JPS62266447A - Method and apparatus for detecting foreign matter in liquid within container - Google Patents

Method and apparatus for detecting foreign matter in liquid within container

Info

Publication number
JPS62266447A
JPS62266447A JP11039186A JP11039186A JPS62266447A JP S62266447 A JPS62266447 A JP S62266447A JP 11039186 A JP11039186 A JP 11039186A JP 11039186 A JP11039186 A JP 11039186A JP S62266447 A JPS62266447 A JP S62266447A
Authority
JP
Japan
Prior art keywords
liquid
light
container
laser beam
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11039186A
Other languages
Japanese (ja)
Inventor
Toshiyasu Ebara
江原 利泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA PREF GOV
Eisai Co Ltd
Osaka Prefecture
Original Assignee
OSAKA PREF GOV
Eisai Co Ltd
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA PREF GOV, Eisai Co Ltd, Osaka Prefecture filed Critical OSAKA PREF GOV
Priority to JP11039186A priority Critical patent/JPS62266447A/en
Publication of JPS62266447A publication Critical patent/JPS62266447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To capture a foreign matter with a high accuracy, by receiving the scattered light of a laser beam from a foreign matter in a liquid with a photodetector provided below the liquid surface on the side not in the direction of irradiation to detect the foreign matter depending on changes in the quantity of light received. CONSTITUTION:A laser beam emitted from a laser beam source 2 is expanded in one way with a cylindrical lens 3 and made to scan vertically through a scanning means 4 as rotating polyhedron 4 to irradiate a fixed area of a transparent container 1 containing liquid. The laser beam which is incident into the container 1 and scattered from a foreign matter in the liquid is made incident into a light receiver 5 provided slantly below the liquid surface on the side not in the direction of irradiation through a condenser lens 8. Then, a signal corresponding to changes in the quantity of light received from the light receiver 5 is sent to a foreign matter detection circuit and then, applied to a circuit for selecting reject containers. Thus, a foreign matter floating in the liquid can be captured with a high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体が充填された透明または半透明容器の液体
中に混在する異物であって、特に液面と液面付近の液中
に浮遊する異物を検出する方法および装置に関するもの
である。
Detailed Description of the Invention (Industrial Application Field) The present invention deals with foreign matter mixed in the liquid of a transparent or translucent container filled with liquid, and particularly foreign matter floating in the liquid at and near the liquid surface. The present invention relates to a method and apparatus for detecting foreign substances.

(従来の技術) 従来アンプルを高速回転後急停止させ、内容液と共に浮
遊回転状態を持続する異物に光線を照射し、液体中を透
過した光束あるいは反射した光束を光検出器で受光し、
その受光量の減少の程度により異物のを無を判別する方
法が特開昭55−119049号公報等で知られている
。そして、その光は一般の光源を用いている。
(Prior art) Conventionally, an ampoule is rotated at high speed and then suddenly stopped, a light beam is irradiated onto a foreign object that continues to float and rotate with the liquid inside, and a photodetector receives the light beam that has passed through the liquid or the light beam that has been reflected.
A method of determining whether a foreign object is present or not based on the degree of decrease in the amount of received light is known from Japanese Patent Application Laid-Open No. 55-119049. And the light uses a general light source.

(発明が解決しようとする問題点) 以上のような方法を用いて容器全域を検査しようとする
と受光面が大きくなり、大きな受光面からの変化量は小
さな異物の場合のような小さい変動ではとらえにくい。
(Problem to be Solved by the Invention) When attempting to inspect the entire container using the method described above, the light-receiving surface becomes large, and the amount of change from the large light-receiving surface cannot be detected by small fluctuations such as in the case of a small foreign object. Hateful.

そこで受光面を小さくすると、容器全域をとらえるため
には小さな受光面を多数設けるか、あるいはゴミが動い
て運よく受光部に影を写してくれるようにする必要があ
り、前者の場合は機械的に複雑になり、後者は検出効率
が悪い欠点がある。
Therefore, if the light-receiving surface is made smaller, in order to capture the entire area of the container, it is necessary to install many small light-receiving surfaces, or to allow the dust to move and cast a shadow on the light-receiving surface.In the former case, mechanical The latter has the drawback of poor detection efficiency.

また、以上のような従来の検査方法は、ガラス片や固形
異物などの重い異物は回転停止後容器の底に沈む前の浮
遊状態のうちに検知することができるが、液面に浮遊す
る極めて軽い異物例えば合成樹脂の包材から発生したプ
ラスチック片などは液中に移動せずそのまま液面に浮遊
する場合が多い。
In addition, with the conventional inspection method described above, heavy foreign objects such as glass pieces and solid foreign objects can be detected while they are floating before they sink to the bottom of the container after rotation has stopped, but extremely heavy foreign objects floating on the liquid surface can be detected. Light foreign objects, such as plastic pieces generated from synthetic resin packaging materials, often do not move into the liquid and float on the liquid surface.

