JPS6226605B2 - - Google Patents

Info

Publication number
JPS6226605B2
JPS6226605B2 JP55103388A JP10338880A JPS6226605B2 JP S6226605 B2 JPS6226605 B2 JP S6226605B2 JP 55103388 A JP55103388 A JP 55103388A JP 10338880 A JP10338880 A JP 10338880A JP S6226605 B2 JPS6226605 B2 JP S6226605B2
Authority
JP
Japan
Prior art keywords
frequency
oscillator
phase
cesium atomic
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55103388A
Other languages
Japanese (ja)
Other versions
JPS5728431A (en
Inventor
Hiromichi Jumonji
Masami Kihara
Shigenori Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10338880A priority Critical patent/JPS5728431A/en
Publication of JPS5728431A publication Critical patent/JPS5728431A/en
Publication of JPS6226605B2 publication Critical patent/JPS6226605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference

Description

【発明の詳細な説明】 この発明はセシウム原子発振器を基準としてク
ロツクを発生する標準クロツク発生装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a standard clock generator that generates a clock based on a cesium atomic oscillator.

デイジタル通信網においては網内の諸装置を有
機的に結合するため、局間で周波数同期を確立す
る必要がある。このためには非常に安定なクロツ
ク発生源を各局に配置し、相互に独立に運転する
独立同期方式、1局または主要な局に非常に安定
なクロツク発生源を設置してその下位の局にその
クロツクを分配し、下位の局に同期装置を設置し
て周波数同期を確立する従属同期方式が提案され
ている。
In a digital communication network, in order to organically connect various devices within the network, it is necessary to establish frequency synchronization between stations. For this purpose, a very stable clock generation source is placed in each station and an independent synchronization method is used in which they operate independently of each other, or a very stable clock generation source is placed in one station or a main station and the stations below it are synchronized. A subordinate synchronization method has been proposed in which the clock is distributed and a synchronizer is installed at a lower station to establish frequency synchronization.

いずれの同期方式による場合でも基準となるク
ロツクを発生する標準クロツク発生装置が必要で
あり、かつ網間あるいは国際間でデイジタル通信
の接続を行うことを前提とすればその接続点に相
当する局では相互のクロツク周波数確度を一致さ
せることが必要になる。
Regardless of the synchronization method, a standard clock generator is required to generate a reference clock, and if digital communication is to be connected between networks or internationally, the station corresponding to the connection point is required. It is necessary to match each other's clock frequency accuracy.

このためクロツク源としては周波数確度が高い
セシウム原子発振器の導入が考えられる。その場
合セシウム原子発振器の性能を損わずまたその障
害にも対処できるような標準クロツク発生装置の
実現が重要になる。この種の標準クロツク発生装
置としてはセシウム原子発振器を2重化あるいは
3重化し、その内の一台の出力を利用する構成が
とられる。第1図にその従来の装置を示す。現
用・予備2台のセシウム原子発振器1a,1bの
出力を切替回路2a,2bによつて選択し、それ
ぞれにデイジタル処理形位相同期回路3a,3b
を従属させ、さらに後段の切替回路4a,4bに
よつて正常な出力を出力端子5a,5bに選択で
きるように2重化(現用・予備)して構成した。
Therefore, it is conceivable to introduce a cesium atomic oscillator with high frequency accuracy as a clock source. In this case, it is important to realize a standard clock generator that does not impair the performance of the cesium atomic oscillator and can cope with its failures. This type of standard clock generator has a configuration in which cesium atomic oscillators are duplicated or tripled and the output of one of them is used. FIG. 1 shows the conventional device. The outputs of the two working and standby cesium atomic oscillators 1a and 1b are selected by switching circuits 2a and 2b, and digital processing type phase synchronization circuits 3a and 3b are respectively connected.
The output terminals are made subordinate to each other, and are further configured to be duplexed (currently used and reserved) so that normal outputs can be selected to the output terminals 5a and 5b by the switching circuits 4a and 4b at the subsequent stage.

この装置のデイジタル処理形位相同期回路3
a,3bは第2図に示すように端子11から入力
されたセシウム原子発振器の出力を分周器12で
分周して位相比較器13へ供給し、またデイジタ
ル制御入力部を有する電圧制御水晶発振器14の
出力を分周器15で分周してデイジタル位相比較
器13へ供給し、この位相比較器13はその両入
力を位相比較して出力する。制御部16では
CPU17がメモリ18内のプログラムを読出し
て解読実行することにより、デイジタル位相比較
器13の出力を取込み、これを統計処理して電圧
制御発振器14へ制御値を与える。制御部16内
にその処理に利用されるデータの読み書きのため
メモリ19が設けられる。電圧制御発振器14の
出力が出力端子21へ供給される。
Digital processing type phase synchronization circuit 3 of this device
As shown in FIG. 2, a and 3b are voltage control crystals which divide the output of the cesium atomic oscillator input from the terminal 11 by a frequency divider 12 and supply it to the phase comparator 13, and which also have a digital control input section. The output of the oscillator 14 is divided by a frequency divider 15 and supplied to a digital phase comparator 13, which compares the phases of its two inputs and outputs the result. In the control section 16
The CPU 17 reads out the program in the memory 18, decodes and executes it, takes in the output of the digital phase comparator 13, processes it statistically, and provides a control value to the voltage controlled oscillator 14. A memory 19 is provided within the control unit 16 for reading and writing data used in the processing. The output of voltage controlled oscillator 14 is supplied to output terminal 21 .

