JPS62269756A - Method for regenerating mixed-bed type ion-exchange tower - Google Patents
Method for regenerating mixed-bed type ion-exchange towerInfo
- Publication number
- JPS62269756A JPS62269756A JP61112347A JP11234786A JPS62269756A JP S62269756 A JPS62269756 A JP S62269756A JP 61112347 A JP61112347 A JP 61112347A JP 11234786 A JP11234786 A JP 11234786A JP S62269756 A JPS62269756 A JP S62269756A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- mixed
- water
- bed
- ion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005342 ion exchange Methods 0.000 title claims abstract description 37
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 69
- 239000011347 resin Substances 0.000 claims abstract description 48
- 229920005989 resin Polymers 0.000 claims abstract description 48
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 24
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 10
- 235000011121 sodium hydroxide Nutrition 0.000 claims abstract description 8
- 239000003957 anion exchange resin Substances 0.000 claims description 43
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 34
- 239000003729 cation exchange resin Substances 0.000 claims description 34
- 239000003456 ion exchange resin Substances 0.000 claims description 9
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 4
- 229940023913 cation exchange resins Drugs 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 abstract description 19
- 230000008929 regeneration Effects 0.000 abstract description 14
- 239000011734 sodium Substances 0.000 abstract description 13
- 239000002699 waste material Substances 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- 238000002347 injection Methods 0.000 abstract description 5
- 239000007924 injection Substances 0.000 abstract description 5
- 238000007796 conventional method Methods 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 4
- 150000001450 anions Chemical class 0.000 abstract description 3
- 150000001768 cations Chemical class 0.000 abstract description 3
- 238000011001 backwashing Methods 0.000 abstract 2
- 238000011033 desalting Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 13
- 239000000243 solution Substances 0.000 description 10
- 239000000460 chlorine Substances 0.000 description 9
- 229910001415 sodium ion Inorganic materials 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000012492 regenerant Substances 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- -1 chlorine ions Chemical class 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical group [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 101100323734 Dictyostelium discoideum arrL gene Proteins 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 241000205407 Polygonum Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical compound OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical group [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は温床式イオン交換塔の混合樹脂床の再生方法に
関するものである。更に詳しくは。Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for regenerating a mixed resin bed of a hot bed type ion exchange tower. For more details.
復水脱塩装置等における混床式イオン交換塔の処理水中
のナトリウムイオンと塩素イオンとの比を一定にする再
生方法に関する。The present invention relates to a regeneration method for maintaining a constant ratio of sodium ions to chloride ions in treated water of a mixed bed ion exchange tower in a condensate desalination equipment, etc.
近年、火力発電所や原子力発電所における2次系水質管
理については、益々厳しくなっており、それに伴い復水
脱塩装置の混床式イオン交換塔の処理水水質も処理水中
の不純物をできるだけ少なくすることのほかに、装置金
属材料の腐食の主要因となるナトリウムイオンと塩素イ
オンについてはその存在比を制御し、遊離のナトリウム
イオンや過剰に塩素イオンが存在しないことが要求され
ている。In recent years, secondary water quality management at thermal power plants and nuclear power plants has become increasingly strict, and as a result, the quality of treated water from mixed-bed ion exchange towers in condensate desalination equipment has been improved to minimize impurities in the treated water. In addition, it is required to control the abundance ratio of sodium ions and chlorine ions, which are the main cause of corrosion of equipment metal materials, and to ensure that free sodium ions and excessive chlorine ions are not present.
その存在比の制御範囲としては、ナトリウムイオンの塩
素イオンに対するモル比、すなわちN a / 01モ
ル比が0.5付近であることが要求されている。As for the control range of the abundance ratio, it is required that the molar ratio of sodium ions to chloride ions, that is, the Na/01 molar ratio, be around 0.5.
混床式イオン交換塔の処理水中に存在するナトリウムイ
オン及び塩素イオンの量は、混床式イオン交換塔に充填
された混合樹脂床中に残存するナトリウム形カチオン交
換樹脂及び塩素イオン形アニオン交換樹脂の量に比例す
る。The amount of sodium ions and chloride ions present in the treated water of the mixed bed ion exchange tower is determined by the amount of sodium cation exchange resin and chloride ion anion exchange resin remaining in the mixed resin bed packed in the mixed bed ion exchange tower. is proportional to the amount of
従来性なわれている温床式イオン交換塔の混合樹脂床の
再生方法は、被処理水の通水が終了するとイオン交換塔
に逆洗水を導入して、混合樹脂床をアニオン交換樹脂と
カチオン交換樹脂の二層に成層分離した後、アニオン交
換樹脂には苛性ソーダ、カチオン交換樹脂には塩酸を接
触させ再生した後、必要に応じて両樹脂を洗浄し1両樹
脂を混合して通水に供している。The conventional method for regenerating the mixed resin bed of a hotbed type ion exchange tower is to introduce backwash water into the ion exchange tower after the water to be treated has passed through the tower, and to regenerate the mixed resin bed with anion exchange resin and cation. After the exchange resin is separated into two layers, the anion exchange resin is brought into contact with caustic soda and the cation exchange resin is brought into contact with hydrochloric acid to regenerate, and then both resins are washed as necessary and both resins are mixed and water is passed through. I'm offering it.