しかるに、従来法の透過光を用いる検査方法では液面部
分は透過光量が少ないので暗くなってしまい、一方の反
射光を測定する方法では逆に乱反射しすぎてしまう等い
ずれも液面の影響が強く現れてしまうため、液面を検査
対象からはずさなくてはならない。したがって、液面に
浮遊している異物を自動的に機械で検査する方法がなか
った。故に、人目による目視検査によってかろうじてチ
ェックが行われているが、異物の見落としや個人差によ
る検出限界羞が生じ、効率および精度のきわめて悪いも
のである。
However, in the conventional inspection method that uses transmitted light, the liquid surface area becomes dark because the amount of transmitted light is small, and in the method that measures reflected light, on the other hand, there is too much diffuse reflection, both of which are affected by the liquid level. Because it appears strongly, the liquid level must be excluded from the inspection target. Therefore, there was no method for automatically inspecting foreign objects floating on the liquid surface using a machine. Therefore, although checks are barely carried out by visual inspection by humans, the detection limit is subject to oversight due to foreign objects being overlooked and individual differences, resulting in extremely poor efficiency and accuracy.

(問題点を解決するための手段) そこで、従来の欠点を改善する目的で液体が充填された
透明または半透明容器に対してレーザー光線を少なくと
も一方向にスキャニングして一定面積域を照射し、該照
射光の散乱光を受光してその受光量の変化を測定するこ
とにより容器内の液体中の異物を検出することを試みた
ところ、感度(S/N比)がよく、検知時間を短縮する
ことができたが、依然として液面および液面下周辺に浮
遊する異物を検出することができなかった。
(Means for solving the problem) Therefore, in order to improve the conventional drawbacks, a transparent or translucent container filled with liquid is scanned with a laser beam in at least one direction to irradiate a certain area. An attempt was made to detect foreign substances in liquid in a container by receiving scattered light from irradiation light and measuring changes in the amount of received light.The results showed that the sensitivity (S/N ratio) was good and the detection time was shortened. However, it was still not possible to detect foreign objects floating around the liquid surface or below the liquid surface.

したがって本発明の技術的課題は、液面および液面下周
辺に浮遊する異物を精度良く検出できる検出方法とその
装置を提供することを目的とするもので、この技術的課
題を解決する本発明の技術的手段は、液体が充填された
透明または半透明容器中の液面に対してレーザー光線を
斜め下方より照射し、そのレーザー光線による液体中の
異物および液面の浮遊性異物からの散乱光を照射方向と
異なる側における液面より斜め下方に設けられた光ネ愛
知器で受光して、その受光量の変化より容器内の液体中
の異物を検出することを特徴とするものであり、その方
法の実施に直接使用する装置として、液体が充填された
透明または半透明容器中の液面に対して斜め下方より照
射することのできるレーザー光線照射装置と、該装置の
レーザー光線が照射された液体中の異物および液面の浮
遊性異物からの散乱光を、受光部で受光する前記照射方
向と異なる側における液面より斜め下方に設けられた受
光部の受光量の変化により異物を検知することのできる
光検知装置とで構成された容器内の液体中の異物検出装
置である。。
Therefore, the technical problem of the present invention is to provide a detection method and device that can accurately detect foreign objects floating on the liquid surface and around the liquid surface, and the present invention solves this technical problem. The technical method is to irradiate the liquid surface of a transparent or translucent container filled with liquid with a laser beam from diagonally downward, and to detect the scattered light from foreign objects in the liquid and floating foreign objects on the liquid surface. It is characterized by detecting foreign matter in the liquid in the container by detecting the light by a light beam detector installed diagonally below the liquid level on the side different from the irradiation direction, and by detecting the change in the amount of the received light. Devices directly used to carry out the method include a laser beam irradiation device that can irradiate the liquid surface in a transparent or translucent container filled with liquid from obliquely downward; Scattered light from foreign objects and floating foreign objects on the liquid surface is received by a light receiving section.The foreign object is detected by a change in the amount of light received by a light receiving section provided diagonally below the liquid surface on a side different from the irradiation direction. This is a device for detecting foreign matter in a liquid in a container, which is composed of a photodetector that can detect foreign matter in a liquid inside a container. .

(発明の効果) この技術的手段によれば次のような効果を奏する。(Effect of the invention) This technical means provides the following effects.

すなわち、本発明は指先性または集光性のあるレーザー
光を用いて、その散乱光を受光するので、 (1)微小の異物の場合でも、光を細くシャープなビー
ムにすることができるレーザー光線を用いることによっ
て異物からの光反射を強くして極めて感度よく捕捉する
ことができる。
In other words, the present invention uses a fingertip or condensing laser beam and receives the scattered light. By using this method, it is possible to strengthen the light reflection from foreign objects and capture them with extremely high sensitivity.

