JPS61177630A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61177630A
JPS61177630A JP1802185A JP1802185A JPS61177630A JP S61177630 A JPS61177630 A JP S61177630A JP 1802185 A JP1802185 A JP 1802185A JP 1802185 A JP1802185 A JP 1802185A JP S61177630 A JPS61177630 A JP S61177630A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
circumference
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1802185A
Other languages
Japanese (ja)
Inventor
Katsumi Kiuchi
木内 克己
Masaki Shinohara
正喜 篠原
Tomio Kume
久米 富美夫
Hiroaki Wakamatsu
若松 弘晃
Hidekazu Kanda
英一 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1802185A priority Critical patent/JPS61177630A/en
Publication of JPS61177630A publication Critical patent/JPS61177630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve recording characteristics in the magnetic recording direction by impressing a magnetic field in the direction along the circumference of a substrate, and forming a magnetic film of Fe3O4 whose crystal is oriented in the direction along the circumference and an alpha-Fe2O3 thin film, and heat- treating both films to form a gamma-Fe2O3 continuous thin film. CONSTITUTION:Plural fan-shaped magnets 31 are closely arranged in the direction along the circumference of a nonmagnetic discoid substrate 21, and an Fe3O4 substrate thin film 22 is deposited by sputtering on the substrate 21 while impressing a magnetic field in the direction along the circumference. Then an alpha-Fe2O3 thin film 23 is deposited and formed in an Ar-O2 atmosphere on the thin film 22 by reactive sputtering using an Fe target. The crystal in the film 23 is grown and deposited in succession to the crystal orientation of the film 22. Furthermore, the films 22 and 23 are heat-treated in a wet H2 atmosphere to form an Fe3O4 continuous thin film 24. The thin film 24 is heat-treated in the atmosphere to form a continuous magnetic thin film 25 consisting of gamma-Fe2O3 having magnetic anisotropy whose easy magnetization axis is oriented in the direction along the circumference of the substrate 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気ディスク装置に用いられる磁気記録媒体
の製造方法に係り、更に詳細には磁気記録媒体における
磁性薄膜を、スパッタリング法により円板状基板の円周
に沿った記録方向を磁化容易方向とするように、磁気異
方性を持たせた状態に容易に形成して、磁気記録媒体の
記録密度の向上を図った製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic recording medium used in a magnetic disk device, and more specifically, the present invention relates to a method for manufacturing a magnetic recording medium used in a magnetic disk device, and more specifically, a method for manufacturing a magnetic thin film in a magnetic recording medium into a disk by a sputtering method. This relates to a manufacturing method that aims to improve the recording density of a magnetic recording medium by easily forming it into a state with magnetic anisotropy so that the recording direction along the circumference of a shaped substrate is the direction of easy magnetization. It is.

近年、磁気記録媒体の高記録密度化に伴って、薄膜化の
容易なスパッタリング法により高飽和磁化、高保磁力の
連続磁性薄膜を形成する磁気記録媒体の研究開発が盛ん
に行われれ、磁気特性が良く、又、硬(、かつ化学的に
も安定なγ−Fe2O3薄M臭が注目されている0、 しかし、従来スパッタリング法による薄膜技術によって
磁気記録媒体を高密度記録化するために、例えば円板状
基板の円周に沿った記録方向を磁化容易方向とする、磁
気異方性を持つγ−Fe2O3連続磁性膜を有する磁気
記録媒体を製造することが試みられているが、容易でな
く、これら製造方法の確立が要望されている。
In recent years, as the recording density of magnetic recording media has increased, research and development has been actively conducted on magnetic recording media that form continuous magnetic thin films with high saturation magnetization and high coercive force using sputtering methods, which are easy to thin films. The strong, hard (and chemically stable) γ-Fe2O3 thin M odor is attracting attention. Attempts have been made to manufacture a magnetic recording medium having a γ-Fe2O3 continuous magnetic film with magnetic anisotropy in which the recording direction along the circumference of a plate-like substrate is the easy magnetization direction, but it is not easy. Establishment of these manufacturing methods is desired.