ところが上記再生方法に於ては、アニオン交換樹脂とカ
チオン交換樹脂とを完全に分離して再生することは極め
て困難なことであり、そのため一部のアニオン交換樹脂
は塩酸に汚染され塩素イオン形になり、一方力チオン交
換樹脂は苛性ソーダによりナトリウム形になる。又1通
常の工業的再生剤量では完全な再生は行なわれず一部の
樹脂は再生されずに被処理水中のナトリウムイオン及び
塩素イオンを吸着した状態で残存する。このようなイオ
ン交換樹脂が混合樹脂床に混在することによりナトリウ
ムイオン及び塩素イオンが処理水中に漏出してくる。However, in the above-mentioned regeneration method, it is extremely difficult to completely separate the anion exchange resin and cation exchange resin for regeneration, and as a result, some anion exchange resins are contaminated with hydrochloric acid and converted into chloride ion form. On the other hand, the ion exchange resin is converted to sodium form by caustic soda. Furthermore, complete regeneration is not achieved with the usual industrial amount of regenerant, and a portion of the resin remains in a state in which sodium ions and chloride ions in the water to be treated are adsorbed without being regenerated. When such ion exchange resins are mixed in the mixed resin bed, sodium ions and chloride ions leak into the treated water.
しかるに、処理水中のナトリウムイオンと塩素イオンの
Na/c’1モル比の制御については何ら手段が加えら
れていない。However, no measures have been taken to control the Na/c'1 molar ratio of sodium ions and chloride ions in the treated water.
すなわち、被処理水中のす) IJウムイオン等のカチ
オン量及び塩素イオン等のアニオン量はたえず変動し、
このような被処理水を通液後。In other words, the amount of cations such as IJium ions and the amount of anions such as chloride ions in the water to be treated constantly fluctuate.
After passing through the water to be treated.
常に一定音の再生剤液で再生を行なった場合。When regeneration is performed with a regenerant liquid that always has a constant sound.
再生後のす) IJウム形カチオン交換樹脂及び塩素イ
オン形アニオン交換樹脂の残存量及びその比率は一定値
に保持されない。After regeneration, the remaining amounts and ratios of the IJ type cation exchange resin and the chloride ion type anion exchange resin are not maintained at constant values.
処理水中のN a / Clモル比を一定値に制御する
には、再生後のナトリウム形カチオン交換樹脂と塩素イ
オン形アニオン交換樹脂の残存比率を制御する必要があ
る。In order to control the Na/Cl molar ratio in the treated water to a constant value, it is necessary to control the remaining ratio of the sodium-type cation exchange resin and the chloride-type anion exchange resin after regeneration.
そのために、被処理水通液後の混合樹脂床の再生にあた
り、イオン交換能力の減退したアニオン交換樹脂及びカ
チオン交換樹脂の各々ノイオン交換量を測定し、その結
果に基づきアニオン交換樹脂及びカチオン交換樹脂の再
生に必要な再生剤量を求め再生する方法、及び常に大過
剰の再生剤液により再生する方法が提案されている。For this purpose, when regenerating the mixed resin bed after passing the water to be treated, we measure the amount of ion exchange of each of the anion exchange resin and cation exchange resin whose ion exchange capacity has decreased, and based on the results, we A method of regenerating by determining the amount of regenerant necessary for regeneration of the regenerant, and a method of regenerating using a large excess of regenerant liquid at all times have been proposed.
前者の方法は、各々のイオン交換樹脂のイオン交換量の
分析、必要再生剤液量を都度調整しなければならないこ
となど作業が非常に煩雑であること、後者の方法は、経
済的でないことなどいずれも工業的な方法とはいえない
。The former method requires very complicated work such as analyzing the ion exchange amount of each ion exchange resin and adjusting the required amount of regenerant liquid each time, and the latter method is not economical. Neither method can be called an industrial method.
