and then this powder is made into a sub-chamber. It can be produced by dawning at a temperature lower than the dawning temperature, but in this case, even if the liquid phase generation temperature of the eutectic alloy powder or compound powder is, for example, Mn-7.9%P. 960 pm ○, similarly Ni-11%P: 880qo, Cu-8.4%P: 7
14q0, further Sn-16.4%P (S to P3): 5
At a low temperature such as 50°C, the eutectic alloy powder or compound powder turns into a liquid phase and forms a liquid phase on the surface of the Fe powder.
However, since the freezing temperature is relatively low, it does not completely diffuse into the Fe powder, so P, Mn, and N are concentrated on the surface of the Fe powder.
one or more of i, Cu, and Sn;
Further, C contained as necessary becomes solidified, and as a result, the dispersed phase is composed of Fe grains, while the binder phase is composed of Fe-P-(Mn, Ni, C-Sn) alloy or It has a structure composed of Fe-P-(Mh, Ni, Cu, Sn)-C alloy. Next, the alloy of the present invention will be explained by examples and in comparison with comparative examples.

実施例 出発原料粉末として、粒度10印hesh以下のFe粉
末、同25仇hesh以下の炭素粉末、さらにアトマィ
ズ法により製造され、ボールミル中で粉砕されて平均粒
径10〜15仏凧の微粉末としたMm−7.9%P粉末
、Ni−11%P粉末、Cu−84%P粉末、およびS
n−16.4%P粉末をそれぞれ用意し、これら原料粉
末を第1表に示される配合組成に配合し、混合し、5の
n/のの圧力で圧粉体に成形し、ついで、水素雰囲気中
、1050qoの競結温度に3び分間保持することによ
って実質的に配合組成と同一の成分組成を有する本発明
合金1〜16と、比較合金1〜8をそれぞれ製造した。
Examples Starting raw material powders include Fe powder with a particle size of 10 mm or less, carbon powder with a particle size of 25 mm or less, and further produced by an atomization method and pulverized in a ball mill to obtain a fine powder with an average particle size of 10 to 15 mm. Mm-7.9%P powder, Ni-11%P powder, Cu-84%P powder, and S
n-16.4% P powder was prepared, and these raw material powders were blended into the composition shown in Table 1, mixed, and molded into a green compact at a pressure of 5 n/m, and then heated with hydrogen. Alloys 1 to 16 of the present invention and Comparative Alloys 1 to 8 having substantially the same composition as the blended composition were manufactured by holding the alloys at a competitive temperature of 1050 qo for 3 minutes in an atmosphere.

第1表なお、比較合金1〜8は、いずれも結合相形成成
分の含有量が本発明範囲から外れたものである。
Table 1 Note that Comparative Alloys 1 to 8 all have a content of binder phase forming components outside the range of the present invention.

この結果得られた本発明合金1〜16および比較合金1
〜8の引張り強さと伸びを測定し、別表に合せて示した
The resulting invention alloys 1 to 16 and comparative alloy 1
The tensile strength and elongation of samples 1 to 8 were measured and shown in the attached table.

第1表に示される結果から明らかなように、本発明合金
は、いずれも高強度および高鯛性を兼ね備えているのに
対して、結合相形成成分の含有量が本発明範囲から低い
方に外れた比較合金1、3、5、7は、高靭性を有する
ものの強度の著しく低いものであり、また同じく本発明
範囲から高し、方に外れた比 。
As is clear from the results shown in Table 1, all of the alloys of the present invention have both high strength and high properties, but the content of the binder phase forming component is lower than the range of the present invention. Comparative alloys 1, 3, 5, and 7 have high toughness but extremely low strength, and their ratios are also high and outside the range of the present invention.

2、4、6、8は有するものの籾性のきわめて劣るも
のとなっており、いずれも強度と轍性とを兼ね備えたも
のにはなつていない。
Although Nos. 2, 4, 6, and 8 have rice grains, their grain quality is extremely poor, and none of them have both strength and rut resistance.

上述のように、この発明のFe系晩結合金は、高強度お
よび高靭性を兼ね備えているので、これを機械構造部品
として使用した場合に、きわめて長期に亘る使用が可能
となり、さらに低い齢緒温度での製造が可能なので、こ
れによってもたらされる製造上の有用性には大なるもの
があるなど工業上有用な特性を有するものである。
As mentioned above, the Fe-based late alloy of the present invention has both high strength and high toughness, so when it is used as a mechanical structural component, it can be used for an extremely long period of time, and it can also be used for a short period of time. Since it can be manufactured at high temperatures, it has industrially useful properties such as great manufacturing utility.