〔従来の技術〕[Conventional technology]

従来、スパッタリング法を利用してγ−Fe2O3連続
磁性膜を有する磁気記録媒体を製造する方法としては、
第7図に示すように例えばアルマイト処理を施したアル
ミニウムl)からなる非磁性円板状基板1上に、反応性
スパッタリング法によってα−Fe2O3薄膜2を被着
形成する。
Conventionally, as a method for manufacturing a magnetic recording medium having a γ-Fe2O3 continuous magnetic film using a sputtering method,
As shown in FIG. 7, an .alpha.-Fe2O3 thin film 2 is deposited on a non-magnetic disk-shaped substrate 1 made of, for example, alumite-treated aluminum 1) by a reactive sputtering method.

その後、該α−Fe2O3薄膜2を湿’7IRH2雰囲
気中において熱処理を行って、第8図に示すようにFe
3O4薄膜3を形成し、このFe3O4薄膜3を更に大
気中において熱処理することによって、第9図に示すよ
うにγ−Fe2O3からなる磁性薄膜4が形成された磁
気記録媒体を得るようにした間接形成法、或いは第10
図に示すように同じく円板状基板1上に、スパッタリン
グ法によって直接、Fe3O4からなる薄IQ! 3を
被着形成した後、このFe3O4薄膜3を大気中にて熱
処理することにより、−第11図に示すようにγ−Fe
2O3からなる磁性層ll114が形成された磁気記録
媒体を得る直接形成法とが周知である。
Thereafter, the α-Fe2O3 thin film 2 is heat-treated in a humid IRH2 atmosphere, and as shown in FIG.
By forming a 3O4 thin film 3 and further heat-treating this Fe3O4 thin film 3 in the atmosphere, a magnetic recording medium in which a magnetic thin film 4 made of γ-Fe2O3 is formed as shown in FIG. 9 is obtained. Law or the 10th
As shown in the figure, a thin IQ film made of Fe3O4 is directly deposited on the disc-shaped substrate 1 by sputtering. After depositing the Fe3O4 thin film 3, the Fe3O4 thin film 3 is heat-treated in the atmosphere to form γ-Fe as shown in FIG.
A direct formation method for obtaining a magnetic recording medium having a magnetic layer 1114 made of 2O3 is well known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上記した各形成方法を、例えば円板状基板の円
周に沿った方向を磁化容易方向とする、磁気異方性を持
つγ−Fe2O3連続磁性膜を有する高密度記録な磁気
記録媒体を製造するのに適用した場合、前者の間接形成
法においては、形成されたγ−Fe2O3からなる磁性
薄膜4の磁気特性が等方性となり、目的とする磁気異方
性を付与することが極めて困難であるといった欠点があ
った。
By the way, each of the above-mentioned formation methods can be used, for example, to produce a high-density magnetic recording medium having a γ-Fe2O3 continuous magnetic film with magnetic anisotropy in which the easy magnetization direction is along the circumference of a disk-shaped substrate. In the former indirect formation method, the magnetic properties of the formed magnetic thin film 4 made of γ-Fe2O3 become isotropic, and it is extremely difficult to impart the desired magnetic anisotropy. There were some drawbacks.

また後者の直接形成法にあっては、ベースとなるFe3
O4からなる薄膜3を安定に厚く形成する際のスパッタ
リングに係る諸作業条件範囲が狭いため、スパッタリン
グ制御が容易でないといった問題があり、良好な磁気異
方性を持つγ−Fe2O3連続磁性膜を得ることが難し
いという欠点があった。
In addition, in the latter direct formation method, the base Fe3
Since the range of working conditions related to sputtering when stably and thickly forming the thin film 3 made of O4 is narrow, there is a problem that sputtering control is not easy, and a γ-Fe2O3 continuous magnetic film with good magnetic anisotropy is obtained. The drawback was that it was difficult to do.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、非磁性の円板状基板上に、該基板の円周
に沿った方向に磁界を付加した状態で、スパッタリング
法により該円周に沿う方向に結晶配向したFe3O4か
らなる下地磁性膜を被着し、該下地磁性膜上にα−F、
e2O3薄膜を反応性スパッタリング法により形成した
後、これら両薄膜を熱処理して下地磁性層の結晶配向を
受は継いだ磁気異方性を持つγ−Fe2O3連続磁性膜
を形成するようにした本発明による磁気記録媒体の製造
方法によって解決される。
The above problem is solved by applying a magnetic field to a non-magnetic disk-shaped substrate in a direction along the circumference of the substrate, and using a sputtering method to create a magnetic base made of Fe3O4 with crystal orientation in the direction along the circumference. A film is deposited, and α-F,
In the present invention, after an e2O3 thin film is formed by a reactive sputtering method, both of these thin films are heat-treated to form a γ-Fe2O3 continuous magnetic film having magnetic anisotropy that inherits the crystal orientation of the underlying magnetic layer. The problem is solved by a method of manufacturing a magnetic recording medium according to the present invention.