本発明者は、温床式イオン交換塔の処理水のNa/C1
モル比を一定値に保持する再生方法について鋭意検討し
た結果、逆洗水を導入して混合樹脂床を分離した際に、
アニオン交換樹脂層中に混在するカチオン交換樹脂及び
カチオン交換樹脂層中に混在するアニオン交換樹脂はほ
ぼ一定した値を示しており、そのため処理水のNa/C
lモル比が変動するのは混在するアニオン交換樹脂及び
カチオン交換樹脂の影響ではな(、主として、再生され
にくいアニオン交換樹脂に起因し、被処理水中の塩素イ
オン等のアニオン量の変動や通水量の変動によりアニオ
ン交換樹脂のイオン交換容量の変動すなわち、アニオン
交換樹脂の再生率が都度変動していることを知見し、さ
らに、塩素イオン形のアニオン交換樹脂は炭酸イオン形
にした後再生すると再生率が向上することも知見した。The present inventor has discovered that the Na/C1
As a result of intensive study on a regeneration method that maintains the molar ratio at a constant value, when backwash water was introduced to separate the mixed resin bed,
The cation exchange resin mixed in the anion exchange resin layer and the anion exchange resin mixed in the cation exchange resin layer show almost constant values, so the Na/C of the treated water
The fluctuation in the molar ratio is not due to the influence of the mixed anion exchange resin and cation exchange resin (it is mainly due to the anion exchange resin that is difficult to regenerate, and is due to fluctuations in the amount of anions such as chlorine ions in the water to be treated and the amount of water flow). It was discovered that the ion exchange capacity of the anion exchange resin fluctuates due to fluctuations in the ion exchange capacity of the anion exchange resin, that is, the regeneration rate of the anion exchange resin fluctuates from time to time. It was also found that the rate was improved.
、 本発明はこれらの知見にもとづきなされたもので
1通液終了後の温床式イオン交換塔の再生にあたり、混
合樹脂に炭酸す) IJウム溶液を接触させた後、従来
の再生方法により再生を行うことKより、処理水中のN
a / C1モル比が一定の値に制御できるきわめて
簡便な方法を提供することを目的とする。The present invention was made based on these findings, and when regenerating the hot bed type ion exchange tower after one liquid passage, the mixed resin was brought into contact with the IJium solution and then regenerated using the conventional regeneration method. From K to do, N in treated water
The object of the present invention is to provide an extremely simple method by which the a/C1 molar ratio can be controlled to a constant value.
本発明は、アニオン交換樹脂とカチオン交換樹脂との混
合樹脂床を形成してなる温床式イオン交換塔の再生に際
し、該混合樹脂床に炭酸ナトリウム水溶液を接触させる
第1工程、該イオン交換塔の底部より逆洗水を導入して
、アニオン交換樹脂とカチオン交換樹脂の分離膨脹層を
形成させた後、逆洗水の導入を停止して上層をアニオン
交換樹脂、下層をカチオン交換樹脂に成層分離する第コ
ニ程、成層分離した上層のアニオン交換樹脂には苛性ソ
ーダ、下層のカチオン交換樹脂には塩酸を接触させ再生
する第3工程、該イオン交換塔の底部より刃口圧空気を
導入して各々のイオン交換樹脂を混合して混合樹脂床を
形成させる第ダニ程を順次行うことを特徴とする混床式
イオン交換塔の再生方法を要旨とするものである。The present invention provides a first step of bringing an aqueous sodium carbonate solution into contact with the mixed resin bed when regenerating a hot bed type ion exchange tower formed of a mixed resin bed of an anion exchange resin and a cation exchange resin; Backwash water is introduced from the bottom to form a separated expanded layer of anion exchange resin and cation exchange resin, then the introduction of backwash water is stopped and the upper layer is separated into an anion exchange resin and the lower layer is a cation exchange resin. In the third step, the stratified and separated upper layer anion exchange resin is brought into contact with caustic soda and the lower layer cation exchange resin is brought into contact with hydrochloric acid and regenerated. Pressure air is introduced from the bottom of the ion exchange tower to regenerate each layer. The gist of this invention is a method for regenerating a mixed bed type ion exchange tower, which is characterized by sequentially performing a second step of mixing ion exchange resins to form a mixed resin bed.
以下1本発明について詳しく説明する。The present invention will be explained in detail below.
第1図は本発明を説明するための混床式イオン交換塔の
装置概略図である。FIG. 1 is a schematic diagram of a mixed bed ion exchange column for explaining the present invention.