これは光を異物に照射し、その散乱光(反射光)を受け
る場合、照射光をできるだけしぼって小さいスポットで
照射する方がスポット径に対する異物の径の比が大きく
なり異物からの散乱光が大きくなって検出感度が上がる
からである。
This is because when light is irradiated onto a foreign object and the scattered light (reflected light) is received, it is better to narrow down the irradiated light as much as possible and irradiate it with a small spot, because the ratio of the diameter of the foreign object to the spot diameter will be larger, and the scattered light from the foreign object will be reduced. This is because the detection sensitivity increases as the size increases.

(2)  レーザー光を用いても透過光量の変化を検出
する方式の場合は、全体に受ける光に対してのゴミの投
映像による減少量をみるのであるから小さな異物では変
化をとらえることが難しいが、散乱光を受光する場合は
、異物がない時は散乱光はなく、異物がある時だけ散乱
光が受光器に入るため、小さな異物に対しても受光器の
感度を上げることができ、透過方式に比べて格段に検出
感度を高くすることができる。
(2) In the case of a method that uses laser light to detect changes in the amount of transmitted light, it is difficult to detect changes in the case of small foreign objects because it looks at the amount of reduction due to the projected image of dust compared to the light received as a whole. However, when receiving scattered light, there is no scattered light when there is no foreign object, and the scattered light enters the receiver only when there is a foreign object, so the sensitivity of the receiver can be increased even to small foreign objects. Detection sensitivity can be significantly increased compared to the transmission method.

(3)  レーザー光は輝度が高く、細いビームに集束
することができるため、容器に光が出入りする時の容器
の影響をうけにくい。
(3) Laser light has high brightness and can be focused into a narrow beam, so it is less affected by the container when the light goes in and out of the container.

普通の光の場合、光の出入口の瓶の影響で減光してしま
う。
In the case of normal light, the light will be diminished by the influence of the bottle at the entrance and exit of the light.

(4)  レーザー光のビームを垂直、水平にスキャニ
ングして立体的に幅広い面積にビーム照射ができるから
動きの悪い異物も検知することができ、これによって検
出感度を高めることができるの他、検査対象全域に極め
て早く細いビームを走査することができるため、検査処
理時間を短縮し、効率化をはかることができる。
(4) The laser beam can be scanned vertically and horizontally to irradiate a wide three-dimensional area, making it possible to detect even slow-moving foreign objects.This not only increases detection sensitivity but also improves inspection. Since the entire target area can be scanned with a narrow beam extremely quickly, inspection processing time can be shortened and efficiency can be improved.

(5)シたがって、場合によっては、従来のように容器
を回転して異物を受光面のある中心部に集めることは必
ずしも必要としない。
(5) Therefore, in some cases, it is not necessarily necessary to rotate the container to collect the foreign matter at the center of the light-receiving surface as in the conventional case.

このような利点の上に、本発明では液面の斜め下方より
レーザー光を照射させ、次いでその散乱光を液面の斜め
下方から受光することによって液面のゆれによる液面お
よび容器からの影響を受けず、液面および液面下周辺の
異物を精度よく検知することができる効果を有する。
In addition to these advantages, in the present invention, the laser beam is irradiated from diagonally below the liquid surface, and the scattered light is then received from diagonally below the liquid surface, thereby eliminating the influence of the liquid surface and the container due to fluctuations in the liquid surface. It has the effect of being able to accurately detect foreign objects on and around the liquid surface without being affected by the liquid.

以上の如く、斜め下方の入射角度、出射角度に入射、出
射させることができるのは集束性のあるレーザー光を用
いたことに外ならない。
As described above, it is only by using a focused laser beam that it is possible to cause the light to enter and exit at obliquely downward angles of incidence and emission.

(実施例) 以下、図面に示す実施例について説明する。(Example) The embodiments shown in the drawings will be described below.

第1図のものは従来の欠点を改善すべく試みた例であっ
て、液体が充填された透明または半透明容器に対してレ
ーザー光線を一方向にスキャニングして一定面積域を照
射し、該照射光の散乱光を受光してその受光量の変化を
測定した例である。
The one in Figure 1 is an example of an attempt to improve the conventional drawbacks, in which a transparent or translucent container filled with liquid is scanned with a laser beam in one direction to irradiate a fixed area. This is an example in which scattered light is received and changes in the amount of received light are measured.

第1図において(1)は液体の入った透明または半透明
の被検査体である容器であって、レーザー光源(2)か
らレーザー光を発振し、容器(1)に照射する。
In FIG. 1, (1) is a transparent or translucent container to be inspected containing a liquid, and a laser light source (2) oscillates a laser beam and irradiates the container (1).