〔作用〕[Effect]

即ち、非磁性の円板状基板上に、該基板の円周に沿った
方向に磁界を付加した状態で、スパッタリング法により
該円周に沿う方向に結晶配向したFe3O4からなる下
地磁性膜を、あらかじめ被着しておき、この下地磁性膜
上に反応性スパッタリング法によりα−Fe2O3薄膜
を被着することにより、該α−Fe2O3薄膜が下地磁
性層の結晶配向を受は継いだ形で形成されるので、その
後熱処理することにより磁気異方性を有するr −Fe
2O3連続磁性膜を形成することが可能となる。
That is, on a non-magnetic disc-shaped substrate, with a magnetic field applied in the direction along the circumference of the substrate, a base magnetic film made of Fe3O4 with crystal orientation in the direction along the circumference is formed by sputtering, By depositing the α-Fe2O3 thin film on the base magnetic layer in advance and using a reactive sputtering method, the α-Fe2O3 thin film is formed in a form that inherits the crystal orientation of the base magnetic layer. Therefore, r -Fe with magnetic anisotropy can be obtained by heat treatment afterwards.
It becomes possible to form a 2O3 continuous magnetic film.

従って、゛高密度記録に好適な磁気記録媒体を容易に得
ることができる。
Therefore, a magnetic recording medium suitable for high-density recording can be easily obtained.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図乃至第4図は本発明に係る磁気記録媒体の製造方
法の一実施例を工程順に示す要部拡大断面図である。
FIGS. 1 to 4 are enlarged cross-sectional views of essential parts showing step-by-step an embodiment of the method for manufacturing a magnetic recording medium according to the present invention.

先ず第1図に示すように例えばアルマイト処理を施した
アルミニウム(Aj)からなる非磁性の円板状基板21
上に、スパッタリング法によりFe3O4からなる下地
磁性層22を全磁性膜の2以下の膜厚に形成する。
First, as shown in FIG. 1, a nonmagnetic disk-shaped substrate 21 made of, for example, alumite-treated aluminum (Aj) is prepared.
A base magnetic layer 22 made of Fe3O4 is formed thereon by sputtering to a thickness less than 2 times the thickness of the total magnetic film.

即ち、該下地磁性層22を形成するに際しては、第5図
に示すように前記基板21面に対して1対、若しくは複
数個の扇形状マグネット31を、該基板21の円周に沿
った方向に近接配置し、磁界が付与された状態で第6図
に示すようにスパッタリング装置内に配設する。
That is, when forming the base magnetic layer 22, as shown in FIG. The sputtering device is placed in a sputtering apparatus as shown in FIG. 6 with a magnetic field applied thereto.

次に、前記基板21を回転機!32によって回転させな
がら、Ar−02雰囲気中でFeターゲット33を用い
てスパッタリングを行うことにより、該基板21の円周
に沿った方向に結晶配向したFe3O4からなる下地磁
性膜22を被着形成することが出来る。
Next, the board 21 is rotated! 32, sputtering is performed using an Fe target 33 in an Ar-02 atmosphere, thereby depositing and forming a base magnetic film 22 made of Fe3O4 with crystal orientation in the direction along the circumference of the substrate 21. I can do it.

次に、第2図に示すように該下地磁性膜22上にAr−
02雰囲気中でFeターゲットを用いた反応性スパッタ
リングによりα−Fe2O3薄Ill!23を被着形成
する。
Next, as shown in FIG. 2, Ar-
α-Fe2O3 thin Ill! by reactive sputtering using Fe target in 02 atmosphere. 23 is deposited and formed.