第1図において、lはイオン交換塔本体、2は原水導入
管、3は散水管、ダは薬液分散管。In Fig. 1, l is the ion exchange tower body, 2 is the raw water introduction pipe, 3 is the water sprinkler pipe, and DA is the chemical liquid dispersion pipe.
よは中間コレクター、6は集水管、10はアニオン交換
樹脂層、//はカチオン交換樹脂層、13は処理水流出
管である。6 is an intermediate collector, 6 is a water collection pipe, 10 is an anion exchange resin layer, // is a cation exchange resin layer, and 13 is a treated water outflow pipe.
中間コレクターSは混合樹脂床を成層分離した際のアニ
オン交換樹脂層IOとカチオン交換樹脂層/lとの分離
界面付近で、アニオン交換樹脂層10中に位置するよう
に内設されている。The intermediate collector S is internally provided so as to be located in the anion exchange resin layer 10 near the separation interface between the anion exchange resin layer IO and the cation exchange resin layer/l when the mixed resin bed is stratified and separated.
再生済のアニオン交換樹脂層10及びカチオン交換樹脂
層//は処理水流出管/Jを通じて本体/内に導入され
る原圧空気等により混合され、混合樹脂床を形成後被処
理水の通液に供される。The recycled anion exchange resin layer 10 and cation exchange resin layer // are mixed by raw pressure air etc. introduced into the main body / through the treated water outflow pipe /J, and after forming a mixed resin bed, the treated water is passed through. served.
さて1通液は被処理水を原水導入管コ、散水管3を餞て
本体l内に導入し、混合樹脂床に接触させ、混合樹脂床
と接触した被処理水はイオン交換され処理水として集水
管6.処理水流出管13を経て流出する。Well, in 1st liquid flow, the water to be treated is introduced into the main body l through the raw water introduction pipe 3 and the sprinkler pipe 3, and brought into contact with the mixed resin bed.The water to be treated that has come into contact with the mixed resin bed is ion-exchanged and becomes treated water. Water collection pipe6. The treated water flows out through the outflow pipe 13.
被処理水の通液により混合樹脂床のイオン交換能力が減
退した時、被処理水の通液を停止して混合樹脂床の再生
が行なわれる。When the ion exchange capacity of the mixed resin bed is reduced due to the passage of the water to be treated, the passage of the water to be treated is stopped and the mixed resin bed is regenerated.
本発明ではまず炭酸す) IJウム水溶液貯槽tに貯え
られた炭酸す) IJウム水溶液を薬注管り。In the present invention, first, the carbonic acid solution stored in the IJum aqueous solution storage tank T is poured into a chemical injection pipe.
薬液分散v4tを経て導入し、混合樹脂床に接触させ、
その廃液は処理水流出管iJより系外に排出する第1工
程を行う。Introduced through chemical dispersion v4t and brought into contact with the mixed resin bed,
A first step is performed in which the waste liquid is discharged from the system through the treated water outflow pipe iJ.
この工程の炭酸す) IJウム水溶液は濃度3〜10%
(重量)で通液速度−〜1r77L/hrで行う。The concentration of IJum aqueous solution in this process is 3 to 10%.
(weight) at a liquid passing rate of ~1r77L/hr.
また、炭酸す) IJウムの便用量は、被処理水の通液
によりイオン交換能力が減退したアニオン交換樹脂及び
カチオン交換樹脂を各々炭酸イオン形及びナトリウムイ
オン形にするために必要な最少量とする。In addition, the amount of IJum carbonate is the minimum amount necessary to convert the anion exchange resin and cation exchange resin, whose ion exchange ability has decreased due to the passage of the water to be treated, into the carbonate ion form and sodium ion form, respectively. do.
通常、イオン交換能力の減退の程度にかかわらず、アニ
オン交換樹脂では200’二炭酸す) 17 ’) A
7ノ一アニオン交換樹脂程度の炭酸ナトリウムにより
約り0%が炭酸イオン形に変換され、一方力チオン交換
樹脂ではioog−炭al f h ’) ’) A
/ 、g−カチオン交換樹脂程度で約タデ優がナトリウ
ム形に変換される。Normally, anion exchange resins have 200' dicarbonate (17') A, regardless of the degree of reduction in ion exchange capacity.
Approximately 0% of sodium carbonate is converted to the carbonate ion form by using an anion exchange resin of about 7, while in the case of a ion exchange resin, ioog-char f h') ') A
/, g-cation exchange resin converts about 100 liters of polygonum to the sodium form.