レーザー光源(2)から発振されたレーザー光は、シリ
ンドリカルレンズ(3)で一方向に広げられ、次の回転
多面体(4)のスキャニング手段を経て垂直方向にスキ
ャニングして一定面積域を照射する。
The laser light emitted from the laser light source (2) is spread in one direction by a cylindrical lens (3), and then scanned in the vertical direction through scanning means of a rotating polyhedron (4) to irradiate a fixed area.

このようにして入射したレーザー光を受光する受兇器(
5)は、レーザー光の入射する方向に対し直交方向の容
器の側面に対して設けられる。
A receiver (
5) is provided on the side surface of the container in the direction perpendicular to the direction in which the laser beam is incident.

受光器(5)と容器(1)との間には集光レンズ(8)
が設けられる。
A condenser lens (8) is located between the light receiver (5) and the container (1).
will be provided.

受光器(5)からの受光量の変化に応じた信号は図示し
ない異物検出回路に送られ、その信号は不良容器を選別
する回路に印加される。
A signal corresponding to a change in the amount of light received from the light receiver (5) is sent to a foreign object detection circuit (not shown), and the signal is applied to a circuit for selecting defective containers.

以上の如く、指光性または集光性のあるレーザー光を用
いたその散乱光を受光すると、小さい異物の場合でも細
くシャープなレーザービームがとらえるので極めて感度
がよい。
As described above, when the scattered light is received using a laser beam with a pointing or condensing property, even a small foreign object can be captured by a narrow and sharp laser beam, resulting in extremely high sensitivity.

また、以上のような方法は透過光でなく散乱光でみるの
で、小さな異物でも細いレーザービームが乱反射して受
光器に入るため、受光器の感度を上げることができるの
で容易にとらえることができる。
In addition, since the method described above uses scattered light rather than transmitted light, even small foreign objects can be easily detected because the narrow laser beam is diffusely reflected and enters the receiver, increasing the sensitivity of the receiver. .

更にまた、レーザー光は容器に出入りする時容器の影響
を受けに<<、又ビームを垂直水平に動かすことによっ
て容器検査対象全域を短時間でみることができる。
Furthermore, the laser beam is not affected by the container when it enters or exits the container, and by moving the beam vertically and horizontally, the entire area to be inspected on the container can be seen in a short time.

しかしながら、液面に浮遊する極めて軽い異物、例えば
合成樹脂の包材から発生したプラスチック片などが液面
に浮遊する場合が多いが、以上のような方法でも液面の
ゆれや容器の影響をうけて、以上のような異物を検出す
ることができなかった。
However, extremely light foreign objects, such as plastic pieces from synthetic resin packaging materials, often float on the liquid surface, but even with the above methods, they are susceptible to fluctuations in the liquid level and the influence of the container. Therefore, the above foreign matter could not be detected.

そこで本発明では、以下に示すような方法及び装置を発
明したのである。
Therefore, in the present invention, a method and apparatus as shown below have been invented.

すなわち、液面の斜め下方よりレーザー光を照射させ、
次いでその散乱光を液面の斜め下方から受光することに
よって液面のゆれによる液面および容器からの影ツを受
けず、液面および液面下周辺の異物を精度よく検知する
ことができるに到ったのである。
In other words, a laser beam is irradiated from diagonally below the liquid surface,
Then, by receiving the scattered light from diagonally below the liquid surface, foreign objects on the liquid surface and around the liquid surface can be detected with high accuracy without being affected by shadows from the liquid surface and the container due to fluctuations in the liquid surface. It has arrived.

第2図において(1)は液体の入った透明又は半透明の
被検査体である容器であって、検査の際従来公知のもの
と同様に回転させた後、急停止させて浮遊性異物を容器
の中央部に移動させるものである。(これは、場合によ
っては必ずしも必要ではない。) そして液面がある程度落ち着いた後、レーザー光源(2
)からレーザー光を発振し、容器(1)に照射する。
In Fig. 2, (1) is a transparent or translucent container containing a liquid to be inspected, which is rotated in the same way as conventionally known containers during inspection, and then suddenly stopped to remove floating foreign matter. It is moved to the center of the container. (This may not be necessary in some cases.) Then, after the liquid level has settled down to a certain extent, the laser light source (2
) and irradiates the container (1) with laser light.

レーザー光源(2)から発振されたレーザー光はシリン
ドリカルレンズ(3)を通して容器(1)の外表面の垂
直方向に向かって一定幅(a)に扇状に広げられる。
Laser light emitted from a laser light source (2) is fanned out to a constant width (a) in the vertical direction of the outer surface of the container (1) through a cylindrical lens (3).