Claims (1)

【特許請求の範囲】 1 P:0.05〜0.25%、 Mn、Ni、Cu、およびSnのうちの1種または2
種以上:0.3〜2.5%、を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)、並びに分散相
がFe粒で構成され、一方結合相が、Feに、Pと、M
n、Ni、Cu、およびSnのうちの1種または2種以
上とが固溶した合金相で構成された組織を有し、前記分
散液によつて靭性向上をはかる一方、前記結合相によつ
て強度向上をはかつたことを特徴とする高強度および高
靭性を有するFe系焼結合金。 2 P:0.05〜0.25%、 Mn、Ni、Cu、およびSnのうちの1種または2
種以上:0.3〜2.5%、を含有し、さらに、 C:0.3〜1%、 を含有し、残りがFeと不可避不純物からなる組成(以
上重量%)、並びに分散相がFe粒で構成され、一方結
合相が、Feに、Pと、Mn、Ni、Cu、およびSn
のうちの1種または2種以上と、Cとが固溶した合金相
で構成された組織を有し、前記分散相によつて靭性向上
をはかる一方、前記結合相によつて強度向上をはかつた
ことを特徴とする高強度および高靭性を有するFe系焼
結合金。
[Claims] 1 P: 0.05 to 0.25%, one or two of Mn, Ni, Cu, and Sn
Species: 0.3 to 2.5%, with the remainder consisting of Fe and unavoidable impurities (wt%), and the dispersed phase is composed of Fe grains, while the binder phase is composed of Fe, P and M
The dispersion liquid improves toughness, while the binder phase improves toughness. An Fe-based sintered alloy having high strength and high toughness, characterized by improved strength. 2 P: 0.05-0.25%, one or two of Mn, Ni, Cu, and Sn
Species or more: 0.3 to 2.5%, further C: 0.3 to 1%, and the remainder is Fe and unavoidable impurities (weight %), and the dispersed phase is It is composed of Fe grains, while the binder phase is Fe, P, Mn, Ni, Cu, and Sn.
It has a structure composed of an alloy phase in which one or more of the above and C are dissolved in solid solution, and the dispersed phase improves toughness, while the binder phase improves strength. An Fe-based sintered alloy having high strength and toughness.
JP54053689A 1979-05-01 1979-05-01 Fe-based sintered alloy with high strength and toughness Expired JPS6032708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54053689A JPS6032708B2 (en) 1979-05-01 1979-05-01 Fe-based sintered alloy with high strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54053689A JPS6032708B2 (en) 1979-05-01 1979-05-01 Fe-based sintered alloy with high strength and toughness

Publications (2)

Publication Number Publication Date
JPS55145149A JPS55145149A (en) 1980-11-12
JPS6032708B2 true JPS6032708B2 (en) 1985-07-30

Family

ID=12949775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54053689A Expired JPS6032708B2 (en) 1979-05-01 1979-05-01 Fe-based sintered alloy with high strength and toughness

Country Status (1)

Country Link
JP (1) JPS6032708B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938355A (en) * 1982-08-25 1984-03-02 Toyota Motor Corp Iron-base sintered body
JPH0610321B2 (en) * 1985-06-17 1994-02-09 日本ピストンリング株式会社 Abrasion resistant sintered alloy
GB2368348B (en) * 2000-08-31 2003-08-06 Hitachi Powdered Metals Material for valve guides

Also Published As

Publication number Publication date
JPS55145149A (en) 1980-11-12

Similar Documents

Publication Publication Date Title
US6468468B1 (en) Method for preparation of sintered parts from an aluminum sinter mixture
US6312497B1 (en) Pre-alloyed, copper containing powder, and its use in the manufacture of diamond tools
JPS6043900B2 (en) permanent magnet material
DE3116185A1 (en) "METAL BINDER FOR COMPRESSING METAL POWDER"
JPS6032708B2 (en) Fe-based sintered alloy with high strength and toughness
US2617723A (en) Sintered high energy permanent magnets
US3770392A (en) Molybdenum-base alloys
JPH07166273A (en) Powder metallurgical product of injection molded copper
JPH01242749A (en) Heat-resistant aluminum alloy
CN115927932B (en) High-strength die-casting aluminum alloy and preparation method thereof
JP3104309B2 (en) Manufacturing method of hot forged member made of Al-Si alloy with excellent toughness
JP2856251B2 (en) High-strength wear-resistant Al-Si alloy forged member having low coefficient of thermal expansion and method for producing the same
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JP3356461B2 (en) Manufacturing method of iron-based sintered member
JPS60125347A (en) Sintered al alloy for sliding member
US2289569A (en) Powder metallurgy
JPS6157380B2 (en)
JPH0252681B2 (en)
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
JP3270970B2 (en) High strength sintered iron material and method of manufacturing the same
JPS6335706B2 (en)
JPS6227148B2 (en)
JPS58213859A (en) Corrosion-resistant sintered material
JP2629941B2 (en) Co-reduced composite Mo alloy powder and Fe-based sintered alloy sliding member manufactured using the same