この時α−Fe2O3薄膜23は、Fe3O4からなる
下地磁性膜22の結晶配向を受は継いだ形で成長析出さ
れる。
At this time, the α-Fe2O3 thin film 23 is grown and deposited in a manner that follows the crystal orientation of the underlying magnetic film 22 made of Fe3O4.

従って、このようにして得られた下地磁性膜22及びα
−Fe2O3i4膜23を湿潤H2雰囲気中にて熱処理
(還元)を行って、第3図に示すようFe3O4からな
る連続薄膜24に形成した後、このFe3O4連続薄膜
24を更に大気中において熱処理(酸化)することによ
り、第4図に示すように基板21の円周に沿った方向を
磁化容易方向とする磁気異方性を有するγ−Fe2O3
からなる連続磁性薄膜25を容易に形成することが可能
となる。
Therefore, the base magnetic film 22 and α
- After the Fe2O3i4 film 23 is heat-treated (reduced) in a humid H2 atmosphere to form a continuous thin film 24 made of Fe3O4 as shown in FIG. 3, this Fe3O4 continuous thin film 24 is further heat-treated (oxidized) in the atmosphere. By doing so, as shown in FIG. 4, γ-Fe2O3 has magnetic anisotropy with the easy magnetization direction along the circumference of the substrate
It becomes possible to easily form a continuous magnetic thin film 25 consisting of the following.

尚、本実施例で説明したFe3O4からなる下地磁性層
22の結晶配向の付与方法としては、この例に限定され
るものではなく、要は何れの付与方法を用いても基板2
1の円周に沿った方向に結晶配向が付与されればよい。
Note that the method for imparting crystal orientation to the underlying magnetic layer 22 made of Fe3O4 described in this embodiment is not limited to this example;
It is sufficient that the crystal orientation is given in the direction along the circumference of 1.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る磁気記録
媒体の製造方法によれば、磁気記録媒体におけるγ−F
e2O3からなる連続磁性薄膜を、その円周に沿った方
向を磁化容易方向とする磁気異方性に容易に形成するこ
とが可能となるので、磁気記録方向に対する磁気記録特
性が向上する等、優れた利点を有する。
As is clear from the above explanation, according to the method of manufacturing a magnetic recording medium according to the present invention, the γ-F
Since it is possible to easily form a continuous magnetic thin film made of e2O3 with magnetic anisotropy in which the direction along the circumference is the direction of easy magnetization, the magnetic recording properties in the magnetic recording direction are improved, etc. It has many advantages.

従って、高密度記録・再生に好適な磁気記録媒体を提供
することができる。
Therefore, a magnetic recording medium suitable for high-density recording and reproduction can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明に係る磁気記録媒体の製造方
法の一実施例を工程順に示す 要部拡大断面図、 第5図は円板状基板に対する磁界付与用マグネットの配
置図、 第6図は本発明の製造方法に通用するスパッタリング装
置の概略構成図、 第7図乃至第11図は従来の磁気記録媒体の製造方法を
説明するための要部拡大断面図 である。 図中、21は非磁性円板状基板、22はFe3O4下地
磁性膜、23はcx−Fe2O3薄膜、24はFe3O
4連続薄膜、25はγ−Fe2O3連続磁性薄膜、31
は複数個の扇形状マグネット、32は回転機構、33は
Feターゲットをそれぞれ示す。 III  図 第2図 @ 3 囚 第4図 第5図 第6因 番 IK7図 第8図 第9図 第10 rM 第11図
1 to 4 are enlarged cross-sectional views of main parts showing an embodiment of the method for manufacturing a magnetic recording medium according to the present invention in the order of steps; FIG. 5 is an arrangement diagram of a magnet for applying a magnetic field to a disc-shaped substrate; FIG. 6 is a schematic configuration diagram of a sputtering apparatus applicable to the manufacturing method of the present invention, and FIGS. 7 to 11 are enlarged sectional views of essential parts for explaining the conventional method of manufacturing a magnetic recording medium. In the figure, 21 is a non-magnetic disc-shaped substrate, 22 is a Fe3O4 base magnetic film, 23 is a cx-Fe2O3 thin film, and 24 is Fe3O
4 continuous thin films, 25 is a γ-Fe2O3 continuous magnetic thin film, 31
3 represents a plurality of fan-shaped magnets, 32 represents a rotating mechanism, and 33 represents an Fe target. III Figure Figure 2 @ 3 Prisoner Figure 4 Figure 5 Figure 6 Number IK7 Figure 8 Figure 9 Figure 10 rM Figure 11

