JPS5938355A - Iron-base sintered body - Google Patents

Iron-base sintered body

Info

Publication number
JPS5938355A
JPS5938355A JP14717382A JP14717382A JPS5938355A JP S5938355 A JPS5938355 A JP S5938355A JP 14717382 A JP14717382 A JP 14717382A JP 14717382 A JP14717382 A JP 14717382A JP S5938355 A JPS5938355 A JP S5938355A
Authority
JP
Japan
Prior art keywords
iron
powder
phosphorus
sintered body
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14717382A
Other languages
Japanese (ja)
Inventor
Tetsuya Suganuma
菅沼 徹哉
Kouji Kazuoka
数岡 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14717382A priority Critical patent/JPS5938355A/en
Publication of JPS5938355A publication Critical patent/JPS5938355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an iron-base sintered body with superior hardenability and machinability, by adding specified percentages of Cu, C and P to iron. CONSTITUTION:Iron powder is mixed with P-Fe alloy powder, copper powder and carbon powder so as to provide a composition consisting of, by weight, 1.5- 2.5% Cu, 0.6-0.9% C, 0.07-0.12% P and the balance Fe with inevitable impurities. The powdered mixture is molded by compression in a mold, heated at 5-12 deg.C/min heating acceleration rate from 840 deg.C-940 deg.C, sintered by holding at about 1,120 deg.C for 15-30min, and cooled at 5-15 deg.C/min cooling rate from 1,138 deg.C-880 deg.C. P-Fe alloy powder having 0.4-0.7% P content passed through a 100-mesh sieve is used as the P-Fe alloy powder. Atomized iron powder passed through a 42-mesh sieve is used as the iron powder. The average particle size of the copper powder is 25-35mum, and the average particle size of the graphite powder is 1-5mum. A lubricant is added to the powdered starting material by 0.5-1.5.

Description

【発明の詳細な説明】 本発明は、焼き入れ性、被削性にづぐれ、高強度、高靭
性の鉄系焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an iron-based sintered body having excellent hardenability and machinability, high strength, and high toughness.

一般に機械構造用鉄系焼結体は、所定の製品形状のもの
が焼結体として作ることができるために、焼結体を切削
加工したりすることは少ない。しかし、型成形が困難な
複雑な形状の場合は、得られた鉄系焼結体を切削加工す
る場合がある。また、用途によっては焼き入れ等の熱処
理を行なって耐摩耗性等の向上を計る場合がある。
In general, iron-based sintered bodies for machine structures can be made into predetermined product shapes as sintered bodies, so cutting of the sintered bodies is rarely performed. However, in the case of complex shapes that are difficult to mold, the obtained iron-based sintered body may be cut. Furthermore, depending on the application, heat treatment such as hardening may be performed to improve wear resistance and the like.

通常、焼き入れ性が必要な焼結体については、ニッケル
モリブデン焼結鋼あるいはクロムマンガン焼結鋼等の焼
結材料が使用される。しかし、これらの焼結材料は、コ
ストが高く、またブタン変性還元ガスで焼結しにくい等
の問題点を有している。さらに、これらの焼結材料は焼
き入れ性は良いが、被削性が悪い等の問題点も有する。
Usually, for sintered bodies that require hardenability, sintered materials such as nickel-molybdenum sintered steel or chromium-manganese sintered steel are used. However, these sintered materials have problems such as high cost and difficulty in sintering with butane-modified reducing gas. Further, although these sintered materials have good hardenability, they also have problems such as poor machinability.

また、通常の鉄系の機械構造用焼結材料では、密度6゜
80/cm3で引張強度が50 kg/ mm2 、伸
びが1゜0〜1.5%が限度であり、それ以上の引張強
度、伸びを有する鉄系焼結体を作るのが困難である。
In addition, for ordinary iron-based sintered materials for machine structures, the tensile strength is limited to 50 kg/mm2 at a density of 6°80/cm3, and the elongation is 1°0 to 1.5%. , it is difficult to make an iron-based sintered body with elongation.

本発明は、上記問題を克服するもので、被剛性の悪化が
少なく、焼き入れ性にすぐれ、低コストで高強度、高靭
性をもつ鉄系焼結体を提供することを目的とづる。
The present invention has been made to overcome the above-mentioned problems, and aims to provide an iron-based sintered body that exhibits less deterioration in rigidity, excellent hardenability, low cost, and high strength and toughness.