この第1図及び第2図に示した従来装置では2
台のセシウム原子発振器1a,1bの障害時にも
デイジタル制御水晶発振器14を直前の制御デー
タを入力として自走させることができ、極端な周
波数跳躍は生じない。しかしセシウム原子発振器
1a,1bでおこる可能性のある周波数異常に対
しては、いずれの発振器に異常があるかを判別で
きないため、現用系セシウム原子発振器が周波数
異常状態になつた場合は、これに対処できない欠
点があつた。またセシウム原子発振器1a,1b
が正常時でもデイジタル処理形位相同期回路3
a,3bの出力は回路内のデイジタル制御の精度
に依存する離散的な周波数値をとることとなり、
セシウム原子発振器1a,1bの出力周波数とは
わずかにずれた値になる欠点があつた。さらに位
相同期回路3a,3bのループ内に複雑な制御部
16を含むため高い信頼性を確保することが困難
になる欠点もあつた。
In the conventional device shown in FIGS. 1 and 2, 2
Even in the event of a failure in the cesium atomic oscillators 1a and 1b, the digitally controlled crystal oscillator 14 can be made to run freely using the immediately preceding control data as input, and extreme frequency jumps do not occur. However, for frequency abnormalities that may occur in the cesium atomic oscillators 1a and 1b, it is not possible to determine which oscillator has the abnormality. There were deficiencies that could not be addressed. Also, cesium atomic oscillators 1a, 1b
Digitally processed phase synchronized circuit 3 even when
The outputs of a and 3b take discrete frequency values that depend on the precision of the digital control in the circuit,
There was a drawback that the output frequency was slightly different from the output frequency of the cesium atomic oscillators 1a and 1b. Furthermore, since the loop of the phase-locked circuits 3a and 3b includes a complicated control section 16, it is difficult to ensure high reliability.

第3図は従来の他のクロツク発生装置を示す。
セシウム原子発振器を1a,1b,1cと3重化
し、第1図の場合と同様に切替回路2a〜2c、
位相同期回路6a〜6c、後段の切替回路4a〜
4cを設け、更に周波数測定監視部22を設け、
3台のセシウム原子発振器1a〜1cに優先順位
を附与することができ、かつ1台の発振器が周波
数異常をおこした場合にはその1台を検出するこ
とが可能である。したがつて、後段の切替回路4
a〜4cによつて異常なセシウム原子発振器を排
除し、常に正常な1台の出力をクロツク源として
選択することができる。
FIG. 3 shows another conventional clock generator.
The cesium atomic oscillator is triplexed as 1a, 1b, and 1c, and the switching circuits 2a to 2c, as in the case of FIG.
Phase synchronization circuits 6a-6c, subsequent switching circuits 4a-
4c, and further a frequency measurement monitoring section 22,
Priority can be given to the three cesium atomic oscillators 1a to 1c, and if one oscillator causes a frequency abnormality, it is possible to detect that one oscillator. Therefore, the subsequent switching circuit 4
By a to 4c, abnormal cesium atomic oscillators can be excluded and the output of one normal oscillator can always be selected as the clock source.

しかし、この従来装置ではクロツク源に従属す
る位相同期回路6a〜6cをアナログ形位相同期
発振器で構成しているため、セシウム原子発振器
1a〜1cが全系統障害時には位相同期発振器6
a〜6cは内蔵の水晶発振器の周波数安定度でき
まる大きな周波数偏差で自走することになる。ま
たセシウム原子発振器1a〜1cの切替時には位
相同期発振器6a〜6c出力は過渡的に大きな周
波数偏差を生じる欠点があつた。さらにこの装置
では周波数測定監視部22を1系統しかもたない
ため、それが障害した時にはセシウム原子発振器
1a〜1c間の周波数偏差の測定が不可能にな
り、現用のセシウム原子発振器に周波数異常が生
じた場合には装置出力端子5a〜5cには異常な
周波数出力を出すことになり装置信頼性を損う欠
点があつた。
However, in this conventional device, since the phase synchronized circuits 6a to 6c dependent on the clock source are configured with analog phase synchronized oscillators, when the cesium atomic oscillators 1a to 1c have a system failure, the phase synchronized oscillators 6a to 6c
A to 6c run freely with a large frequency deviation determined by the frequency stability of the built-in crystal oscillator. Furthermore, when the cesium atomic oscillators 1a to 1c are switched, the outputs of the phase synchronized oscillators 6a to 6c have a drawback that a large frequency deviation occurs transiently. Furthermore, since this device has only one system of frequency measurement and monitoring section 22, if it fails, it becomes impossible to measure the frequency deviation between the cesium atomic oscillators 1a to 1c, and a frequency abnormality occurs in the currently used cesium atomic oscillators. In this case, abnormal frequency outputs are output from the device output terminals 5a to 5c, which has the disadvantage of impairing device reliability.

