JPS62264605A - Manufacture of compound superconducting magnet coil - Google Patents

Manufacture of compound superconducting magnet coil

Info

Publication number
JPS62264605A
JPS62264605A JP10907086A JP10907086A JPS62264605A JP S62264605 A JPS62264605 A JP S62264605A JP 10907086 A JP10907086 A JP 10907086A JP 10907086 A JP10907086 A JP 10907086A JP S62264605 A JPS62264605 A JP S62264605A
Authority
JP
Japan
Prior art keywords
substrate
superconducting
intermetallic compound
magnet coil
current circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10907086A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP10907086A priority Critical patent/JPS62264605A/en
Publication of JPS62264605A publication Critical patent/JPS62264605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To facilitate forming complicated current circuits by a method wherein a heating beam is applied to a substrate composed of laminated metal plates made of metal elements of which superconducting intermetallic compound is composed, along the scanning traces identical to the current circuits of a superconducting magnet coil to be manufactured. CONSTITUTION:A substrate 1 is composed of a disk shape stabilizing plate 2 made of superconductivity stabilizing material, disk shape 1st metal plates 3 which are made of Nb and bonded to the upper and lower surface of the plate 2 and disk shape 2nd metal plates 4 which contain Sn with high concentration and are bonded to the outside surfaces of the 1st metal plates 3. A heating beam B is spirally applied to the upper surface of the substrate 1 by a beam generator 5 which emits the heating beam B such as a laser beam or an electron beam along a spiral scanning trace to heat the spiral part to which the beam B is applied. A spiral current circuit 6 made of NbSn intermetallic compound is formed along the heated part. Then the substrate 1 is turned over and a circuit 6 made of NbSn intermetallic compound is formed in the same way. With this constitution, the complicated current circuits can be formed.

Description

【発明の詳細な説明】 「産業上の利用分野」 加速器用マグネット、超電導発電機用マグネット等に使
用される化合物系超電導マグネットコイルの製造方法に
関するらのである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" This invention relates to a method for manufacturing a compound-based superconducting magnet coil used for accelerator magnets, superconducting generator magnets, etc.

「従来の技術」 従来、NbtSn系超電導マグネットコイルを製造する
方法として主に、以下に説明する2つの方法が知られて
いる。
"Prior Art" Conventionally, two methods described below are mainly known as methods for manufacturing NbtSn-based superconducting magnet coils.

第1の方法は、Cu−Sn合金からなる第1金属板の表
面に、Nbからなる第2金属阪を積層して基板を作製し
、この基板に拡散熱処理を施し、内部でNbとSnを反
応させ、内部にNl)+Sn超電導金属間化合物層を生
成させた後に、硫酸や硝酸等の強酸を電解液として用い
た電解エソヂング等の化学的な方法、または、放電加工
や旋盤加工等の機械加工を惟してNb3Sn超電導金属
間化合物層と第2金属板を平面渦巻き状に切削して渦巻
き状の溝を形成し、この溝加工によって渦8き状のNb
*Sn超電導回路を形成し、この基板を復数攻積層する
ことにより超電導マグネットコイルを装造する方、・井
であろ7 第2の方法は、拡散熱処理を施す以面の前記基板の表面
側に、第1金属板に到達するように渦巻き状の溝を刻設
して渦巻き状の回路を構成し、この後に拡散熱処理を施
してNbとSnを反応させ、渦巻き状のNb3Sn超電
導金属間化合物層を生成させてN b3S n超電導回
路を構成し、この基板を複数枚積層して超電導マグネッ
トコイルを製造する方法である。
The first method is to fabricate a substrate by laminating a second metal plate made of Nb on the surface of a first metal plate made of a Cu-Sn alloy, and then perform a diffusion heat treatment on this substrate to internally release Nb and Sn. After reacting to generate an internal Nl)+Sn superconducting intermetallic compound layer, chemical methods such as electrolytic etching using strong acids such as sulfuric acid and nitric acid as an electrolyte, or mechanical methods such as electrical discharge machining and lathe machining are performed. After machining, the Nb3Sn superconducting intermetallic compound layer and the second metal plate are cut into a planar spiral shape to form a spiral groove.
*The second method is to form a Sn superconducting circuit and build a superconducting magnet coil by layering this substrate multiple times. A spiral groove is carved to reach the first metal plate to form a spiral circuit, and then a diffusion heat treatment is performed to react Nb and Sn to form a spiral Nb3Sn superconducting intermetallic compound. In this method, layers are formed to form an N b3S n superconducting circuit, and a plurality of these substrates are laminated to produce a superconducting magnet coil.