発明者は多数の鉄系合金を検討した結果、得られる焼結
体が0.07重邑%ないし0.12重呈%(以下%は重
量%を示す)のリンを含有することにより被剛性の悪化
が少なく、高周波焼き入れ、焼き戻し等の熱処理におい
−C1ビッカース硬度で800程度の硬さを得ることが
でき、かつ熱処理歪が小さい鉄系焼結体を得ることがで
きることを発見し、本発明を完成したものである。
As a result of examining a large number of iron-based alloys, the inventor found that the resulting sintered body contained 0.07% to 0.12% phosphorus (hereinafter % indicates weight%) to increase rigidity. We have discovered that it is possible to obtain an iron-based sintered body with little deterioration, a hardness of about 800 on the C1 Vickers hardness in heat treatments such as induction hardening and tempering, and low heat treatment distortion, This completes the present invention.

すなわち本発明の鉄系焼結体は、銅1.5〜2゜5重量
%、炭素0.6〜0.9重量%、リン0゜07〜0.1
2%、残部鉄および不iJ避の不純物からことを特徴と
するものである。
That is, the iron-based sintered body of the present invention contains 1.5 to 2.5% by weight of copper, 0.6 to 0.9% by weight of carbon, and 0.07 to 0.1% of phosphorus.
2%, the balance being iron and other impurities.

本発明の鉄系焼結体で、リンの間を0.07〜0.12
%ととしたのは、リンの割合が0.05%満たないと引
張強さが小さく、かつ伸びも小さくなりすぎるからであ
る。また逆に、リンが0゜12%を越えて存在している
場合には被剛性が極度に悪化する。銅の量を1.5〜2
.5%としたのは、1.5%未満では引張強さ、伸びが
十分でなく、逆に、2.5%を越えて存在する場合には
焼き入れ、焼き戻し時の歪発生が大きく、引張強さも十
分でないためである。炭素の吊を0.6〜0.9%にし
たのは、炭素の吊が0.6%未満では、焼き入れ効果が
少なく、十分な硬さを得られないこと、また1、2%を
越える場合には焼き入れ、焼き戻し時の歪が大きく伸び
も小さくなるICめである。
In the iron-based sintered body of the present invention, the phosphorus range is 0.07 to 0.12.
% because if the proportion of phosphorus is less than 0.05%, the tensile strength and elongation will be too small. On the other hand, if phosphorus is present in an amount exceeding 0.12%, the stiffness will be extremely deteriorated. The amount of copper is 1.5-2
.. The reason why it is set at 5% is that if it is less than 1.5%, the tensile strength and elongation will not be sufficient, and if it is more than 2.5%, distortion will be large during quenching and tempering. This is because the tensile strength is also insufficient. The reason for setting the carbon content to 0.6 to 0.9% is that if the carbon content is less than 0.6%, the hardening effect will be small and sufficient hardness will not be obtained. If it exceeds the limit, the strain during quenching and tempering will be large and the elongation will be small.

本発明の鉄系焼結体を構成する鉄粒子中のリン化鉄(F
e3P)の粒径は1〜5ミクロン程度で、結晶粒内に均
一に分散しているのが好ましい。リン化鉄の粒径が1ミ
クロンより小さい場合には、機械的性質の向上への効果
がない。逆に5ミクロンより大きいと被削性が悪くなる
。また、顕微鏡組織的には微細、なパーライト組織が出
現づるとともに、リンを固溶したフェライトが面積率で
5〜15%含まれ粒界から離れた粒内に存在しているの
が良い。フェライトがこの条件を満たしていないと引張
り強度さ低くなる。
Iron phosphide (F) in the iron particles constituting the iron-based sintered body of the present invention
The particle size of e3P) is preferably about 1 to 5 microns, and is preferably uniformly dispersed within the crystal grains. When the particle size of iron phosphide is smaller than 1 micron, it has no effect on improving mechanical properties. On the other hand, if it is larger than 5 microns, machinability deteriorates. In addition, microscopically, a fine pearlite structure appears, and it is preferable that ferrite containing phosphorus as a solid solution is contained in an area ratio of 5 to 15% and is present in the grains away from the grain boundaries. If the ferrite does not meet this condition, its tensile strength will be low.

さらに本発明の鉄系焼結体の有孔多孔率は5%以内であ
ることが望ましい。密度では6.8以上、より好ましく
は6.8〜7.19/cm3程度が好ましい。
Furthermore, the porosity of the iron-based sintered body of the present invention is preferably within 5%. The density is preferably 6.8 or more, more preferably about 6.8 to 7.19/cm3.

