JPS62271226A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS62271226A
JPS62271226A JP11646386A JP11646386A JPS62271226A JP S62271226 A JPS62271226 A JP S62271226A JP 11646386 A JP11646386 A JP 11646386A JP 11646386 A JP11646386 A JP 11646386A JP S62271226 A JPS62271226 A JP S62271226A
Authority
JP
Japan
Prior art keywords
film
thin
thin film
layer
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11646386A
Other languages
Japanese (ja)
Inventor
Katsumi Kiuchi
木内 克己
Masaki Shinohara
正喜 篠原
Tomio Kume
久米 富美夫
Shigetomo Sawada
澤田 茂友
Hiroaki Wakamatsu
若松 弘晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11646386A priority Critical patent/JPS62271226A/en
Publication of JPS62271226A publication Critical patent/JPS62271226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably form a thin gamma-Fe2O3 film having excellent magnetic characteristics by depositing the thin alpha-Fed2O3 film on a disk-shaped nonmagnetic base, then subjecting the film to a reduction heat treatment to form a thin underlying Fe2O3 film. CONSTITUTION:The thin underlying film 5 formed by subjecting the thin alpha-Fe2O3 film 4 to the reduction heat treatment is preliminarily deposited on the disk- shaped nonmagnetic base 1 and the thin Fe2O4 film 6 is formed by reactive sputtering on the thin underlying film 5, by which the influence of the substrate surface can be eliminated. Since the thin Fed3O4 film 6 of the 2nd layer is formed in the form of retaining the crystallinity of the thin Fe2O3 film 5 of the 1st layer which is the underlying film, the control margin of the reactive sputtering is expanded. The thin gamma-Fed2O3 film 7 having the good magnetic characteristics can be stably formed by subjecting such thin Fed3O4 film to a heat treatment in the atmosphere.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔概要〕 磁気記録媒体の製造方法であって、非磁性の基板上に、
Fe (鉄)を母材とする反応性スパッタリングにより
α−Fete>膜を被着した後、還元熱処理を行って下
地膜となるFeJOV膜を形成し、更に該Fq%膜(下
地膜)上にFe母材の反応性スパッタリングを用いて、
Fe、70−膜(第二層)を形成することにより、良好
な磁気特性を有するr−Feユ03磁性薄膜を安定に形
成することを可能にしたものであZる・ 〔産業上の利用分野〕 本発明は、磁気ディスク装置に用いられる6i1気記録
媒体の製造方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Summary] A method for manufacturing a magnetic recording medium, comprising:
After depositing an α-Fete film by reactive sputtering using Fe (iron) as a base material, reduction heat treatment is performed to form a FeJOV film as a base film, and further on the Fq% film (base film). Using reactive sputtering of Fe matrix,
By forming a Fe,70- film (second layer), it is possible to stably form an r-Fe Yu-03 magnetic thin film with good magnetic properties. Field] The present invention relates to a method of manufacturing a 6I1 recording medium used in a magnetic disk device.

磁気ディスク装置における記憶容量の増大化に伴い、磁
気記録媒体に対してより一層の記録の高密度化が要望さ
れている。これに対応して、近年従来のスピンコーティ
ングに代わって、薄膜化の容易なスパッタリング法によ
り磁気記録媒体を製造する研究開発が盛んに行われ、特
に膜自身が硬く、かつ化学的にも安定なγ−FezOi
ldf性薄膜が注目されている。
As the storage capacity of magnetic disk devices increases, there is a demand for higher recording densities in magnetic recording media. In response to this, in recent years there has been much research and development into manufacturing magnetic recording media using sputtering, which can easily produce thin films, instead of conventional spin coating. γ-FezOi
ldf thin films are attracting attention.

〔従来の技術〕[Conventional technology]