この扇状に広げたレーザー照射光を回転ガラス柱(4)
等のスキャニング手段によって垂直方向に直交する水平
方向に一定幅(b)にスキャニングし、これによってレ
ーザー光線の照射される領域を広げる。
The rotating glass column (4)
The laser beam is scanned to a certain width (b) in the horizontal direction orthogonal to the vertical direction by a scanning means such as the above, thereby expanding the area irradiated with the laser beam.

このようにして広げられスキャニングされた光線は容器
(1)の液面(x)に対し斜め下方、すなわちレーザー
光線と液面(X)とのなす入射角度<c>は全反射の条
件を満たず範囲で入射され、具体的にはOoから約40
°の範囲内で入射されるよう照射する。
The light beam spread out and scanned in this way is diagonally downward with respect to the liquid level (x) of the container (1), that is, the incident angle <c> between the laser beam and the liquid surface (X) does not satisfy the condition for total reflection. It is incident within a range, specifically about 40 from Oo.
Irradiate so that it is incident within the range of

第2図に示す実施例の場合、500m1のプラスチック
容器(1)に対し、レーザー光源(2)に4mWのHe
−Neガスレーザーを用い、シリンドリカルレンズ(3
)によって2011の一定幅(a)の垂直方向に扇状拡
大し、更に回転ガラス柱(4)により16mmの一定幅
(b)にスキャニングしたレーザー光を入射角度(C)
15°にて照射した。
In the case of the example shown in Fig. 2, for a 500 m1 plastic container (1), 4 mW of He was applied to the laser light source (2).
- Using a Ne gas laser, a cylindrical lens (3
), the laser beam is expanded vertically to a constant width (a) of 2011, and then scanned to a constant width (b) of 16 mm by a rotating glass column (4) at an incident angle (C).
Irradiation was performed at 15°.

このように入射したレーザー光を受光する受光器(5)
は、前記レーザー光の入射する方向に対し、直交方向の
容器の側面に対して設けられ、かつ液面(x)に対して
斜め下方向の出射角度(d)に配置される。
A light receiver (5) that receives the laser light incident in this way
is provided on the side surface of the container in a direction perpendicular to the direction in which the laser beam is incident, and is arranged at an oblique downward emission angle (d) with respect to the liquid level (x).

第2図の実施例の場合、出射角度(d)は受光器の開口
度が広いため許容範囲を広げて30゛が選択された。
In the case of the embodiment shown in FIG. 2, the output angle (d) was selected to be 30°, widening the allowable range since the aperture of the light receiver is wide.

受光器(5)と容器(1)との間にはレンズ(6)およ
び視野制限マスク(7)、集光レンズ(8)が設けられ
、レンズ(6)は焦点距離(50龍)を用いた。
A lens (6), a field-limiting mask (7), and a condensing lens (8) are provided between the light receiver (5) and the container (1), and the lens (6) has a focal length of 50 mm. there was.

視野制限マスク(7)は容器の外壁で生じる散乱光のk
l) 習を防禦してS/Nを改善する作用をなすもので
、実施例のものではカメラのフィルム面のマスク面を利
用した。
The field-of-view limiting mask (7) reduces the amount of scattered light generated on the outer wall of the container.
l) It functions to improve the S/N ratio by preventing noise, and in the example, the mask surface of the film surface of the camera was used.

又、マスク(7)により制限された異物の像を集光レン
ズ(8)で集光し、受光器(5)の表面に設けられた干
渉フィルター(9)を通して受光器に導くようにした。
Further, the image of the foreign matter restricted by the mask (7) is focused by a condensing lens (8) and guided to the light receiver through an interference filter (9) provided on the surface of the light receiver (5).

この際、レーザー光はその単色性によって幾分間るい室
内においても受光できる。
At this time, the laser beam can be received even in a somewhat dim room due to its monochromatic nature.

受光器(5)は例えば光電子増倍管(ホトマル)(16
)等が使用される。
The photoreceiver (5) is, for example, a photomultiplier tube (16).
) etc. are used.

受光部(5)からの受光量の変化に応じた信号が異物検
出回路(17)に送られ、その信号は不良容器を選別す
る回路(18)に印加される。
A signal corresponding to a change in the amount of light received from the light receiving section (5) is sent to a foreign object detection circuit (17), and the signal is applied to a circuit (18) for sorting out defective containers.

レーザー光の入射角度(C)は前記したように全反射の
条件を満たず範囲であるOoから約40°で入射させる
ことが必要である。
As described above, the incident angle (C) of the laser beam needs to be about 40° from Oo, which is a range that does not satisfy the conditions for total reflection.