この発明はこれらの欠点を除去するために、常
に3重化可能なセシウム原子発振器を装備すると
ともに3台の相互の周波数差を比較計測し、その
比較データによつて作動する選択スイツチを設
け、さらに切替時の位相跳躍を低減するための位
相調整機能をもちかつ入力断時に直前までのデー
タによつて周波数制御可能な位相同期発振器をそ
れぞれ2系統以上上記セシウム原子発振器に従属
する構成としたものである。
In order to eliminate these drawbacks, this invention is equipped with a cesium atomic oscillator that can be triplexed at any time, and also provides a selection switch that compares and measures the mutual frequency difference between the three units and operates based on the comparison data. Furthermore, two or more systems of phase synchronized oscillators each having a phase adjustment function to reduce phase jumps during switching and whose frequency can be controlled based on the previous data when the input is interrupted are configured to be subordinate to the cesium atomic oscillator. It is.

第4図はこの発明の実施例を示し、セシウム原
子発振器1a〜1dはそれぞれセシウム原子発振
器の障害検出回路7a〜7dを通じて二つの優先
順位選択スイツチ23a,23bにそれぞれ共通
に接続される。これらスイツチ23a,23bは
優先順位を手動設定する機能とセシウム原子発振
器の障害時に優先順位を変更する機能を有し、こ
れらスイツチ23a,23bの出力側は周波数測
定監視部、22a,22bと、現用系選択スイツ
チ24a,24bにそれぞれ接続される。これら
スイツチ24a,24bはそれぞれ3系統のセシ
ウム原子発振器出力から現用系出力を選択するた
めのものであり、制御部25により制御される。
現用系選択スイツチ24a,24bは現用および
予備系出力を切替えるためのスイツチ26a,2
6bの両者にそれぞれ接続され、これらスイツチ
26a,26bは制御部27により制御され、か
つ位相調整機能をもち自走時に周波数制御可能な
位相同期発振器28a,28bに接続される。位
相同期発振器28a,28bの状態は制御部29
により制御される。位相同期発振器28a,28
bは切替スイツチ31a,31bの両者にそれぞ
れ接続され、スイツチ31a,31bは制御部3
2により制御されると共に装置出力端子5a,5
bに接続される。
FIG. 4 shows an embodiment of the present invention, in which cesium atomic oscillators 1a to 1d are commonly connected to two priority selection switches 23a and 23b through cesium atomic oscillator failure detection circuits 7a to 7d, respectively. These switches 23a, 23b have a function of manually setting the priority order and a function of changing the priority order in the event of a failure of the cesium atomic oscillator. They are connected to system selection switches 24a and 24b, respectively. These switches 24a and 24b are for selecting the active system output from the three systems of cesium atomic oscillator outputs, and are controlled by the control section 25.
The active system selection switches 24a and 24b are switches 26a and 26a for switching between active and standby system outputs.
These switches 26a and 26b are controlled by a control section 27, and are connected to phase synchronized oscillators 28a and 28b which have a phase adjustment function and are frequency controllable during free running. The states of the phase synchronized oscillators 28a and 28b are determined by the control unit 29.
controlled by Phase synchronized oscillator 28a, 28
b is connected to both the changeover switches 31a and 31b, respectively, and the switches 31a and 31b are connected to the control unit 3.
2 and device output terminals 5a, 5
connected to b.

セシウム原子発振器1a〜1cの出力は通常
5MHzの周波数で動作し、その周波数確度はこの
装置で使用するような可搬形の発振器の場合1×
10-11程度といわれている。しかし、セシウム原
子発振器の利用にあたつては主要構成要素である
セシウム原子ビーム管に寿命(〓3年)が存在す
ることと、発振器の内部の制御回路の劣化、異常
によつて1×10-11をこえる周波数異常が生じる
可能性があること、特に周波数異常に関してはセ
シウム原子発振器単体では検出できない可能性が
あることを考慮する必要がある。
The output of cesium atomic oscillators 1a to 1c is normal
It operates at a frequency of 5MHz, and its frequency accuracy is 1× for a portable oscillator like the one used in this device.
It is said to be around 10 -11 . However, when using a cesium atomic oscillator, the main component, the cesium atomic beam tube, has a limited lifespan (3 years), and the control circuit inside the oscillator deteriorates or malfunctions. It is necessary to take into account that frequency anomalies exceeding -11 may occur, and that frequency anomalies in particular may not be detected by a cesium atomic oscillator alone.