そこで、処理水中のNa/Clモル比をO,S付近に制
御するにあたり、温床式イオン交換塔の混合樹脂の混合
比はアニオン交換樹脂:カチオン交換樹脂=/:/であ
ることが多く、そのためこの工程では炭酸ナトリウムの
7用量はコoog−炭酸す)11つ′−/l−混合樹脂
を目安として採用し、特に、銘柄により特性の差が大き
いアニオン交換樹脂によりその使用量を適宜増減する。Therefore, in order to control the Na/Cl molar ratio in the treated water to around O, S, the mixing ratio of the mixed resin in the hot bed type ion exchange tower is often anion exchange resin: cation exchange resin = /: /. In this process, the amount of sodium carbonate is 11'-/l-mixed resin as a guide, and the amount used can be increased or decreased as appropriate, especially depending on the anion exchange resin whose properties differ greatly depending on the brand. .
次いで、処理水流出管lJ、集水管6を通じて逆洗水を
導入し、散水管3、原水導入管コより排出することによ
り混合樹脂床をアニオン交換樹脂層とのカチオン交換樹
脂層の分離膨脹層を形成させた後、逆洗水の導入を停止
して上層をアニオン交換樹脂ff1 i o 、下層を
カチオン交換樹脂層//に成層分離する第2工程を行う
。Next, backwash water is introduced through the treated water outflow pipe 1J and the water collection pipe 6, and is discharged from the water sprinkler pipe 3 and the raw water introduction pipe 6, thereby separating the mixed resin bed from the anion exchange resin layer and the cation exchange resin layer into an expansion layer. After forming, a second step is performed in which the introduction of backwash water is stopped and the upper layer is separated into an anion exchange resin ff1io and the lower layer is separated into a cation exchange resin layer.
この工程は従来から行なわれている混合樹脂の分離方法
を採用すれば良い。For this step, a conventional method for separating mixed resins may be adopted.
分離されたアニオン交換樹脂層IOとカチオン交換樹脂
層/lとの分離界面付近では若干童のアニオン交換樹脂
とカチオン交換樹脂が混在している。Near the separation interface between the separated anion exchange resin layer IO and the cation exchange resin layer/l, a small amount of anion exchange resin and cation exchange resin are mixed.
次いで第2工程で成層分離したアニオン交換樹脂層10
には苛性ソーダ貯槽9に貯えられた苛性ソーダ水溶液を
集注管り、薬液分散管ダを硅て導入して、廃液を中間コ
レクターよ、再生廃液排出管12より排出することによ
り接触させ、同時にカチオン交換樹脂層/lには塩酸貯
槽/jに貯えられた塩酸溶液を薬注管/lI、集水管6
を経て導入し、廃液を中間コレクターよ。Next, the anion exchange resin layer 10 is stratified and separated in the second step.
In this step, the caustic soda aqueous solution stored in the caustic soda storage tank 9 is introduced into the collection pipe and the chemical liquid dispersion pipe, and the waste liquid is discharged from the intermediate collector and the recycled waste liquid discharge pipe 12 to make contact with the cation exchange resin. In the layer /l, the hydrochloric acid solution stored in the hydrochloric acid storage tank /j is connected to the drug injection pipe /lI and the water collection pipe 6.
The waste liquid is introduced through an intermediate collector.
再生廃液排出管12より排出することにより接触させろ
第3工程を行う。The third step is carried out by discharging the recycled waste liquid from the discharge pipe 12 and bringing it into contact.
この工程で便用する苛性ソーダ及び塩酸の便用量、濃度
、注入流速等は従来行なわれている混床式イオン交換塔
の再生条件をそのまま採用すれば良い。The amount, concentration, injection flow rate, etc. of the caustic soda and hydrochloric acid used in this step may be the same as the regeneration conditions of the conventional mixed bed ion exchange tower.
第1工程で炭酸イオン形に変換されたアニオ更 ン就換樹脂はすべて水散イオン形に変換され。The aniocarbonate converted to carbonate ion form in the first step All of the ion-substituted resins are converted to the water-dispersed ionic form.
塩素イオン形のアニオン交換樹脂も一部は水酸イオン形
に変換されるので、塩素イオン形のアニオン交換樹脂の
残存量を極めて少量にすることができ、その残存量の変
動幅も少なくなる。Since a part of the anion exchange resin in the chloride ion form is also converted into the hydroxide ion form, the remaining amount of the chloride ion form anion exchange resin can be made extremely small, and the fluctuation range of the remaining amount is also reduced.
一方、ナトリウム形のカチオン交換樹脂はすべて水素イ
オン形に変換される。従って、この第3工程終了時には
ナトリウム形カチオン交換樹脂と塩素イオン形アニオン
交換樹脂の残存量の比率はきわめて安定したものになっ
ている。On the other hand, all cation exchange resins in the sodium form are converted to the hydrogen ion form. Therefore, at the end of the third step, the ratio of the remaining amounts of the sodium-type cation exchange resin and the chloride-type anion exchange resin is extremely stable.