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性の円板状基板上に、その円周に沿った方向
に結晶配向したFe_3O_4からなる下地磁性膜を被
着し、該下地磁性膜上に反応性スパッタリング法により
α−Fe_2O_3薄膜を形成した後、これら両薄膜を
熱処理して、基板円周に沿った方向を磁化容易方向とす
る磁気異方性を持つγ−Fe_2O_3連続磁性膜とす
ることを特徴とする磁気記録媒体の製造方法。
(1) A base magnetic film made of Fe_3O_4 with crystal orientation along the circumference is deposited on a non-magnetic disk-shaped substrate, and an α-Fe_2O_3 thin film is deposited on the base magnetic film by reactive sputtering. After forming, both thin films are heat-treated to form a γ-Fe_2O_3 continuous magnetic film having magnetic anisotropy with easy magnetization direction along the circumference of the substrate. Method.
(2)上記Fe_3O_4からなる下地磁性膜を、基板
の円周に沿った方向に磁界を付加した状態で、スパッタ
リング法により形成することを特徴とする特許請求の範
囲第(1)項に記載した磁気記録媒体の製造方法。
(2) The magnetic base film made of Fe_3O_4 is formed by a sputtering method while applying a magnetic field in a direction along the circumference of the substrate. A method for manufacturing a magnetic recording medium.
JP1802185A 1985-01-31 1985-01-31 Production of magnetic recording medium Pending JPS61177630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1802185A JPS61177630A (en) 1985-01-31 1985-01-31 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1802185A JPS61177630A (en) 1985-01-31 1985-01-31 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61177630A true JPS61177630A (en) 1986-08-09

Family

ID=11960010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1802185A Pending JPS61177630A (en) 1985-01-31 1985-01-31 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61177630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435838A2 (en) * 1989-12-19 1991-07-03 International Business Machines Corporation Sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435838A2 (en) * 1989-12-19 1991-07-03 International Business Machines Corporation Sputtering apparatus

Similar Documents

Publication Publication Date Title
KR100766351B1 (en) Magnetic recording medium and manufacturing method thereof, magnetic storage apparatus, substrate and texture forming apparatus
JP2001250217A (en) Information recording medium and its manufacturing method
JP2947029B2 (en) Perpendicular magnetic recording media
US6636371B1 (en) Magnetic transfer method and system
JPH06103553A (en) Perpendicular magnetic recording medium and its production
CN1234113C (en) Mother carrier for magnetic duplication
JP2005223177A (en) Process for forming magnetic film, process for forming magnetic pattern, and process for producing magnetic recording medium
JPS61177630A (en) Production of magnetic recording medium
JPH08115519A (en) Magnetic recording medium and its production
JPH0689422A (en) Production of cobalt-iron-nickel magnetic film
JPH0785442A (en) Vertical magnetic recording medium
JP2579184B2 (en) Magnetic recording media
JPS61199614A (en) Soft-magnetic amorphous film body
Kitamoto et al. Increase in perpendicular coercivity of Co–Ni ferrite-plated films by Zn ferrite underlayers
JP2005223178A (en) Process for forming magnetic film, process for forming magnetic pattern, and process for producing magnetic recording medium
JPS59127235A (en) Vertical magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPS61104431A (en) Production of vertical recording magnetic medium
JPS5948822A (en) Vertical magnetic recording medium and its production
KR960016358B1 (en) Manufacturing method of magnetic recording medium
JPS6334731A (en) Production of magnetic recording medium
JPS6282517A (en) Production of magnetic disk
JPH0562176A (en) Manufacture of magnetic recording medium
JPH05258275A (en) Perpendicular magnetic recording medium and its production
JPS62271226A (en) Production of magnetic recording medium