この鉄系焼結体を!!81造する方法は、全体の組成が
銅1.5〜2.5重量%、炭素0.6〜0.9重量%リ
ン0.07〜0.12重量%、残部鉄及び不可避の不純
物となる様にリン鉄合金粉末、鉄粉末、銅粉末、黒鉛粉
末を混合して原料粉末を得る工程。得られた原料粉末を
型内で圧縮して圧密体を得る工程、圧密体を焼結して鉄
系焼結体を製造する工程とより成ることを特徴と16も
のである。この原料粉末を得る工程は、リン成分原料と
して、リン、鉄の合金粉末を用いる。このリン鉄合金粉
末として、得られる鉄系焼結体のリン含有量に近い、リ
ン鉄合金粉末を用いるのが好ましい。
This iron-based sintered body! ! 81, the overall composition is 1.5-2.5% by weight of copper, 0.6-0.9% by weight of carbon, 0.07-0.12% by weight of phosphorus, and the balance is iron and unavoidable impurities. The process of mixing phosphorus-iron alloy powder, iron powder, copper powder, and graphite powder to obtain raw material powder. The method is characterized in that it consists of a step of compressing the obtained raw material powder in a mold to obtain a compacted body, and a step of sintering the compacted body to produce an iron-based sintered body. In the step of obtaining this raw material powder, an alloy powder of phosphorus and iron is used as a phosphorus component raw material. As this phosphorus-iron alloy powder, it is preferable to use a phosphorus-iron alloy powder that has a phosphorus content close to that of the obtained iron-based sintered body.

しかし、リンの含有量の多い、リン鉄合金粉末と、リン
を含まない鉄粉末の混合体でリン及び鉄の組成範囲に入
る様に、その混合粉末の割合を調節して使用することも
できる。このリン鉄合金粉末として、リンの含有ff1
0.4〜O17%残部鉄及び不可避の不純物から成る合
金粉末あるいはリン量14〜23%残部鉄及び不可避の
不純物から成るリン鉄合金粉末を用いることができる。
However, it is also possible to use a mixture of a phosphorus-iron alloy powder with a high phosphorus content and an iron powder that does not contain phosphorus by adjusting the ratio of the mixed powder so that it falls within the composition range of phosphorus and iron. . As this phosphorus iron alloy powder, the phosphorus content ff1
An alloy powder consisting of 0.4 to 17% O, balance iron and unavoidable impurities, or a phosphorous iron alloy powder consisting of 14 to 23% phosphorus, balance iron and unavoidable impurities, can be used.

これらのリン鉄合金粉末の粒径は、粒径が細かい稈好ま
しい。しかしながら、粒径の細かい粉末はコスト高とな
るため、平均粒径35ミクロン以下のものあるいは10
0メツシユのふるい通過の粉末を用いるのが好ましい。
The particle size of these phosphorus-iron alloy powders is preferably fine. However, powder with a fine particle size is expensive, so powders with an average particle size of 35 microns or less or 10
Preferably, a powder that passes through a 0 mesh sieve is used.

銅成分としては、銅粉末を用いるのが良い。尚、鉄鋼合
金粉末等の使用も可能と思われるが、鉄銅合金粉末は硬
く圧縮が困難である。銅粉末としては、平均粒径25〜
35ミクロンの粉末を用いるのが経済的である。
As the copper component, it is preferable to use copper powder. It is also possible to use iron and steel alloy powder, but iron and copper alloy powder is hard and difficult to compress. As copper powder, the average particle size is 25~
It is economical to use a 35 micron powder.

黒鉛粉末としても、細かGプれば細かい稈好ましいが、
軽済性をも考慮し、平均粒径1〜5ミクロン程度のもの
が最適である。黒鉛粉末以外の炭素粉未使用も考えられ
るが合金化が困難で高価であり、黒鉛が望ましい。
Even as graphite powder, fine culm is preferable if it is fine G.
Taking into consideration the cost-effectiveness, it is best to use particles with an average particle size of about 1 to 5 microns. Although it is possible to use carbon powder other than graphite powder, it is difficult and expensive to alloy, and graphite is preferable.