したがつてセシウム原子発振器の周波数異常を
検出するため、少なくとも3台作動させ、相互の
周波数比較を行う構成とした。この実施例では4
台のセシウム原子発振器1a〜1dを装備し、動
作状態にある発振器を3台1a〜1cとし、他の
1台1dを動作中の発振器1a〜1cのうち1台
が障害時にあるいは障害の徴候がある場合に動作
状態に移行する待機用発振器とした。障害検出回
路7a〜7dはそれぞれセシウム原子発振器1a
〜1dの出力断、制御系異常等を検出する。優先
順位選択スイツチ23a,23bはそれぞれ4台
のセシウム原子発振器1a〜1dを手動により選
択してその出力として3系統のセシウム原子発振
器出力を得るものであり、この例ではその3系統
中の優先順位を設定することができる。スイツチ
23a,23bでそれぞれ選択されたこの3系統
の信号は周波数測定監視部22a,22bによつ
て常時比較され、3系統の信号の平均周波数に近
い周波数をもつ系の順に優先順位を附与するとと
もに、異常値の有無を監視して、選択スイツチ2
4a,24bを制御する信号を得る。その附与さ
れた優先順位を操作員はスイツチ23a,23b
に手動設定し、この優先順位データが制御部25
へ与えられる。制御部25に対し優先順位を直接
設定してもよい。
Therefore, in order to detect frequency abnormalities in the cesium atomic oscillators, at least three oscillators are operated and their frequencies are compared. In this example, 4
It is equipped with three cesium atomic oscillators 1a to 1d, three oscillators 1a to 1c are in operation, and one oscillator 1d is used when one of the oscillators 1a to 1c in operation has a failure or when there are signs of a failure. It is used as a standby oscillator that enters the operating state in certain cases. Each of the fault detection circuits 7a to 7d is a cesium atomic oscillator 1a.
~1d output interruption, control system abnormality, etc. are detected. The priority selection switches 23a and 23b each manually select the four cesium atomic oscillators 1a to 1d to obtain three systems of cesium atomic oscillator output as their outputs, and in this example, the priority among the three systems is selected. can be set. These three systems of signals selected by switches 23a and 23b are constantly compared by frequency measurement monitoring units 22a and 22b, and priority is given to systems in the order of frequencies closer to the average frequency of the three systems of signals. At the same time, the presence or absence of abnormal values is monitored, and selection switch 2 is
4a and 24b are obtained. The operator switches the assigned priority order to switches 23a and 23b.
This priority data is set manually in the control unit 25.
given to. The priority order may be directly set in the control unit 25.

周波数測定監視部22a,22bは例えば第5
図に示すように入力端子34a〜34cに加えら
れる3系統の信号の周波数をそれぞれV1,V2
V3とすると、周波数偏差測定回路35a〜35
cによつて次式で表わされる相互の周波数偏差率
δ12,δ23,δ31 δ12=(V1−V2)/V0 (1) δ23=(V2−V3)/V0 δ31=(V3−V1)/V0 ただしV0〓V1〓V2〓V3 を計測し、データ処理回路36において計測結果
を統計処理して優先順位を判定するとともに、異
常周波数の有無を識別して、端子37より選択ス
イツチ制御信号を表示出力する。たとえばV1
V2=V3の場合、δ12=−δ31≠O,δ23=Oの計
測結果が得られるから、偏差率の絶対値が最少と
なるV2,V3の組合せ以外の入力V1を最悪と判定
することができる。
The frequency measurement monitoring units 22a and 22b are, for example, the fifth
As shown in the figure, the frequencies of the three systems of signals applied to the input terminals 34a to 34c are V 1 , V 2 ,
When V 3 , frequency deviation measurement circuits 35a to 35
Mutual frequency deviation rate δ 12 , δ 23 , δ 31 δ 12 = (V 1 − V 2 )/V 0 (1) δ 23 = (V 2 − V 3 )/V expressed by c as follows: 0 δ 31 = (V 3 − V 1 )/V 0 However, V 0 〓V 1 〓V 2 〓V 3 is measured, and the data processing circuit 36 statistically processes the measurement results to determine the priority order, and also The presence or absence of the frequency is identified and a selection switch control signal is displayed and output from the terminal 37. For example, V 1
In the case of V 2 = V 3 , the measurement results of δ 12 = −δ 31 ≠ O, δ 23 = O are obtained, so input V 1 other than the combination of V 2 and V 3 that minimizes the absolute value of the deviation rate can be judged as the worst.

また、相互の周波数偏差率の絶対値に上限値δ
l(たとえば1×10-11)を設ければ、|δij|≧
δl(i,j=1,2,3)となる場合i,j以
外の1系統を、|δ12|,|δ23|,|δ31|<
δlの場合にはその最大値を与えない組合せ以外
の1系統を優先順位1位と判定することができ
る。
In addition, an upper limit δ is set for the absolute value of the mutual frequency deviation rate.
If l (for example, 1×10 -11 ) is provided, |δij|≧
When δl (i, j = 1, 2, 3), one system other than i and j is |δ 12 |, |δ 23 |, |δ 31 |<
In the case of δl, one system other than the combination that does not give the maximum value can be determined to have the first priority.

優先順位の現用系選択スイツチ24a,24b
には優先順位選択スイツチ23a,23bの3系
統の出力がそれぞれ入力され、平常時はそのうち
優先順位第1位の系統が選択されて出力される。
選択された1位のセシウム原子発振器の異常時あ
るいは上記限界値をこえる周波数異常時にはそれ
ぞれ障害検出器7a〜7dおよび周波数測定監視
部22a,22bからの障害情報がスイツチ制御
部25に転送され、制御部25は選択スイツチ2
4a,24bへの切替信号を発生し、優先順位第
2位の出力への自動的な切り替えを行なう。
Priority active system selection switch 24a, 24b
The outputs of three systems from the priority selection switches 23a and 23b are respectively input, and under normal conditions, the system with the first priority is selected and output.
When there is an abnormality in the selected cesium atomic oscillator or the frequency exceeds the above-mentioned limit value, the fault information from the fault detectors 7a to 7d and the frequency measurement monitoring sections 22a and 22b is transferred to the switch control section 25, and the control is performed. Section 25 is selection switch 2
4a and 24b to automatically switch to the second priority output.