これは、液面の上方向からの照射では液面による光の屈
折によって散乱光が分散することや、容器内壁上方に付
着した水滴による散乱光の影響によって精密な測定がそ
こなわれるためである。
This is because when irradiating from above the liquid surface, the scattered light is dispersed due to the refraction of the light by the liquid surface, and accurate measurements are impaired due to the influence of scattered light from water droplets adhering to the upper inner wall of the container. .

そこで、以上のようなマイナス要因をうけない斜め下方
より入射する角度が用いられるのである。
Therefore, an angle of incidence from diagonally downward, which is not subject to the above-mentioned negative factors, is used.

又、レーザー光はシリンドリカルレンズ(3)等により
扇状に広げて照射し、次いで左右にスキャニングすれば
浮遊性異物の動きが少なくて検出確率が下がる場合にも
光を動かすことによって検出確率をよくし、その上検出
処理時間も短縮することができる。
In addition, by spreading the laser beam in a fan shape using a cylindrical lens (3), etc., and then scanning from side to side, the detection probability can be improved by moving the light even when the detection probability decreases due to little movement of floating foreign objects. Moreover, the detection processing time can also be shortened.

光を動かす方法は、先にスキャニングして次にシリンド
リカルレンズ等で扇状に広げる方法でもよく、あるいは
水平方向、垂直方向の両方ともにスキャニング(ラスク
ースキャニング)するなど自由である。
The method of moving the light may be one of scanning first and then spreading it out in a fan shape using a cylindrical lens or the like, or scanning both horizontally and vertically (Lascous scanning).

スキャニングの手段としては、第3図(イ)(ロ)に示
すように回転鏡(10)あるいは振動S、Q (12)
でスキャンしたレーザー光をレンズ(11)によってス
キャンして平行光にする方法であり、又第3図(ハ)は
回転ガラス柱(4)のガ・ラスの屈折現像を用いて平行
光をスキャニングするため、スキャニング幅の比較的小
さい場合(例えば1〜3cm)はレンズ等が不要で部品
の数が少なくてすむメリットがある。
As a means of scanning, as shown in Figure 3 (a) and (b), rotating mirror (10) or vibration S, Q (12) can be used.
This method uses a lens (11) to scan the laser beam and converts it into parallel light. Figure 3 (c) shows a method in which the parallel light is scanned using the refraction development of the glass of the rotating glass column (4). Therefore, when the scanning width is relatively small (for example, 1 to 3 cm), there is an advantage that a lens or the like is unnecessary and the number of parts can be reduced.

更に検出感度を向上させるには、シリンドリカルレンズ
(3)を用いて扇状に広げるかわりに、第3図(ニ)で
示すようにスキャニング手段(13)  (13°)を
2個使用し、互いにレーザー光が直交するよう組合せ、
垂直方法および水平方向にスキャニング操作すれば、よ
り感度(S/N比)が上がり、小さな異物の検出を可能
にする。
In order to further improve the detection sensitivity, instead of using the cylindrical lens (3) to spread it out in a fan shape, two scanning means (13) (13°) are used as shown in Figure 3 (d), and the laser beams are aligned with each other. Combine the lights so that they cross at right angles,
Scanning operations in the vertical and horizontal directions increase the sensitivity (S/N ratio) and enable the detection of small foreign objects.

受光方向は前述したように斜め下方向からの出射角度(
d)で受光すると、斜め上方からの受光のように水面上
の容器などからの散乱光および液面下容器からの散乱光
の両方からの影響をうけることがない。
As mentioned above, the direction of light reception is determined by the angle of emission from diagonally downward (
When light is received in d), it is not affected by both the scattered light from the container above the water surface and the scattered light from the container below the liquid surface, unlike when light is received from diagonally above.

更に詳しく述べると、第4図に示すように水の屈折率を
1.33 (20℃)とした時、全反射角は41.4°
となるため、これより上方の角度で受光すれば液面上の
容器の影響を受けないですむのである。
To explain in more detail, as shown in Figure 4, when the refractive index of water is 1.33 (20°C), the total reflection angle is 41.4°.
Therefore, if the light is received at an angle above this, it will not be affected by the container above the liquid level.

しかし、受光方向と相対向する逆の方向、すなわち液面
での鏡面反射した方向からの光の影響を受けるために容
器の裏面での遮光を異色遮光& (14)等によって施
す必要がある。かかる点から、受光方向は照射方向と交
叉する方向が望ましく、出射角度(d)は全反射の範囲
に入る角度であればよい。
However, since it is affected by light from the opposite direction to the light receiving direction, that is, from the direction of specular reflection on the liquid surface, it is necessary to block light on the back side of the container by using a different color light shielding method (14) or the like. From this point of view, it is desirable that the light receiving direction is a direction that intersects the irradiation direction, and the emission angle (d) may be any angle that falls within the range of total reflection.