従来、スパッタリング法を用いてr −FeAQ31性
薄膜を有する磁気記録媒体の製造方法としては、第4図
に示すように例えば、アルマイト処理を施した層合金か
らなる円板状非磁性基板1上に、Fe(鉄)母材をAr
−01(アルゴン−酸素)雰囲気中で、反応スパックリ
ングしてFe50?薄膜2を形成した後、このl’e3
0≠膜を大気中にて熱処理を行い、T−FeLO3磁性
薄膜3を得る直接酸化法等が一般に知られた方法である
Conventionally, as a method for manufacturing a magnetic recording medium having an r -FeAQ31 thin film using a sputtering method, as shown in FIG. , Fe (iron) base material is Ar
-01 (Argon-Oxygen) atmosphere, reaction sputtering to Fe50? After forming the thin film 2, this l'e3
A generally known method is a direct oxidation method in which the T-FeLO3 magnetic thin film 3 is obtained by heat-treating the 0≠ film in the atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の直接酸化法では、l?c(鉄)から中間酸化状態
であるFe3O4の生成が、非磁性基板1へ飛来中、若
しくは非磁性基板1上で行われるため、スパッタパワー
、スパッタガス圧等といったスパッタリング条件に対す
る許容度が極めて狭く、かつ非磁性基板1表面の状態(
基板表面荒れ、清浄度)の影啓を受は易いと云う欠点が
ある。その為γ−FeよOJ膜を形成する上で、その安
定性が大きな問題となっていた。
In the conventional direct oxidation method, l? Since Fe3O4, which is in an intermediate oxidation state, is generated from c (iron) while flying to or on the nonmagnetic substrate 1, the tolerance for sputtering conditions such as sputtering power and sputtering gas pressure is extremely narrow. , and the state of the surface of the nonmagnetic substrate 1 (
The drawback is that it is easily affected by substrate surface roughness and cleanliness. Therefore, when forming an OJ film using γ-Fe, its stability has been a major problem.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明に係る磁気記録媒体の製造方法を工程順
に示す要部拡大断面図である。
FIG. 1 is an enlarged cross-sectional view of a main part showing the method of manufacturing a magnetic recording medium according to the present invention in order of steps.

本問題点は、円板状非磁性基板1上に、Fe (鉄)を
母材とする反応性スパッタリングよりα−Fe・0コ薄
膜4を被着した後、還元熱処理を行って第一層のPeJ
Oす薄膜5を形成し、該Fe3O4薄膜5 (第一層)
上にFe母材の反応性スパッタリングにより、Fe50
−薄膜6を被着することにより解決される。
This problem is solved by depositing an α-Fe.O thin film 4 on a disc-shaped nonmagnetic substrate 1 by reactive sputtering using Fe (iron) as a base material, and then performing a reduction heat treatment to form the first layer. PeJ of
An O thin film 5 is formed, and the Fe3O4 thin film 5 (first layer)
By reactive sputtering of Fe matrix on top, Fe50
- solved by applying a thin film 6;

〔作用〕[Effect]

即ち、円板状非磁性基板1上にα−Fe、03 薄膜4
を還元熱処理して形成したFe1O@からなる下地薄膜
5を予め被着しておき、この下地膜+1’J 5上に反
応性スパッタリングによりFeJOs薄膜6を形成すれ
ば、基板表面の形容を除去することができ、かつ第2層
のFeJO+薄膜6が、下地膜となる第一層のFe30
y薄膜5の結晶性を受は継いだ形で形成されるので、反
応性スパッタリングの制御マージンを広げることができ
る゛。これらのFeJ04薄膜を大気中にて熱処理すれ
ば、良好な磁気特性ををするT−FeユO8薄膜7を安
定に形成することが可能となる。
That is, a thin film 4 of α-Fe, 03 is deposited on a disc-shaped nonmagnetic substrate 1.
If a base thin film 5 made of Fe1O@ formed by reduction heat treatment is deposited in advance, and a FeJOs thin film 6 is formed on the base film +1'J 5 by reactive sputtering, the shape of the substrate surface can be removed. and the second layer of FeJO+ thin film 6 is the first layer of Fe30 which serves as the base film.
Since it is formed in a manner that inherits the crystallinity of the y-thin film 5, it is possible to widen the control margin of reactive sputtering. If these FeJ04 thin films are heat-treated in the atmosphere, it becomes possible to stably form a T-FeO8 thin film 7 having good magnetic properties.

〔実施例] 第1図を用いて本発明について説明する。〔Example] The present invention will be explained using FIG.

第1図に示すように、直径8インチの表面硬化されたガ
ラス基板(非磁性基板I)に、Ti、Co、Cuが微少
添加されたFeターゲノl−(250X125 *:)
を用いて、Ar−01雰囲気圧1.OX 10  To
rr。
As shown in Fig. 1, a surface-hardened glass substrate (non-magnetic substrate I) with a diameter of 8 inches is coated with Fe target material (250X125*:) to which Ti, Co, and Cu are slightly added.
Using Ar-01 atmospheric pressure 1. OX 10 To
rr.