鉄粉としては、噴霧鉄粉その他種々の鉄粉を用いること
ができる。ここでは主として噴霧鉄粉を用いた。本発明
考が実験した範囲においては、噴霧鉄粉中に含まれる酸
化物中の酸素としては、100〜40,0Oppnの表
面酸素と、5001)H以下の内部酸素を持つものであ
れば十分に使用することができた。しかし、4000p
pm以上の表面酸素あるいは500 ppm以上の内部
酸素を持つ鉄粉を使用する場合には、得られる鉄系焼結
体の機械的性質が悪化するのが認められた。
As the iron powder, spray iron powder and other various iron powders can be used. Here, mainly sprayed iron powder was used. In the range of experiments conducted by the present inventor, it is sufficient that the oxygen in the oxide contained in the atomized iron powder has surface oxygen of 100 to 40,0 Oppn and internal oxygen of 5001) H or less. I was able to use it. However, 4000p
When iron powder having surface oxygen of pm or more or internal oxygen of 500 ppm or more was used, it was found that the mechanical properties of the obtained iron-based sintered body deteriorated.

焼結工程にあいU、840℃から980℃における加熱
昇温速度を1分あたり、5〜12℃としたのは、加熱昇
温速度が12℃を越える場合には、ステライトの出現に
ばらつきを生じ易く、Fe3Pの粒径が過大となるとと
もに被削性が″劣化するからである。逆に、5℃未満の
加熱速度では、非常に加熱速度が遅く実用的でないため
である。又、1120℃前後における焼結温度での保持
時間は、15分未満の場合には、十分な焼結が行われに
くく、引っ張り強さ、伸び共に低い。又30分以上加熱
した場合においても、その加熱時間延長による引っ張り
強さ伸び等の向上はあまり期待できなく、実用的でない
。そのために、15分〜30分の加熱保持時間とした。
During the sintering process, the heating rate from 840°C to 980°C was set at 5 to 12°C per minute because if the heating rate exceeds 12°C, there would be variations in the appearance of stellite. This is because the grain size of Fe3P becomes excessive and the machinability deteriorates.On the other hand, if the heating rate is less than 5°C, the heating rate is extremely slow and is not practical. If the holding time at the sintering temperature around 30°C is less than 15 minutes, sufficient sintering will not be achieved and both tensile strength and elongation will be low. It is not practical to expect much improvement in tensile strength, elongation, etc. by extension.Therefore, the heating and holding time was set to 15 to 30 minutes.

冷却過程において、加熱温度から880℃までの冷却速
度は、1分当り15℃以上の急冷却を行うと、寸法ばら
つきが増加する。又、5℃以下の冷却温度は、実用的で
ないために、1分間当り、5℃〜15℃とした。
In the cooling process, if the cooling rate from the heating temperature to 880° C. is rapidly cooled at 15° C. or more per minute, dimensional variations will increase. Further, since a cooling temperature of 5° C. or lower is not practical, the cooling temperature was set at 5° C. to 15° C. per minute.

以下、実施例により説明する。Examples will be explained below.