受光方向としては第2図のように、入射時、出射時の容
器の散乱光をマスキングして取り除いた光を集光する方
法の他に、第5図に示すような実施例があげられる。
As for the light receiving direction, in addition to the method shown in FIG. 2, in which the scattered light of the container is masked and removed at the time of incidence and exit, the light is focused, as well as the embodiment shown in FIG.

第5図(イ)は異物での散乱光と容器への人出対峙の散
乱光など、容器上部の光のすべてを集光レンズ(15)
で集光して受光する方法で、第5図(ロ)は受光器(5
)の受光面積が太きい場合、直接視野制限マスク(7)
を通った光を受光し、レンズ(15)又は光フアイバー
束を省略する方法、第5図(ハ)は直接散乱光を光フア
イバー束(19)で受光する方法である。
Figure 5 (a) shows the condenser lens (15) that collects all of the light above the container, including the light scattered by foreign objects and the light scattered by people coming into the container.
Figure 5 (b) shows the method of collecting and receiving light with a receiver (5).
) if the light-receiving area is large, use a direct field-of-view restriction mask (7)
Fig. 5(c) shows a method in which directly scattered light is received by an optical fiber bundle (19), and the lens (15) or optical fiber bundle is omitted.

以上のような方法によれば、レーザー光線の指先性また
は父束性(光を細くシャープなビームにして遠方に出射
したり、一点に集めたりする作用)の特性および単色光
(非常に狭いスペクトラムを有す)を生かして、液体中
および液面に浮遊する異物を高精度で捕捉することがで
きるの他、受光系においてマスキングすることにより容
器の外壁の散乱光による影響を除いたり、遮光板などで
容器の背後からの反射を防ぐなどノイズ成分を取り除い
て感度の優れた装置をうろことができる。
According to the methods described above, it is possible to determine the characteristics of the laser beam's fingertip or paternal properties (the effect of emitting light into a thin, sharp beam over a long distance or concentrating it on a single point) and monochromatic light (a very narrow spectrum of light). In addition to being able to capture foreign matter floating in the liquid or on the liquid surface with high precision, it is possible to remove the influence of scattered light from the outer wall of the container by masking the light receiving system, and to use light shielding plates, etc. By removing noise components such as preventing reflections from behind the container, it is possible to use a highly sensitive device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の前提となった方法の説明図、 第2図は本発明方法にかかる説明図、 m3121(イ) (ロ) (ハ) (ニ)はスキャニ
ング手段を示す説明図、 第4図は異色遮光板を用いた場合の説明図、第5図(イ
)(ロ)(ハ)は受光方法を示す説明図である。 (1)・・・・容器 (2) ・・・・レーザー光源 (3)・・・・シリンドリカルレンズ (4)・・・・回転ガラス柱 (5)・・・・受光部 (6)・・・・レンズ (7)・・・・視野制限マスク (8)・・・・集光レンズ (9)・・・ ・干渉フィルター (10)・・・・回転鏡 (11)・・・・レンズ (12) ・ ・ ・ ・ )辰動鏡 (14)・・・・異色遮光板
Figure 1 is an explanatory diagram of the method that is the premise of the method of the present invention, Figure 2 is an explanatory diagram of the method of the present invention, m3121 (a) (b) (c) (d) is an explanatory diagram showing the scanning means, FIG. 4 is an explanatory diagram when a different color light-shielding plate is used, and FIGS. 5(a), (b), and (c) are explanatory diagrams showing a light receiving method. (1)...Container (2)...Laser light source (3)...Cylindrical lens (4)...Rotating glass column (5)...Light receiving part (6)...・ ・ Lens (7) ・ ・ ・ ・ ・ ・ Visible restriction mask (8) ・ ・ ・ ・ ・ Lens lens (9) ・ ・ ・ Interference filter (10) ・ ・ ・ Rotus mirror (11) ・ ・ ・ Lens (lens (11) 12) ・ ・ ・ ・ ) Axial mirror (14) ... Unique color shielding plate

Claims (4)