この第3工程終了後第ダニ程を行なうが、第グ工程に先
豆ち必要に応じて本体l内の各樹脂層を洗浄してもよい
。洗浄は例えば、原水導入管コおよび処理水流出管/3
より被処理水または脱塩水を導入して再生廃液排出管ノ
コより排出することによりおこなえばよい。次いで、処
理水流出管/3より別圧空気を導入して、再生されたア
ニオン交換樹脂層10及びカチオン交換樹脂層l/を混
合して混合樹脂床を形成させる第ダニ程を行う。After the completion of the third step, a third step is performed, but each resin layer in the main body 1 may be cleaned as necessary prior to the third step. For example, cleaning can be done at raw water inlet pipe/3 and treated water outlet pipe/3.
This can be carried out by introducing water to be treated or desalinated water and discharging it from a recycled waste liquid discharge pipe saw. Next, separately pressurized air is introduced from the treated water outflow pipe /3 to perform a second ticking step in which the regenerated anion exchange resin layer 10 and cation exchange resin layer l/ are mixed to form a mixed resin bed.
混合樹脂床が形成されると、再度被処理水の通液に供さ
れろ。Once the mixed resin bed is formed, it is again subjected to passage of water to be treated.
第1図は、説明の都合上塔内再生式混床式イオン交換塔
について示したが1本発明が塔外再生式温床式イオン交
換塔にも採用できることはもちろんである。Although FIG. 1 shows an internal regeneration type mixed bed type ion exchange column for convenience of explanation, it goes without saying that the present invention can also be applied to an external regeneration type hot bed type ion exchange column.
本発明は従来の温床式イオン交換塔に炭酸ナトリウム溶
液注入装置を付設するだけで実施することが出来、従来
の再生方法では困難であったナトリウム形カチオン交換
樹脂と塩素イオン形アニオン交換樹脂の存在量比を極め
て安定したものにすることができるので、処理水中のN
a/Clモル比を一定の値に保持することができる。The present invention can be carried out by simply attaching a sodium carbonate solution injection device to a conventional hotbed type ion exchange tower, and the presence of sodium type cation exchange resin and chloride type anion exchange resin, which was difficult with conventional regeneration methods. Since the quantity ratio can be kept extremely stable, the amount of N in the treated water can be kept very stable.
The a/Cl molar ratio can be kept constant.
実施例 直径go顛、中間コレクターを底面よりrtr。Example Rtr the intermediate collector from the bottom.
龍の位置に設けたカラムに、アニオン交換樹脂ダイヤイ
オン(三菱化成工業株式会社登録商標)BAIOAとカ
チオン交換樹脂ダイヤイオン(同上)SK/Bを各々l
lずつ充填した後。Into the column installed at the dragon position, add 1 l each of anion exchange resin Diamond Ion (registered trademark of Mitsubishi Chemical Industries, Ltd.) BAIOA and cation exchange resin Diamond Ion (same as above) SK/B.
After filling each l.
両樹脂を混合して温床式イオン交換塔を形成させた。こ
の混床式イオン交換塔に/ OpI)m a8caeo
、の塩化ナトリウムio、oootを流速s o m/
hrで通液抜本発明法による再生テストを行なった。Both resins were mixed to form a hot bed ion exchange column. In this mixed bed ion exchange column / OpI) m a8caeo
, sodium chloride io, ooot at flow rate s o m/
A regeneration test was conducted using the method of the present invention by draining the liquid for 30 minutes.
(テストl)
上記混床式イオン交換塔に、5%(重量)炭酸ナトリウ
ム溶液を1oofi−炭酸ナト1jつ4/l−混合樹脂
、流速5rrL/hrで接触させた。(Test 1) A 5% (weight) sodium carbonate solution was brought into contact with the above mixed bed ion exchange tower at a flow rate of 5 rrL/hr with 1 oofi-1j sodium carbonate/4/l-mixed resin.
次いで、カラム底面より逆洗水を流速10yl/hrで
73分間導入して8A10AとSK/Hの膨張分離層を
形成させた後、逆洗水の導入を停止して、上層をBk1
0k、下層を8に/Bに成層分離した。Next, backwash water was introduced from the bottom of the column at a flow rate of 10 yl/hr for 73 minutes to form an expanded separation layer of 8A10A and SK/H, and then the introduction of backwash water was stopped and the upper layer was transferred to Bk1.