この実施例では、本発明の組成範囲にある第1表に示す
試料No、1〜8の8種類の試料および本発明の組成範
囲外のNo、101〜108の8種類、合計16種類の
鉄系焼結体を作った。この16杆類の鉄系焼結体は、8
111表の化学組成となる様に、鉄粉末、リン鉄合金粉
末、銅粉末、黒鉛粉末を混合したものである。なお、こ
れらの組成原料以外に全体の1%のステアリン酸亜鉛よ
りなる型潤滑剤を配合した。尚、ここで用いた。リン鉄
合金粉末は、第1表の表に示す、0.4%から21%の
リン合金を含む種々のリン鉄合金粉末を用いた。又、リ
ンの含有量が0.8%未満のリン鉄合金粉末は、100
メツシユのふるいを通過したものである。そしてリンの
含有量が10%以上のリン鉄合金粉末は、それらの平均
粒径が25〜35ミクロンであった。黒鉛粉末としては
、平均粒径1〜2ミクロンのものを用いた。又、銅粉末
としては、平均粒径25〜30ミクロンの銅粉末を用い
た。さらにリンおよび鉄の組成範囲を調整づる鉄粉とし
ては、42メツシユのふるいを通過した噴n鉄粉を用い
た。尚、用いた噴霧鉄粉の表面酸素量は1500〜40
00 Dl)mの酸素と内部酸素として、300〜50
01)I)IIIの酸素を含むものであった。さらに原
料粉末を調整する混合方法としては、第1表に示すA、
82種類の混合方法を採用した。混合方法Aは、すべて
の原料粉末を所定割合に配合した後、V型混合機で30
分間混合するもので□ある。混合方法Bは、リン鉄合金
粉末と、銅合金粉末の2種類について、まず、V型混合
機で30分間混合した後、この混合粉末に噴霧鉄粉、黒
鉛粉末、型潤滑剤、を投入し、さらにV型混合機で30
分間混合する混合方法である。
In this example, a total of 16 types of iron were used, including 8 types of samples No. 1 to 8 shown in Table 1 within the composition range of the present invention and 8 types of No. 101 to 108 outside the composition range of the present invention. A system sintered body was made. This iron-based sintered body of 16 rods is 8
It is a mixture of iron powder, phosphorus-iron alloy powder, copper powder, and graphite powder so as to have the chemical composition shown in Table 111. In addition to these composition materials, a mold lubricant consisting of 1% of the total amount of zinc stearate was blended. Incidentally, it was used here. As the phosphorus-iron alloy powder, various phosphorus-iron alloy powders containing 0.4% to 21% of phosphorus alloy as shown in Table 1 were used. In addition, phosphorus-iron alloy powder with a phosphorus content of less than 0.8% is 100%
It has passed through the mesh sieve. The phosphorus-iron alloy powders having a phosphorus content of 10% or more had an average particle size of 25 to 35 microns. The graphite powder used had an average particle size of 1 to 2 microns. Further, as the copper powder, a copper powder having an average particle size of 25 to 30 microns was used. Further, as the iron powder for adjusting the composition range of phosphorus and iron, a sprayed iron powder that had passed through a 42-mesh sieve was used. In addition, the surface oxygen amount of the atomized iron powder used was 1500 to 40
00 Dl)m oxygen and internal oxygen, 300-50
01) I) III contained oxygen. Furthermore, as a mixing method for adjusting the raw material powder, A shown in Table 1,
Eighty-two different mixing methods were employed. Mixing method A is to mix all the raw material powders in a predetermined ratio and then mix with a V-type mixer for 30 minutes.
It is mixed for □ minutes. Mixing method B involves first mixing two types of phosphorus-iron alloy powder and copper alloy powder in a V-type mixer for 30 minutes, and then adding atomized iron powder, graphite powder, and mold lubricant to this mixed powder. , and further 30 with a V-type mixer.
This is a mixing method that involves mixing for minutes.

得られた16種類の原料混合粉末は、それぞれ、圧縮成
形型に入れ、10112当り、4500〜7000kl
ffの荷重をかけ、外径50mm内径113mm、高さ
28RI11及びJSPM標準用の圧密体を得た。そし
て、この圧密体を第1表に示す焼結条件で焼結した。な
お、焼結ガス雰囲気としてはブタン変性還元ガスを用い
た。
The obtained 16 kinds of raw material mixed powders were put into compression molds, and 4,500 to 7,000 kl per 10,112
A load of ff was applied to obtain a consolidated body having an outer diameter of 50 mm, an inner diameter of 113 mm, a height of 28 RI11, and a JSPM standard. Then, this compacted body was sintered under the sintering conditions shown in Table 1. Note that a butane-modified reducing gas was used as the sintering gas atmosphere.

この様にして得られた焼結体の特性を第2表に示す。第
2表においては、焼結体の特性として、密度、顕微鏡観
察による鉄粒子中のリン酸鉄の粒径、フェライトの面積
率を測定した。又、v1帖体の被削性、焼き入れ性、機
械的性質を調べた。
The properties of the sintered body thus obtained are shown in Table 2. In Table 2, as the characteristics of the sintered bodies, the density, the particle size of iron phosphate in the iron particles by microscopic observation, and the area ratio of ferrite were measured. In addition, the machinability, hardenability, and mechanical properties of the v1 sheet were investigated.

被削性評価試験は、旋盤を用い、外形5Qmm内径18
1のリング状被削性評価用テストピースを用い、試験片
を1分間1000回転、送り量1回転当り0.05mm
、切り込み110n+mの条件で、バイトに5KH57
を使用し、切削油なしの条件で切削し、バイトの摩耗量
を測定した、第2表にその結果を示す。
The machinability evaluation test was conducted using a lathe with an outer diameter of 5Q mm and an inner diameter of 18 mm.
Using the ring-shaped machinability evaluation test piece No. 1, the test piece was rotated at 1000 revolutions per minute and the feed rate was 0.05 mm per revolution.
, 5KH57 on the cutting tool under the condition of cutting depth 110n+m
The amount of wear on the cutting tool was measured by cutting without using cutting oil, and the results are shown in Table 2.