【特許請求の範囲】[Claims] (1)液体が充填された透明または半透明容器中の液面
に対しレーザー光線を斜め下方より照射し、そのレーザ
ー光線による液体中の異物および液面の浮遊性異物から
の散乱光を照射方向と異なる側における液面より斜め下
方に設けられた光検知器で受光して、その受光量の変化
により容器内の液体中の異物を検出することを特徴とす
る容器内の液体中の異物検出方法。
(1) A laser beam is irradiated from diagonally downward to the liquid surface in a transparent or translucent container filled with liquid, and the laser beam scatters light from foreign objects in the liquid and floating foreign objects on the liquid surface in a direction different from the irradiation direction. A method for detecting a foreign object in a liquid in a container, the method comprising detecting a foreign object in the liquid in the container by receiving light with a photodetector provided diagonally below the liquid level on the side and detecting the foreign object in the liquid in the container based on a change in the amount of received light.
(2)レーザー光線を照射するに当たり、レーザー光源
のビームを水平あるいは垂直方向のいずれかの方向に広
げ、次いでその方向と交叉する方向にスキャニングする
ことによって液面を含む液体の一定領域にレーザー光の
ビームを照射することを特徴とする特許請求の範囲第1
項記載の容器内の液体中の異物検出方法。
(2) When irradiating a laser beam, the beam of the laser light source is spread in either the horizontal or vertical direction, and then scanned in a direction that intersects that direction, so that the laser beam is applied to a certain area of the liquid including the liquid surface. Claim 1 characterized in that the beam is irradiated.
Method for detecting foreign matter in liquid in a container as described in Section 1.
(3)レーザー光線を照射するに当たり、レーザー光源
をラスタースキャニングすることによって、液面を含む
液体の一定領域にレーザー光のビームを照射することを
特徴とする特許請求の範囲第1項記載の容器内の液体中
の異物検出方法。
(3) Inside the container according to claim 1, wherein when irradiating the laser beam, the laser beam is irradiated onto a certain area of the liquid including the liquid surface by raster scanning the laser light source. A method for detecting foreign objects in liquid.
(4)液体が充填された透明または半透明容器中の液面
に対して斜め下方より照射することのできるレーザー光
線照射装置と、該装置のレーザー光線が照射された液体
中の異物および液面の浮遊性異物からの散乱光を受光部
で受光する前記照射方向と異なる側における液面より斜
め下方に設けられた受光部の受光量の変化により異物を
検知することのできる光検知装置とで構成されたことを
特徴とする容器内の液体中の異物検出装置。
(4) A laser beam irradiation device that can irradiate the liquid surface in a transparent or translucent container filled with liquid from diagonally downward, and foreign matter in the liquid and floating on the liquid surface that is irradiated with the laser beam of the device and a light detection device capable of detecting a foreign object by a change in the amount of light received by a light receiving section provided obliquely below the liquid level on a side different from the irradiation direction, the light receiving section receiving scattered light from the foreign object. A foreign object detection device in a liquid in a container, characterized in that:
JP11039186A 1986-05-14 1986-05-14 Method and apparatus for detecting foreign matter in liquid within container Pending JPS62266447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11039186A JPS62266447A (en) 1986-05-14 1986-05-14 Method and apparatus for detecting foreign matter in liquid within container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11039186A JPS62266447A (en) 1986-05-14 1986-05-14 Method and apparatus for detecting foreign matter in liquid within container

Publications (1)

Publication Number Publication Date
JPS62266447A true JPS62266447A (en) 1987-11-19

Family

ID=14534620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11039186A Pending JPS62266447A (en) 1986-05-14 1986-05-14 Method and apparatus for detecting foreign matter in liquid within container

Country Status (1)

Country Link
JP (1) JPS62266447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1654593B1 (en) * 2003-08-11 2010-05-19 GlobalFoundries, Inc. Immersion lithography system and monitoring method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1654593B1 (en) * 2003-08-11 2010-05-19 GlobalFoundries, Inc. Immersion lithography system and monitoring method thereof

Similar Documents

Publication Publication Date Title
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US5355213A (en) Inspection system for detecting surface flaws
GB2126712A (en) Surface flaw inspection apparatus for a convex body
US8941825B2 (en) Container inspection
US4402612A (en) Apparatus for detecting foreign particles in a liquid
JPH0128336B2 (en)
US5365343A (en) Light flux determination of particle contamination
JPS6036013B2 (en) Metal surface defect inspection method
WO2004059303A1 (en) Inspection of liquid injectable products for contaminating particles
US6476910B1 (en) Light scattering apparatus and method for determining radiation exposure to plastic detectors
US5677763A (en) Optical device for measuring physical and optical characteristics of an object
CA1284875C (en) Method for detecting dripping droplet
JPS62266447A (en) Method and apparatus for detecting foreign matter in liquid within container
JP2873450B2 (en) Defect inspection device using light
EP0556655A2 (en) Device and method for testing optical elements
JPH02114158A (en) Foreign matter inspection device for container such as amplule
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JPH08304052A (en) Lens inspection method and device
JPH03115844A (en) Detection of surface defect
JPS5599049A (en) Defect detector
JPH0979967A (en) Method and apparatus for measuring floating particles in fluid
US5212393A (en) Sample cell for diffraction-scattering measurement of particle size distributions
JP2845041B2 (en) Particle counting device
JPS6388432A (en) Foreign matter detecting method and apparatus therefor
JP3406951B2 (en) Surface condition inspection device