0k, the lower layer was stratified into 8/B.
成層分離した8A10Aには17%(重り苛’a7−タ
lR液/ 001 ”0H/l−8A10A ヲ流速
a rrL/ hrでカラム頂部より注入し接触させ再
生した。The stratified and separated 8A10A was injected from the top of the column at a flow rate of arrL/hr to contact and regenerate 17% (weight 1R solution).
同時に 8に/Bには70%(X蛍)塩酸浴9 / !
; 09−H01/1−IK/Bを流速II @ /
hrでカラム底面より注入し接触させ再生した。At the same time, 8/B has a 70% (X firefly) hydrochloric acid bath 9/!
; 09-H01/1-IK/B to flow rate II @ /
It was injected from the bottom of the column for 1 hour and brought into contact for regeneration.
再生廃液はいずれも中間コレクターより排出させた。All recycled waste liquids were discharged from intermediate collectors.
次いで1両イオン交換樹脂を脱塩水で洗浄した後カラム
の底部より前圧空気を注入して両イオン交換横脂を混合
して混合樹脂床を形成させた。Next, both ion exchange resins were washed with demineralized water, and then prepressure air was injected from the bottom of the column to mix both ion exchange resins to form a mixed resin bed.
この混合樹脂床に/ Oppm a8 (3aOO3の
塩化ナトリウム溶液コ0001を流速jOrrL/hr
で通水し、その時の処理水のNa/Clモル比を測定し
た。A sodium chloride solution of /Oppm a8 (3aOO3) was added to this mixed resin bed at a flow rate of jOrrL/hr.
The Na/Cl molar ratio of the treated water was measured.
(テスト2)
テストlが終了後の混合樹脂床をテスト/と同じ条件で
再生後、 / Oppm ali CaO03の塩化ナ
トリ’)ム溶@170001を流速、y□@/hrで通
水し、その時の処理水のNa/Clモル比を測定した。(Test 2) After the mixed resin bed after test l was regenerated under the same conditions as test /, / Oppm ali CaO03 sodium chloride solution @170001 was passed through at a flow rate of y□@/hr. The Na/Cl molar ratio of the treated water was measured.
(テスト3)
テストコが終了後の混合樹脂床をテスト/と同じ条件で
再生後、lQppma日Ca C03の塩化ナトリウム
溶液t、、ooolを流速j Q 7Fl/ hrで通
水し、その時の処理水のN a / 01モル比を測定
した。(Test 3) Testco regenerated the mixed resin bed after completion under the same conditions as in the test/, and then passed through a sodium chloride solution of lQppma day Ca C03, t,,oool at a flow rate of j Q 7Fl/hr, and the treated water at that time. The Na/01 molar ratio of was measured.
テストl、テストコ、及びテスト3の結果は第1表のよ
うであった。The results of Test 1, Testco, and Test 3 were as shown in Table 1.
比4+5!例 本発明法と従来法との比較試験を行なった。Ratio 4+5! example A comparative test was conducted between the method of the present invention and the conventional method.
実施例における混合樹脂床の再生条件において、炭酸ナ
トリウム溶液を接触させる工程を削除し。In the regeneration conditions of the mixed resin bed in the example, the step of contacting the sodium carbonate solution was deleted.
その他の条件は実施gA+と同一条件で行ない、その時
のN a/C1モル比を測定した。結果は第1表のよう
であった。Other conditions were the same as in Example gA+, and the Na/C1 molar ratio was measured. The results were as shown in Table 1.
第1表
尚、ナトリウムイオンの漏出量は、実施例及び比較例い
ずれの場合も0. / ppba8 Ha前後であった
。Table 1 Note that the leakage amount of sodium ions is 0.0 in both Examples and Comparative Examples. / ppba8 Ha.
8g/表の結果より、実施例に於いては塩素イオンの漏
出量がきわめて安定しており、Na/C1モル比の安定
した処理水が得られることがわかる。From the results of 8g/table, it can be seen that in the examples, the leakage amount of chlorine ions is extremely stable, and treated water with a stable Na/C1 molar ratio can be obtained.
第1図は1本発明の実施態様を説明するための混床式イ
オン交換塔の装置概略図である。FIG. 1 is a schematic diagram of a mixed bed ion exchange column for explaining one embodiment of the present invention.