焼き入れ性としては、得られた焼結体より外径5Qnv
内径181!lInのリング状テストピースを作り、こ
の試験片を誘導加熱コイルにより、900℃に3秒間加
熱保持し、その後、水冷し、更に350℃で10秒間焼
き戻しを行った。この熱処理を行った後の表面硬さを加
l1200gのビッカース硬度計を用いて、ビッカース
硬度を測定だ。尚、焼き入れ歪は、外径真円度の変化で
測定した。
As for hardenability, the outer diameter of the obtained sintered body is 5Qnv.
Inner diameter 181! A ring-shaped test piece of lIn was made, and this test piece was heated and held at 900°C for 3 seconds using an induction heating coil, then cooled with water, and further tempered at 350°C for 10 seconds. After this heat treatment, the surface hardness was measured using a 1200g Vickers hardness tester. Incidentally, the quenching strain was measured by the change in the outer diameter roundness.

機械的性質としては、JSPM標準2の引っ張り試験片
を用い、J l5Z2241の金属材料引っ張り試験方
法により、インストロン型試験機で、室温20±5℃、
引っ張り速度1分当り11nfflで引つ張り試験を行
い、引張り強さと破断までの伸びを求めた。これらの結
果を第2表に示す。
Mechanical properties were measured using an Instron type tester at room temperature of 20±5°C using JSPM standard 2 tensile test pieces and J15Z2241 metal material tensile test method.
A tensile test was conducted at a tensile rate of 11 NFFL per minute to determine the tensile strength and elongation to break. These results are shown in Table 2.

第2表より明らかな様に本発明の、組成範囲内にある、
試料No、1〜No、8の8種類の鉄系焼結体は、いず
れも60kg以上の引っ張り強さと、1.5%の伸びを
示し、機械的性質が、良好であった。又、焼きいれ後の
、硬さもビッカース硬度で、660〜880と非常に良
い焼き入れ牲をもつ。又、歪量は、33〜87ミクロン
程麿の比軸的小さなものであった。被削性を示寸刃具摩
耗量は、34〜95ミクロン程度であった。
As is clear from Table 2, within the composition range of the present invention,
The eight types of iron-based sintered bodies, samples No. 1 to No. 8, all exhibited a tensile strength of 60 kg or more and an elongation of 1.5%, and had good mechanical properties. In addition, the hardness after hardening is 660 to 880 on the Vickers scale, and has very good hardenability. Further, the amount of strain was relatively small, about 33 to 87 microns. The wear amount of the cutting tool, which indicates machinability, was about 34 to 95 microns.

焼結体を構成する鉄粒子中のリン化鉄の大きさは、1〜
3ミクロン、フェライト面積率は、5〜15%であった
The size of iron phosphide in the iron particles constituting the sintered body is 1 to 1.
3 microns, and the ferrite area ratio was 5 to 15%.

比較例の試料No 、 101〜No 、 ’105に
示づ様に、゛リンの配合量が0.05%のものについて
は、引っ張り強さが48に9.47kqと低く、かつ伸
びも1.0%と小さい。逆にリンの配合量が0.15%
と多いと、試料No、102、No。
As shown in Comparative Samples No. 101 to No. 105, those containing 0.05% of phosphorus had a low tensile strength of 48.9.47 kq, and an elongation of 1.5%. It is as small as 0%. On the other hand, the amount of phosphorus added is 0.15%.
If there are many, sample No. 102, No.

106に示す様に被削性を示す刃具摩耗量が258ミク
ロン、271ミクロンという様に大きく、被削性が極度
に悪化する。
As shown in No. 106, the wear amount of the cutting tool, which indicates machinability, is as large as 258 microns and 271 microns, and the machinability is extremely deteriorated.

銅の量が1.0%と少ないと、試料No103、No、
107に示す様に、引っ張り強さが42ko。
When the amount of copper is as small as 1.0%, sample No. 103, No.
As shown in 107, the tensile strength is 42ko.

41 kg、伸びが1.0%と機械的性質が悪い。逆に
銅の配合量が、3.5%と多いと、試料No。
It weighs 41 kg and has poor mechanical properties with an elongation of 1.0%. On the other hand, when the copper content is as high as 3.5%, it is sample No.