「発明が解決しようとする問題点」 前記した第1と第2の方法において、電解エツチング処
理を行う場合には、強酸の電解液を用いる必要があるた
めに、電解液の処理や管理が煩雑になるとともに、作業
時に電解液の取り扱いに十分な注意か必要になるために
、製造工程が複雑化する問題があり、更に、前述の如く
機械加工を行う場合には、加工中に基板にそりゃまがり
等の変形を生じる問題があった。なお、基板に回路を形
成するために渦巻き状に溝切り加工を行ったのでは、基
板の強度が低下する欠点がある。
"Problems to be Solved by the Invention" In the first and second methods described above, when performing electrolytic etching treatment, it is necessary to use a strong acid electrolyte, which makes processing and management of the electrolyte complicated. Along with this, there is a problem that the manufacturing process becomes complicated because sufficient care must be taken when handling the electrolyte during work.Furthermore, when machining is performed as described above, there is a risk of damage to the substrate during machining. There was a problem of deformation such as curling. Note that if a spiral groove is formed on the substrate to form a circuit, there is a drawback that the strength of the substrate is reduced.

一方、前述した第1の従来方法にあっては、拡散熱処理
を施して脆いNb3Sn超電導金属化合物を生成させた
後に加工を施して電流回路を形成す゛るために、加工中
にNb、sn超電導金属間化合物に過大な応力を付加す
る危険性が高く、Nb*Sn超電導金属間化合物が損傷
を受けて超電導特性の劣化を来す問題があった。また、
前述した第1の従来方法においては、機械加工の精度上
の問題から、複雑な形状のコイルを製造できない問題を
有していた。
On the other hand, in the first conventional method described above, in order to form a current circuit by applying diffusion heat treatment to generate a brittle Nb3Sn superconducting metal compound and then processing it to form a current circuit, the Nb and sn superconducting metals are separated during processing. There is a high risk of applying excessive stress to the compound, and there is a problem that the Nb*Sn superconducting intermetallic compound may be damaged and the superconducting properties may deteriorate. Also,
The first conventional method described above had a problem in that it was not possible to manufacture coils with complex shapes due to problems with machining accuracy.

また、前述しfこ第2の従来方法にあっては、基板に回
路を形成した後に拡散熱処理を施すために、NbとSn
の熱膨張率の差異に起因して基板にそりやゆがみ等の変
形を生じ易く、形成した電流回路を確実に固定した後に
拡散熱処理を施さないと、基板を積層して最終的に得ら
れるマグネットコイルにそりやゆがみ等の変形を生じる
問題がある。
In addition, in the second conventional method mentioned above, in order to perform a diffusion heat treatment after forming a circuit on a substrate, Nb and Sn
Due to the difference in the coefficient of thermal expansion of the substrates, deformations such as warpage and distortion are likely to occur in the substrate, and unless diffusion heat treatment is performed after the formed current circuit is securely fixed, the final magnet obtained by laminating the substrates will be damaged. There is a problem that the coil may be deformed such as warping or distortion.

本発明は、前記問題に鑑みてなされたもので、機械強度
が高く、超電導特性に浸れるとともに、複雑な形状の電
流回路を形成することができる化合物系超電導マグネッ
トコイルの製造方法の提供を目的とする。
The present invention has been made in view of the above problems, and aims to provide a method for manufacturing a compound-based superconducting magnet coil that has high mechanical strength, can be immersed in superconducting properties, and can form a current circuit with a complicated shape. shall be.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、超電導金属間
化合物を構成する2つ以上の金属元素の内、少なくと6
1つを含有する第1金属板と、前記金属元素の内、残り
の金属元素からなる第2金属板とからなる安定化プレー
トを積層してなる基板を作製し、この基板の外方から基
板の表面または裏面に対し、製造すべき化合物系超電導
マグネットコイルの電流回路と同一軌跡を描くように加
熱ビームを照射して基板の内部を高温度に加熱し、前記
第1金属板に含有された金属元素と第2金属板に含有さ
れた金属元素とを基板の内部で反応させて超電導金属間
化合物からなる電流回路を形成するものである。
"Means for Solving the Problems" In order to solve the above problems, the present invention provides at least six of the two or more metal elements constituting the superconducting intermetallic compound.
A substrate is produced by laminating a stabilizing plate consisting of a first metal plate containing one metal element and a second metal plate containing the remaining metal element among the metal elements, and The inside of the substrate is heated to a high temperature by irradiating a heating beam on the front or back surface of the substrate so as to draw the same trajectory as the current circuit of the compound-based superconducting magnet coil to be manufactured. The metal element and the metal element contained in the second metal plate are reacted inside the substrate to form a current circuit made of a superconducting intermetallic compound.