セシウム原子発振器1a〜1dの動作状況、周
波数測定監視部22a,22bのデータの履歴を
保守者が判断し、優先順位の変更を行なう必要が
ある場合設定スイツチ23a,23bを手動によ
つて作動させることができる。
A maintenance person judges the operating status of the cesium atomic oscillators 1a to 1d and the data history of the frequency measurement monitoring units 22a and 22b, and manually operates the setting switches 23a and 23b when it is necessary to change the priority order. be able to.

また、予防保全措置として3台の発振器のうち
1台を撤去して、待機用発振器1dを動作系に組
み入れる場合には待機用発振器1dに電源を投入
して定常状態に達した後、予備系の優先順位切替
スイツチ、例えば23bによつて動作系発振器群
の変更を行なう。次に予備系周波数監視部22b
によつて周波数比較を行ない、変更後の優先順位
を定め優先順位設定スイツチ23bを再び手動操
作で新たな優先順に変更する。さらに現用系の優
先順位設定スイツチ23aを手動操作して優先順
を上記の順に変更して現用系も新しい状態に移行
させることができる。
In addition, if one of the three oscillators is removed as a preventive maintenance measure and the standby oscillator 1d is incorporated into the operating system, the standby oscillator 1d should be powered on and the standby system should be The operating system oscillator group is changed by a priority changeover switch, for example 23b. Next, the standby frequency monitoring section 22b
The frequencies are compared by , the changed priority order is determined, and the priority order setting switch 23b is again manually operated to change the priority order to the new priority order. Furthermore, by manually operating the priority order setting switch 23a of the active system, the priority order can be changed to the above order, and the active system can also be moved to a new state.

選択スイツチ24a,24bの出力には優先順
位1位のセシウム原子発振器出力が得られるが、
現用・予備切替スイツチ26a,26bを介して
これに2系統の位相同期発振器28a,28bを
従属させる。スイツチ26a,26bの制御信号
は、周波数測定監視部22a,22bの異常時に
スイツチ制御部25より発せられる。位相同期発
振器の構成は例えば第6図に示す通りである。入
力端子38に加えられる信号をてい倍器39によ
つてnてい倍し、出力周波数V0をもつ電圧制御
水晶発振器41の信号をてい倍器42でnてい倍
した後の信号と位相検波器43によつて位相比較
し、平常時は誤差信号を低域フイルタ44および
切替スイツチ45を介して電圧制御発振器41の
制御端子に帰還する。
The cesium atomic oscillator output with the first priority is obtained as the output of the selection switches 24a and 24b, but
Two systems of phase synchronized oscillators 28a and 28b are subordinated to this via active/standby changeover switches 26a and 26b. Control signals for the switches 26a and 26b are issued by the switch control section 25 when the frequency measurement monitoring sections 22a and 22b are abnormal. The configuration of the phase synchronized oscillator is shown in FIG. 6, for example. The signal applied to the input terminal 38 is multiplied by n by a multiplier 39, and the signal from the voltage-controlled crystal oscillator 41 having an output frequency V 0 is multiplied by n by the multiplier 42, and the resulting signal is combined with the phase detector. 43, and the error signal is fed back to the control terminal of the voltage controlled oscillator 41 via the low-pass filter 44 and changeover switch 45 during normal times.

このように平常時はアナログ的な位相同期回路
として動作するから、セシウム原子発振器に同期
した周波数確度の高い信号が発振器41の出力端
子46よりえられる。また位相比較をn倍の周波
数で行なつているために、入力での位相跳躍は
1/nに圧縮される位相調整機能をもつ。すなわ
ち、n=8とすれば、入力端子38に加えられる
信号が選択スイツチ24a又は24bによつて切
替えられ、入力信号位相が最悪1周期に相当する
200ns跳躍しても、出力端子46にあらわれる信
号は最悪25ns(=200/8)以下の位相跳躍量に
低減される。また低域フイルタ44の作用により
その跳躍は平滑化される。
In this way, since it operates as an analog phase-locked circuit during normal times, a signal with high frequency accuracy synchronized with the cesium atomic oscillator can be obtained from the output terminal 46 of the oscillator 41. Furthermore, since the phase comparison is performed at a frequency n times higher, a phase jump at the input is compressed to 1/n, thereby providing a phase adjustment function. That is, if n=8, the signal applied to the input terminal 38 is switched by the selection switch 24a or 24b, and the input signal phase corresponds to one cycle at worst.
Even if there is a jump of 200 ns, the signal appearing at the output terminal 46 will be reduced to a phase jump of 25 ns (=200/8) or less in the worst case. Moreover, the jump is smoothed by the action of the low-pass filter 44.