104、No、108に示す様に、焼き入れ性を示す歪
量が、153ミクロン、137ミクロンと歪量が非常に
多く、なる。又、機械的性質を示プ引っ張り強さが53
ka、伸びが0.5%と機械的性質も悪い。
As shown in No. 104, No. 108, the amount of strain indicating hardenability is very large, 153 microns and 137 microns. In addition, it shows mechanical properties and has a tensile strength of 53
The mechanical properties are also poor, with ka and elongation of 0.5%.

炭素量についてみれば、黒鉛の配合mが0.5%と少な
いと、試料No、103、No、107に見られる様に
、引っ張り強さが41に9、伸びが1.0%と機械的性
質が悪い。又、逆に黒鉛配合量が、1.2%と大きいと
、試料No、104、No、108に見られる様に、焼
き入れ焼き戻し時の歪が大きく、伸びも劣る。
Regarding the carbon content, when the graphite blend m is as low as 0.5%, as seen in samples No. 103, No. 107, the tensile strength is 41:9 and the elongation is 1.0%, which is mechanically low. Bad nature. On the other hand, when the graphite content is as high as 1.2%, as seen in samples No. 104, No. 108, the strain during quenching and tempering is large and the elongation is poor.

Claims (9)

【特許請求の範囲】[Claims] (1)銅1.5〜2.5重量%、炭素0.6〜0.9重
量%、リン0.07〜0.12%、残部鉄および不可避
の不純物からなることを特徴とする焼き入れ性、被削性
にすぐれた鉄系焼結体。
(1) Quenching characterized by consisting of 1.5 to 2.5% by weight of copper, 0.6 to 0.9% by weight of carbon, 0.07 to 0.12% of phosphorus, and the balance iron and unavoidable impurities. Iron-based sintered body with excellent strength and machinability.
(2)t9?iが6.8〜7.1(1/cm3 、引張
強さが60 kg/mm2以上、伸びが1.0%以上で
ある特許請求の範囲第1項記載の鉄系焼結体。
(2) t9? The iron-based sintered body according to claim 1, wherein i is 6.8 to 7.1 (1/cm3), tensile strength is 60 kg/mm2 or more, and elongation is 1.0% or more.
(3)焼結体を構成する粒子の該粒子内のにお1ノるリ
ン化鉄の粒径は1〜5ミクロンであり、フェライトが面
積率で5〜15%含まれている特許請求の範囲第1項記
載の鉄系焼結体。
(3) The particle size of the iron phosphide in the particles constituting the sintered body is 1 to 5 microns, and the area ratio of ferrite is 5 to 15%. The iron-based sintered body according to scope 1.
(4)リン化鉄はFe3Pである特許請求の範囲第3項
記載の鉄系焼結体。
(4) The iron-based sintered body according to claim 3, wherein the iron phosphide is Fe3P.
(5)全体の組成が銅1.5〜2.5小ff1%、炭素
0.6〜0.9重量%、リン0.07〜0゜12重量%
、残部鉄及び不可避の不純物となる様にリン鉄合金粉末
、鉄粉末、銅粉末、炭素粉末を混合して原料粉末を得る
工程、得られた原料粉末を型内で圧縮して圧密体を得る
■稈、この圧密体を焼結して鉄系焼結体を製造する工程
、とより成ることを特徴とする焼き入れ性、被削性にす
ぐれた鉄系焼結体の製造方法。
(5) The overall composition is 1.5-2.5% copper, 0.6-0.9% carbon, and 0.07-0°12% phosphorus.
, a step of mixing phosphorus-iron alloy powder, iron powder, copper powder, and carbon powder so that the remaining iron and unavoidable impurities are mixed to obtain a raw material powder, and compressing the obtained raw material powder in a mold to obtain a compacted body. ■ A method for producing an iron-based sintered body with excellent hardenability and machinability, which comprises the following steps: culm, and a step of sintering this compacted body to produce an iron-based sintered body.
(6)リン鉄合金粉末として、リン含有量0゜4〜0.
7%のリン鉄合金の100メツシユふるいを通過した粉
末を用いる特許請求の範囲第5項記載の製造方法。
(6) Phosphorous iron alloy powder with phosphorus content of 0°4 to 0.
6. The manufacturing method according to claim 5, which uses powder passed through a 100-mesh sieve of 7% phosphorus-iron alloy.
(7)リン鉄合金粉末として、リンの含有m14〜23
%のリン鉄合金で平均粒子径が25〜35ミクロンの粉
末を用いる特許請求の範囲第5項記載の製造方法。
(7) Phosphorus content m14-23 as phosphorus iron alloy powder
% phosphorus-iron alloy powder having an average particle size of 25 to 35 microns.
(8)鉄粉は42メツシユのふるいを通過した噴霧鉄粉
であり、銅粉はその平均粒径が25〜35ミクロンであ
り、黒鉛粉はその平均粒径が1〜5ミクロンであり、か
つ原料粉末の中に0.5〜1.5%の型IIWi剤を含
む特許請求の範囲第5項記載の製造方法。
(8) Iron powder is atomized iron powder that has passed through a 42-mesh sieve, copper powder has an average particle size of 25 to 35 microns, graphite powder has an average particle size of 1 to 5 microns, and The manufacturing method according to claim 5, wherein the raw material powder contains 0.5 to 1.5% of type IIWi agent.
(9)焼結工程は、840℃から940℃の加熱速度が
1分当り5〜12℃であり、焼結温度は、約1120℃
でその焼結温度における保持時間は15〜30分であり
、1138℃〜880℃までの冷却速度は、1分当り5
〜15℃である特許請求の範囲第5項記載の製造方法。
(9) In the sintering process, the heating rate from 840°C to 940°C is 5 to 12°C per minute, and the sintering temperature is approximately 1120°C.
The holding time at the sintering temperature is 15-30 minutes, and the cooling rate from 1138℃ to 880℃ is 5 minutes per minute.
The manufacturing method according to claim 5, wherein the temperature is 15°C.
JP14717382A 1982-08-25 1982-08-25 Iron-base sintered body Pending JPS5938355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14717382A JPS5938355A (en) 1982-08-25 1982-08-25 Iron-base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14717382A JPS5938355A (en) 1982-08-25 1982-08-25 Iron-base sintered body