スパッタ電力2KW 、 l板回転10rpmにて反応
スパッタリングを行い、膜厚500人のα−Fe工o3
薄膜4を形成した。
Reactive sputtering was performed at a sputtering power of 2 KW and a plate rotation of 10 rpm to form a film with a thickness of 500 mm.
A thin film 4 was formed.

その後α−Fe工O3薄膜を湿潤Hユ雰囲気中で還元熱
処理を行い、下地膜となるFOJOチ薄膜5 (第1層
)を形成した。
Thereafter, the α-Fe-treated O3 thin film was subjected to a reduction heat treatment in a humid H atmosphere to form a FOJO thin film 5 (first layer) serving as a base film.

次に、上記Fe、Oい薄膜5下地上に、Coを微量含む
トcターゲットをAr−0L雰囲気圧0.5×耐Tor
r、スパッタ電力1.OKW 、基板温度250 ’C
の条件にて反応性スパッタリングして、1000人のF
e)Os 薄膜6 (第2層)を形成し、その後節1、
第2層のFe50≠薄膜5.6を大気中にて熱処理を行
い、γ−FezO5薄膜7を形成した。
Next, a target containing a small amount of Co was placed on the Fe, O thin film 5 substrate at an Ar-0L atmospheric pressure of 0.5×Tor resistance.
r, sputtering power 1. OKW, substrate temperature 250'C
Reactive sputtering was performed under the conditions of 1000 F.
e) Form the Os thin film 6 (second layer), and then the nodes 1,
The second layer of Fe50≠thin film 5.6 was heat-treated in the atmosphere to form a γ-FezO5 thin film 7.

本実施例で得られたr−Feよ03薄膜7の磁気特性(
B−H特性)を、第2図の表に示す。また比較のために
、下地のFe301+3膜5を形成せずに、ガラス基板
(非磁性基板1)上に直接酸化法で形成したT−Fe□
03薄膜(膜厚1500人)の磁気特性を併記しておく
。なお、第2図の表において、試料I、■、■はA r
 / 02の混合ガス比を変えて成膜したものである。
Magnetic properties of the r-Fe 03 thin film 7 obtained in this example (
B-H characteristics) are shown in the table of FIG. For comparison, T-Fe
The magnetic properties of the 03 thin film (thickness: 1500 mm) are also listed below. In addition, in the table of Fig. 2, samples I, ■, and ■ are A r
The film was formed by changing the mixed gas ratio of /02.

−IiCにr−FezO3薄膜の磁気特性としては、残
留磁束密度8rが2000Gauss Jソ上、角形比
S(=!4r/Bs) 、S*(=lIx/1lc)が
0.7以上が望ましい。
As for the magnetic properties of the -IiC r-FezO3 thin film, it is desirable that the residual magnetic flux density 8r be 2000 Gauss J or higher, the squareness ratio S (=!4r/Bs), and S* (=lIx/1lc) be 0.7 or more.

第2図の表をみると、従来法で作成したサンプルは、流
量が5〜7 secmの間で変化しただけで、モホ気特
性が著しく変化して劣化するものもあるが、本実施例に
より作成したサンプルは全て良好な6’tl気特性を示
している。
Looking at the table in Figure 2, it can be seen that in some samples prepared using the conventional method, the moho characteristics significantly change and deteriorate even when the flow rate changes between 5 and 7 seconds, but with this example, All the prepared samples showed good 6'tl characteristics.