一方アナログ電圧メモリ47には、平常時の低
域フイルタ44の出力電圧を印加し、その電圧を
デイジタル化して記憶更新するとともに低域フイ
ルタ44の出力電圧と略一致するアナログ電圧を
メモリ47の出力端子に得る。この電圧は位相同
期回路ループ内の特性変化、主として電圧制御水
晶発振器41の周波数エージング等を補正するよ
うに時間的に変化する。メモリ47は列えばA/
D変換器、可逆カウンタ、D/A変換器で構成さ
れる。
On the other hand, the output voltage of the low-pass filter 44 during normal operation is applied to the analog voltage memory 47, the voltage is digitized and the memory is updated, and an analog voltage that substantially matches the output voltage of the low-pass filter 44 is output from the memory 47. Get to the terminal. This voltage changes over time to compensate for characteristic changes within the phase-locked circuit loop, mainly frequency aging of the voltage controlled crystal oscillator 41, and the like. The memory 47 is A/
It consists of a D converter, a reversible counter, and a D/A converter.

動作系の3台のセシウム原子発振器の異常時あ
るいは保守のための交換作業時には障害検出器7
a〜7dからの信号をスイツチ制御部29に転送
して制御部29の信号によつてスイツチ45を作
動させ、アナログメモリ47の出力電圧を電圧制
御発信器41の制御端子に印加して自走状態と
し、正常時とほぼ同一の周波数で発振させる。自
走時のアナログメモリ47からの制御電圧は、正
常時のデータにもとづいて処理発生され、電圧制
御発振器41の固有の周波数エージング等のルー
プ内特性変化を補正することができる。
Fault detector 7 is used when there is an abnormality in the three cesium atomic oscillators in the operating system or during replacement work for maintenance.
The signals from a to 7d are transferred to the switch control section 29, the switch 45 is operated by the signal from the control section 29, and the output voltage of the analog memory 47 is applied to the control terminal of the voltage control oscillator 41 to make the switch 45 free-running. state, and oscillate at almost the same frequency as normal. The control voltage from the analog memory 47 during free running is processed and generated based on data during normal operation, and can correct changes in characteristics within the loop such as inherent frequency aging of the voltage controlled oscillator 41.

セシウム原子発振器切替時には、位相比較器4
3への入力位相が急変し、位相同期発振器の出力
端子46の出力はその影響をうけて周波数が過渡
的に偏移する。また位相同期発振器28a,28
bを自走させる場合にもアナログメモリ47の量
子化ステツプに依存する微小な周波数変化を生じ
る。
When switching the cesium atomic oscillator, the phase comparator 4
3 suddenly changes, and the output from the output terminal 46 of the phase-locked oscillator undergoes a transient frequency shift due to this influence. In addition, the phase synchronized oscillators 28a, 28
Even when the signal b is allowed to run freely, a minute frequency change depending on the quantization step of the analog memory 47 occurs.

第7図はこの発明の実施例の場合の実測値の一
例を示したものであり、同図Aはセシウム原子発
振器を時点t1で切り替えて、最悪時の25nsの位相
変化が、位相比較器43でおこつた場合の特性
で、位相同期発振器28a,28bのループ定数
で定まる位相変化、周波数変化を示す。この例で
はループの固有周波数を0.02〔rad/sec〕、減衰
定数を1.56とした結果位相変化を最大1.1×10-3
以下に抑圧できており、さらに位相調整用のてい
倍器39、のてい倍次数nを増大するか、ωnを
低減することによつて最大周波数跳躍量を低減で
きる。
FIG. 7 shows an example of actual measurement values in the case of the embodiment of the present invention, and in FIG . 43, and shows the phase change and frequency change determined by the loop constants of the phase synchronized oscillators 28a and 28b. In this example, the loop's natural frequency is 0.02 [rad/sec] and the attenuation constant is 1.56, resulting in a maximum phase change of 1.1×10 -3
The maximum frequency jump amount can be reduced by increasing the multiplier order n of the phase adjustment multiplier 39 or reducing ωn.

第7図Bはアナログメモリ47の周波数に関す
る量子化ステツプを3.92×10-10とした場合に時
点t1で自走状態とした時のデータであり、自走状
態に移行しても位相は連続的に変化することにな
り、その傾斜が上記量子化ステツプに対応してい
る。さらに量子化ステツプを小さくすることによ
り自走状態の周波数誤差を低減できる。
Figure 7B shows data when the analog memory 47 enters the free-running state at time t1 when the frequency-related quantization step is 3.92 The slope corresponds to the quantization step described above. Furthermore, by reducing the quantization step, the frequency error in the free-running state can be reduced.