Publications (1)

Publication Number Publication Date
JPS5938355A true JPS5938355A (en) 1984-03-02

Family

ID=15424228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14717382A Pending JPS5938355A (en) 1982-08-25 1982-08-25 Iron-base sintered body

Country Status (1)

Country Link
JP (1) JPS5938355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888562A (en) * 2012-10-17 2013-01-23 宁波拓发汽车零部件有限公司 Damper compression valve and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPS55145149A (en) * 1979-05-01 1980-11-12 Mitsubishi Metal Corp Sintered iron alloy having both strength and toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPS55145149A (en) * 1979-05-01 1980-11-12 Mitsubishi Metal Corp Sintered iron alloy having both strength and toughness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888562A (en) * 2012-10-17 2013-01-23 宁波拓发汽车零部件有限公司 Damper compression valve and preparation method thereof

Similar Documents

Publication Publication Date Title
US7384446B2 (en) Mixed powder for powder metallurgy
US5859376A (en) Iron base sintered alloy with hard particle dispersion and method for producing same
US4954171A (en) Composite alloy steel powder and sintered alloy steel
US3889350A (en) Method of producing a forged article from prealloyed water-atomized ferrous alloy powder
EP0229511A1 (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
US4123265A (en) Method of producing ferrous sintered alloy of improved wear resistance
WO2009024809A1 (en) A valve seat insert and its method of production
US5703304A (en) Iron-based powder containing chromium, molybdenum and manganese
JP4556755B2 (en) Powder mixture for powder metallurgy
JPS5938355A (en) Iron-base sintered body
KR102383517B1 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP2013541633A5 (en)
EP0334968B1 (en) Composite alloy steel powder and sintered alloy steel
JPH02153046A (en) High strength sintered alloy steel
JP2003147405A (en) Alloy steel powder for iron sintering heat treatment material
JP7165696B2 (en) Use of iron-based prealloy powder for powder metallurgy as raw material powder for manufacturing sintered and forged members, diffusion bonding powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and method for manufacturing sintered and forged members
JPS61295302A (en) Low-alloy iron powder for sintering
JP3795402B2 (en) Cast iron-based sintered sliding member and manufacturing method thereof
JPS61139602A (en) Manufacture of low-alloy iron powder
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPH1072648A (en) High strength ferrous sintered alloy excellent in wear resistance and its production
JPH01279701A (en) Production of forged member
JPH0543915A (en) Fe base sintered alloy valve seat with high strength
JPH09202948A (en) High strength iron-base sintered alloy and its production
JPS63114903A (en) Power having high compressibility for sintering and its production