本発明は下地膜を入れることで、下地膜を引き継いた形
でその上にFejO≠薄膜が形成されるので、基板表面
の影響が除去され、且つ」二記表のように酸素流量をか
えても、良好な磁気特性が得られるので、反応性スパッ
タリングの制御マージンが広いことは明らかである。従
って、良好な磁気特性を有するγ−Fe203薄膜を安
定して形成することが可能となる。
In the present invention, by inserting a base film, a FejO≠ thin film is formed on the base film in a manner that takes over the base film, so the influence of the substrate surface is removed, and the oxygen flow rate can be changed as shown in Table 2. It is clear that the control margin for reactive sputtering is wide because good magnetic properties can also be obtained. Therefore, it is possible to stably form a γ-Fe203 thin film having good magnetic properties.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、非磁性の円板状基
板表面の影響を下地膜を入れることにより除去すること
ができ、かつ、Feを母材とする反応性スパッタリング
の制御マージンを広げることが可能となることから、磁
気特性の優れたγ−F6λ0、薄膜を安定に形成するこ
とが出来る。
As explained above, according to the present invention, the influence of the non-magnetic disk-shaped substrate surface can be removed by adding an underlayer, and the control margin for reactive sputtering using Fe as a base material can be expanded. This makes it possible to stably form a γ-F6λ0 thin film with excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁気記録媒体の製造方法を工程順
に示す要部拡大断面図、 第2図は磁気特性の比較表、 第3図はB−8曲線、 第4図は従来の磁気記録媒体の製造方法を説明するため
の要部拡大断面図である。 図において、 1は非磁性基板、 4はα−Fe、03薄膜、 5.6はF切回薄膜、
Fig. 1 is an enlarged sectional view of main parts showing the manufacturing method of the magnetic recording medium according to the present invention in order of steps, Fig. 2 is a comparison table of magnetic properties, Fig. 3 is the B-8 curve, and Fig. 4 is a conventional magnetic recording medium. FIG. 2 is an enlarged sectional view of a main part for explaining a method of manufacturing a recording medium. In the figure, 1 is a non-magnetic substrate, 4 is α-Fe, 03 thin film, 5.6 is F-cut thin film,

Claims (1)

【特許請求の範囲】 非磁性の基板(1)上に、Fe(鉄)を母材とする反応
性スパッタリングによりα−Fe_2O_3薄膜(4)
を被着した後、還元熱処理を行って第一層のFe_3O
_4薄膜(5)を形成し、 更に該Fe_3O_4膜(第一層)(5)上に、Feを
母材にて反応性スパッタリングを行って第二層のFe_
3O_4薄膜(6)を被着した後、 これら両薄膜(5、6)を酸化処理してγ−Fe_2O
_3磁性薄膜(7)を形成したことを特徴とする磁気記
録媒体の製造方法。
[Claims] An α-Fe_2O_3 thin film (4) is formed on a non-magnetic substrate (1) by reactive sputtering using Fe (iron) as a base material.
After depositing Fe_3O, a reduction heat treatment is performed to form the first layer of Fe_3O.
A _4 thin film (5) is formed, and then reactive sputtering is performed on the Fe_3O_4 film (first layer) (5) using a base material to form a second layer of Fe_
After depositing the 3O_4 thin film (6), both these thin films (5, 6) are oxidized to form γ-Fe_2O.
_3 A method for manufacturing a magnetic recording medium, characterized in that a magnetic thin film (7) is formed.
JP11646386A 1986-05-20 1986-05-20 Production of magnetic recording medium Pending JPS62271226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11646386A JPS62271226A (en) 1986-05-20 1986-05-20 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11646386A JPS62271226A (en) 1986-05-20 1986-05-20 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS62271226A true JPS62271226A (en) 1987-11-25

Family

ID=14687733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11646386A Pending JPS62271226A (en) 1986-05-20 1986-05-20 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS62271226A (en)

Similar Documents

Publication Publication Date Title
US4670356A (en) Magneto-optical recording medium and method of making same
JPS5963026A (en) Vertical magnetic recording medium
JPS62271226A (en) Production of magnetic recording medium
JPS6199932A (en) Production of vertical magnetic recording medium
JPH03273525A (en) Production of magnetic recording medium
JP3069135B2 (en) Method for manufacturing magneto-optical recording medium
JPS6313256B2 (en)
JP2817870B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JPS61258331A (en) Magnetic recording medium
JPS59125607A (en) High saturation magnetization and high permeability magnetic film
JP2935606B2 (en) Manufacturing method of magnetic disk
JP2005223178A (en) Process for forming magnetic film, process for forming magnetic pattern, and process for producing magnetic recording medium
JPS59127235A (en) Vertical magnetic recording medium
KR900003278Y1 (en) Vertical magnetic recording carrier
JPS58164018A (en) Manufacture of vertical magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPS61192033A (en) Production of magnetic disk medium
JPS6022721A (en) Thin film magnetic head
JPH04129029A (en) Production of magnetic recording medium
JPS60236118A (en) Production of thin film magnetic recording medium
JPS6022722A (en) Thin film magnetic head
JPH03162736A (en) Production of magneto-optical recording medium
JPS6364623A (en) Magnetic recording medium
JPS61177630A (en) Production of magnetic recording medium
JPH0447521A (en) Magnetic recording medium