Claims (1)
脂床を形成してなる混床式イオン交換塔の再生に際し、
該混合樹脂床に炭酸ナトリウム水溶液を接触させる第1
工程、該イオン交換塔の底部より逆洗水を導入して、ア
ニオン交換樹脂とカチオン交換樹脂の分離膨脹層を形成
させた後、逆洗水の導入を停止して上層をアニオン交換
樹脂、下層をカチオン交換樹脂に成層分離する第2工程
、成層分離した上層のアニオン交換樹脂には苛性ソーダ
、下層のカチオン交換樹脂には塩酸を接触させ再生する
第3工程、イオン交換塔の底部より加圧空気を導入して
各々のイオン交換樹脂を混合して混合樹脂床を形成させ
る第4工程を順次行うことを特徴とする混床式イオン交
換塔の再生方法。(1) When regenerating a mixed bed type ion exchange tower formed by forming a mixed resin bed of an anion exchange resin and a cation exchange resin,
A first step of contacting the mixed resin bed with an aqueous sodium carbonate solution.
In the process, backwash water is introduced from the bottom of the ion exchange tower to form a separated expanded layer of anion exchange resin and cation exchange resin, and then the introduction of backwash water is stopped and the upper layer is replaced with an anion exchange resin and the lower layer is The second step is stratified separation of the cation exchange resin into cation exchange resins, the third step is to regenerate the stratified upper layer anion exchange resin by contacting it with caustic soda and the lower layer cation exchange resin with hydrochloric acid, pressurized air is added to the bottom of the ion exchange tower. A method for regenerating a mixed bed type ion exchange column, comprising sequentially performing a fourth step of introducing a mixture of ion exchange resins and mixing each ion exchange resin to form a mixed resin bed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61112347A JPS62269756A (en) | 1986-05-16 | 1986-05-16 | Method for regenerating mixed-bed type ion-exchange tower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61112347A JPS62269756A (en) | 1986-05-16 | 1986-05-16 | Method for regenerating mixed-bed type ion-exchange tower |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62269756A true JPS62269756A (en) | 1987-11-24 |
Family
ID=14584414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61112347A Pending JPS62269756A (en) | 1986-05-16 | 1986-05-16 | Method for regenerating mixed-bed type ion-exchange tower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62269756A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102489346A (en) * | 2011-11-16 | 2012-06-13 | 兰州陇能电力科技有限公司 | Method for separation and regeneration of anion and cation resin in exhausted mixed bed |
JP2014198287A (en) * | 2013-03-29 | 2014-10-23 | 栗田工業株式会社 | Method of separating and reproducing mixed bed ion exchange resin |
-
1986
- 1986-05-16 JP JP61112347A patent/JPS62269756A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102489346A (en) * | 2011-11-16 | 2012-06-13 | 兰州陇能电力科技有限公司 | Method for separation and regeneration of anion and cation resin in exhausted mixed bed |
JP2014198287A (en) * | 2013-03-29 | 2014-10-23 | 栗田工業株式会社 | Method of separating and reproducing mixed bed ion exchange resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1442689A1 (en) | Process for the treatment of liquids with ion exchangers | |
US2267841A (en) | Method of and apparatus for treating water | |
US4564455A (en) | Three component resin system and method for purifying aqueous solutions | |
US2841550A (en) | Process of operating a demineralizing installation | |
JPS62269756A (en) | Method for regenerating mixed-bed type ion-exchange tower | |
US2248055A (en) | Apparatus and method for carrying out chemical reactions | |
JP4346088B2 (en) | Ion-exchange resin drug regeneration method and apparatus | |
JP2007105558A (en) | Method and apparatus for demineralizing recovered water | |
US3975267A (en) | Liquid treating system | |
US4163717A (en) | Removal of silica from mixed bed demineralizer | |
JP3837762B2 (en) | Ion exchange resin separation and regeneration method | |
JP3963025B2 (en) | Ion exchange resin separation and regeneration method | |
JP2940651B2 (en) | Pure water production equipment | |
JPH0363439B2 (en) | ||
JPS5841913B2 (en) | Condensate treatment method | |
JPS6344104Y2 (en) | ||
JPH04298245A (en) | Method for regenerating cation exchange resin of mixed bed type desalting device | |
Calise et al. | Silica Removal by a Practical Ion Exchange Process | |
JP2005296748A (en) | Condensate demineralizer and its regeneration method | |
JPH05317729A (en) | Method for regenerating of ion-exchange resin and plant therefor | |
CN117228866A (en) | Desalination treatment method combining pretreatment, reverse osmosis and ion exchange system | |
JPS6126423B2 (en) | ||
JPS5820312B2 (en) | Method for preventing leakage of harmful ions in mixed bed ion exchange equipment | |
JPH04367743A (en) | Regeneration of cation exchange resin of mixed bed type desalting apparatus | |
JPS5966354A (en) | Regeneration of ion-exchange resin |