切替スイツチ31a,31bは現用系の位相同
期発振器28a,28bの障害時に制御部32の
信号により作動し、常に正常動作状態にある別の
位相同期発振器28a,28bの出力を装置出力
端子5a,5bに得る機能をもつ。
The changeover switches 31a, 31b are activated by a signal from the control unit 32 when the active phase synchronized oscillators 28a, 28b fail, and transfer the outputs of the other phase synchronized oscillators 28a, 28b, which are always in a normal operating state, to the device output terminals 5a, 5b. It has the function of obtaining

先に述べたように優先順位の設定はスイツチ2
3a,23bで行うことなく、制御部25に対し
直接行つてもよい。スイツチ24a,24bの切
替えは必ずしも優先順位を付けて行わなくてもよ
い。また位相同期発振器28a,28b内におい
て、nてい倍した信号の位相制御ループを設けこ
れにより位相調整し、その出力側をスイツチ26
a,26bと同様に切替え、その出力は周波数を
n分周し、これに対し発振器を同期させる位相制
御ループを設け、位相同期発振器28a,28b
の出力としてもよい。更にこの位相同期発振器2
8a,28bとしてはデイジタルで構成してもよ
い。
As mentioned earlier, the priority setting is switch 2.
It may be performed directly to the control unit 25 without having to be performed by 3a and 23b. The switches 24a and 24b do not necessarily have to be prioritized. In addition, a phase control loop for a signal multiplied by n is provided in the phase synchronized oscillators 28a and 28b, and the phase is adjusted by this loop.
a, 26b, and its output divides the frequency by n, and a phase control loop for synchronizing the oscillator is provided, and the phase synchronized oscillator 28a, 28b
It can also be used as the output. Furthermore, this phase synchronized oscillator 2
8a and 28b may be constructed digitally.

以上説明したように、この発明においては3台
以上のセシウム原子発振器を動作させ、常時相互
の周波数比較を行つて各発振器の出力周波数の平
均値に最も近い周波数もをつ1台を基準発振器と
して選択する構成であり、その切替時の位相跳躍
を低減する機能をもつ高安定アナログ形位相同期
発振器を従属させる場合は周波数確度の高い装置
出力信号が得られ、かつ優先順位変更時にもその
影響を低減できる利点がある。また上記位相同期
発信器は制御ループ外にメモリをもつ構成である
から全てのセシウム原子発振器が障害になつた場
合でも、正常時と同等の周波数確度をもつ装置出
力が得られる利点がある。
As explained above, in the present invention, three or more cesium atomic oscillators are operated, their frequencies are constantly compared, and the one with the frequency closest to the average of the output frequencies of each oscillator is used as the reference oscillator. If this configuration is selected, and a highly stable analog phase-locked oscillator with the function of reducing phase jumps during switching is subordinated, a device output signal with high frequency accuracy can be obtained, and the influence of the change can be avoided even when the priority is changed. There is an advantage that it can be reduced. Furthermore, since the phase-locked oscillator has a memory outside the control loop, even if all the cesium atomic oscillators fail, there is an advantage that a device output with the same frequency accuracy as in normal operation can be obtained.

さらにセシウム原子発信器以外の各部も2重化
した構成としたから保守も容易であり、きわめて
高い装置信頼性が得られる利点がある。このよう
に信頼性と周波数確度が高い標準クロツク装置が
実現できるから、デイジタル網の網同期系の基準
クロツクを発生する装置として利用でき、網間接
続が行なわれる場合にも充分な品質信頼性が確保
される。
Furthermore, since all parts other than the cesium atomic transmitter are duplicated, maintenance is easy and the device has the advantage of extremely high reliability. Since a standard clock device with high reliability and frequency accuracy can be realized in this way, it can be used as a device for generating reference clocks for network synchronization systems in digital networks, and it can also be used to ensure sufficient quality and reliability even when connections are made between networks. Secured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2重化された標準クロツク装置
を示す構成図、第2図は第1図の要素であるデイ
ジタル処理形位相同期発振器を示す構成図、第3
図は従来の3重化された標準クロツク発生装置を
示す構成図、第4図はこの発明による標準クロツ
ク発生装置の一実施例を示す構成図、第5図は第
4図の周波数測定監視部の例を示す構成図、第6
図は第4図の位相同期発振器の例を示す構成図、
第7図はこの発明装置の実施例における優先順位
切替時および自走時の装置出力周波数変化の実測
結果を説明する図である。 1a〜1d:セシウム原子発振器、5a,5
b:装置出力端子、7a〜7d:セシウム原子発
振器障害検出器、22a,22b:周波数監視
部、23a,23b:優先順位選択スイツチ、2
4a,24b:現用系選択スイツチ、25:選択
スイツチ制御部、26a,26b:現用予備切替
スイツチ、29:位相同期状態制御部、32:切
替スイツチ制御部、34:アナログ電圧メモリ。
FIG. 1 is a block diagram showing a conventional duplex standard clock device, FIG. 2 is a block diagram showing a digitally processed phase synchronized oscillator, which is an element of FIG.
Figure 4 is a block diagram showing a conventional triplex standard clock generator, Figure 4 is a block diagram showing an embodiment of the standard clock generator according to the present invention, and Figure 5 is the frequency measurement monitoring section of Figure 4. 6th block diagram showing an example of
The figure is a configuration diagram showing an example of the phase-locked oscillator in Figure 4,
FIG. 7 is a diagram illustrating actual measurement results of device output frequency changes during priority switching and self-running in an embodiment of the device of the present invention. 1a-1d: Cesium atomic oscillator, 5a, 5
b: Device output terminal, 7a to 7d: Cesium atomic oscillator failure detector, 22a, 22b: Frequency monitoring section, 23a, 23b: Priority selection switch, 2
4a, 24b: active system selection switch, 25: selection switch control section, 26a, 26b: active standby changeover switch, 29: phase synchronization state control section, 32: changeover switch control section, 34: analog voltage memory.