7作用 1 加熱ビームを照射した部分のみが拡散熱処理されろため
に、加熱ビームの照射部分に沿って超電導金属間化合物
が生成され、渦巻き状の電流回路ために基板を変形さけ
ることもない。また、基板に溝加工を施すことなく、し
かも、電流回路の周囲を第1金、@仮と第2金属板の構
成元素か囲むために、従来方法で製造されたマグネット
コイルに比較して機械強度ら向上する。更に超電導金属
間化合物生成後に機械加工を施さないために超電導特性
の劣化ら生じない。
7 Effects 1 Since only the portion irradiated with the heating beam is subjected to diffusion heat treatment, a superconducting intermetallic compound is generated along the portion irradiated with the heating beam, and the substrate is not deformed due to the spiral current circuit. In addition, in order to surround the current circuit with the constituent elements of the first gold, temporary, and second metal plates without having to process grooves on the substrate, it is possible to machine Improves strength. Furthermore, since no machining is performed after the superconducting intermetallic compound is formed, no deterioration of superconducting properties occurs.

「実施例」 第1図と第2図は、本発明をNb*Sn系超電導マグネ
ットコイルAの製造に適用した例を示すもので、超電導
マグネットコイルAを製造するには、まず、第2図に断
面構造を示す基板1を作製する。
"Example" Figures 1 and 2 show an example in which the present invention is applied to the manufacture of a Nb*Sn-based superconducting magnet coil A. A substrate 1 having a cross-sectional structure is manufactured.

この基板1は、CuあるいはAI等の導電性安定化材か
らなる円板状の安定化プレート2と、この安定化プレー
ト2の上下両面に接合されたNbからなる円板状の第1
金属板3と、この第1金属板3の外面側に接合され、高
り度のSnを含有しrこブロンズから、あるいは、純S
nからなる円板状の第2金属板4とかろなっている。こ
の基板lを圧接等の手段を用いて各板を接合する。
This substrate 1 includes a disc-shaped stabilizing plate 2 made of a conductive stabilizing material such as Cu or AI, and a disc-shaped first plate made of Nb bonded to the upper and lower surfaces of this stabilizing plate 2.
The metal plate 3 is bonded to the outer surface of the first metal plate 3 and made of bronze containing a high degree of Sn or pure S.
The disc-shaped second metal plate 4 is made of metal. The respective plates of this substrate 1 are joined together using means such as pressure welding.

次に前記基板1を用いて超電導マグネットコイルAを製
造するには、第1図に示すように、レーザ、あるいは電
子線等の加熱ビームBを照射するビーム発生装置5を用
い、基板1の上面側から加熱ビームBを渦巻き状に照射
して加熱ビームBを照射した部分を渦巻き状に加熱して
ゆく。この操作において、加熱ビームBを照射する部分
をCuの融点近傍の温度(1000〜1100℃)に加
熱できるように加熱ビームBを移動させる。ここで加熱
ビームBの移動速度は、例えば50mm/分程度である
Next, in order to manufacture a superconducting magnet coil A using the substrate 1, as shown in FIG. The heating beam B is irradiated from the side in a spiral manner, and the portion irradiated with the heating beam B is heated in a spiral manner. In this operation, the heating beam B is moved so that the portion to be irradiated with the heating beam B can be heated to a temperature near the melting point of Cu (1000 to 1100° C.). Here, the moving speed of the heating beam B is, for example, about 50 mm/min.