Claims (1)

【特許請求の範囲】[Claims] 1 常に動作状態にある3台以上のセシウム原子
発振器と1台以上の待機用セシウム原子発振器を
装備し、そのうちから3系統の出力を選択する設
定スイツチ、その選択された3系統の出力間の周
波数偏差を測定処理する周波数測定監視部、その
周波数比較結果にもとづいて1系統セシウム原子
発振器出力を選択する機能をもち上記設定スイツ
チに後置する現用系選択スイツチ、その現用系選
択スイツチに後置する現用予備切替スイツチ、平
常時はその現用予備切替スイツチ出力に位相調整
後同期し、かつ制御データを記憶するメモリをも
ち、セシウム原子発振器全系障害時に直前の制御
データで周波数制御して自走可能な位相同期発振
器、その位相同期発振に後置する現用予備切替ス
イツチとをそれぞれ2系統以上を具備する標準ク
ロツク発生装置。
1 Equipped with three or more cesium atomic oscillators that are always in operation and one or more standby cesium atomic oscillators, a setting switch that selects the output of three systems from among them, and a frequency between the outputs of the selected three systems. A frequency measurement monitoring unit that measures and processes the deviation, a working system selection switch that has the function of selecting one system of cesium atomic oscillator output based on the frequency comparison result, and is located after the above setting switch; The active/backup changeover switch is synchronized with the output of the active/backup changeover switch during normal times after phase adjustment, and has a memory that stores control data.In the event of a failure in the entire cesium atomic oscillator system, the frequency can be controlled using the previous control data and it can run freely. A standard clock generator equipped with two or more systems each of a phase-locked oscillator and a working/standby changeover switch placed after the phase-locked oscillator.
JP10338880A 1980-07-28 1980-07-28 Standard clock generator Granted JPS5728431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10338880A JPS5728431A (en) 1980-07-28 1980-07-28 Standard clock generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10338880A JPS5728431A (en) 1980-07-28 1980-07-28 Standard clock generator

Publications (2)

Publication Number Publication Date
JPS5728431A JPS5728431A (en) 1982-02-16
JPS6226605B2 true JPS6226605B2 (en) 1987-06-10

Family

ID=14352687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10338880A Granted JPS5728431A (en) 1980-07-28 1980-07-28 Standard clock generator

Country Status (1)

Country Link
JP (1) JPS5728431A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167524A (en) * 1984-02-10 1985-08-30 Matsushita Electric Ind Co Ltd Signal switch
FR2614116B1 (en) * 1987-04-17 1989-07-21 Centre Nat Etd Spatiales TIME REFERENCE DEVICE WITH SUBSTANTIALLY CONSTANT STABILITY FOR SHORT AND LONG TERM MEASUREMENT
JPH0267820A (en) * 1988-09-02 1990-03-07 Toyo Commun Equip Co Ltd Standard frequency clock generator
JP2732541B2 (en) * 1989-12-28 1998-03-30 日本電気株式会社 Signal oscillator

Also Published As

Publication number Publication date
JPS5728431A (en) 1982-02-16

Similar Documents

Publication Publication Date Title
US5852728A (en) Uninterruptible clock supply apparatus for fault tolerant computer system
US4980899A (en) Method and apparatus for synchronization of a clock signal generator particularly useful in a digital telecommunications exchange
US6204732B1 (en) Apparatus for clock signal distribution, with transparent switching capability between two clock distribution units
JPH022722A (en) Clock hold over circuit
EP1185933A1 (en) Redundant synchronous clock distribution for computer systems
JPH0795052A (en) Frequency synchronizing circuit
US10908635B1 (en) Detection and management of frequency errors in a reference input clock signal
JPS6226605B2 (en)
JPH11308102A (en) Phase locked loop
US5596614A (en) Method and circuitry for aligning the phase of high-speed clocks in telecommunications systems
JPH06104882A (en) Network synchronizing clock supply device
JP4036013B2 (en) Frequency monitoring circuit, clock supply device, and frequency monitoring method
JPH03102933A (en) Synchronous clock selection circuit
US6999546B2 (en) System and method for timing references for line interfaces
JPS6334659B2 (en)
JPH0267820A (en) Standard frequency clock generator
JPH01307316A (en) Phase locked loop oscillator
JPH0443717A (en) Frequency conversion circuit with phase locked loop
JPS6072415A (en) Synchronism fault detecting circuit of phase locked loop
JPH11304972A (en) Reference frequency/timing generator
JPH0347615B2 (en)
JP2009212659A (en) Phase difference correction circuit and phase difference correction method
KR950012957B1 (en) A high stabilized sinchronizing circuit using an analog phase pll
JP3160904B2 (en) Phase-locked oscillation circuit device
JP2732541B2 (en) Signal oscillator