以上の操作により加熱ビームBを照射して加熱した部分
であって、第2金属板4の周囲部分においてNb、!:
Snを反応させてNb1Sn超電導金属間化合物を生成
させ、鋸板lに渦巻き状のNb5Sn超電導金属間化合
物からなる電流回路6を形成する。そして、基板1の上
面側の照射が終了したならば、基板lを反転さ什て基板
lの裏面側に再び加熱ビームBを照射し、裏面側の第2
金属板4の周囲部分にもNb3Sn超電導金属間化合物
を生成させて超電導マグネットコイルAを製造する。な
゛お、形成する電流回路6の幅は、使用する加熱ビーム
Bの照射幅を調節することによって自由に設定すること
ができる。
Nb,! in the area around the second metal plate 4 that was heated by irradiating the heating beam B through the above operations. :
Sn is reacted to generate a Nb1Sn superconducting intermetallic compound, and a current circuit 6 made of a spiral Nb5Sn superconducting intermetallic compound is formed on the saw plate l. When the irradiation of the upper surface side of the substrate 1 is completed, the substrate 1 is turned over and the back surface side of the substrate 1 is irradiated with the heating beam B again.
A superconducting magnet coil A is manufactured by generating a Nb3Sn superconducting intermetallic compound also in the surrounding area of the metal plate 4. Note that the width of the current circuit 6 to be formed can be freely set by adjusting the irradiation width of the heating beam B used.

このように製造された超電導マグネットコイルAにあっ
ては、脆い超電導金属間化合物からなる電流回路6が、
この電流回路6より強度の高い常電導部分と同一面内に
存在して常電導部分によって囲まれている上に、従来方
法において基板に溝切り加工を施して製造されたマグネ
ットコイルと比較すると溝を設けていない構成のために
、機械的強度が高い構造となっている。更に、加熱ビー
ムBによって1部分ずつ加熱して電流回路を形成するた
めに、基板lにそりやゆがみ等の変形を生じることもな
い。従って反りや歪みのない超電導マグネットコイルA
を得ることができる。
In the superconducting magnet coil A manufactured in this way, the current circuit 6 made of a brittle superconducting intermetallic compound is
In addition to existing in the same plane as the normal conductive part that is stronger than the current circuit 6 and surrounded by the normal conductive part, the groove Because it does not have a structure, it has a structure with high mechanical strength. Furthermore, since the current circuit is formed by heating each part with the heating beam B, deformation such as warpage or distortion does not occur in the substrate l. Therefore, superconducting magnet coil A without warping or distortion
can be obtained.

以上の操作を行って超電導マグネットコイルAを製造す
る場合、加熱ビームBの照射によりNbySnを生成さ
せた部分から加熱ビームBが移動すると、この加熱部分
は急速に冷却されるために、生成されろN bz S 
n結晶粒を微細化することができ、結果的に良好な超電
導特性を有する超電導マグネットコイルAを製造するこ
とができる。
When manufacturing superconducting magnet coil A by performing the above operations, when heating beam B moves from the part where NbySn is generated by irradiation with heating beam B, this heated part is rapidly cooled, so that NbySn is not generated. N bz S
The n-crystal grains can be made finer, and as a result, a superconducting magnet coil A having good superconducting properties can be manufactured.

また、前述した方法において、基板lとビーム発生装置
5を複数用意して同時に加熱ビームBの照射を行うよう
にするならば、超電導マグネットコイルAを大蛍に製造
することができ、更に1枚の基板Iに複数の加熱ビーム
Bを照射するようにすれば、製造時間の短縮化もなしつ
る。
Furthermore, in the method described above, if a plurality of substrates l and beam generators 5 are prepared and irradiated with the heating beam B at the same time, superconducting magnet coils A can be manufactured in large quantities, and one more superconducting magnet coil A can be manufactured. By irradiating the substrate I with a plurality of heating beams B, the manufacturing time can also be shortened.

ところで加熱ビームBを基板1に照射する場合に、加熱
ビームBの照射方向を任意の方向に自由に変更すること
によって)夏堆な形状の電流回路であっても自由に作製
できる効果がある。
Incidentally, when irradiating the substrate 1 with the heating beam B, by freely changing the irradiation direction of the heating beam B to an arbitrary direction, there is an effect that even a current circuit having an irregular shape can be freely manufactured.

第3図は、本発明方法に使用する基板の他の例を示すも
ので、この例の基板I゛は、先に記載した実施例の安定
化プレート2と同等の構成の安定化プレート2゛の上面
側のみに第1金属阪3°と第2金属板4゛を積層して基
板1”を構成したものである。
FIG. 3 shows another example of the substrate used in the method of the present invention, and the substrate I' in this example is a stabilizing plate 2' having the same structure as the stabilizing plate 2 of the previously described embodiment. A substrate 1'' is constructed by laminating a first metal plate 3° and a second metal plate 4′ only on the upper surface side of the substrate.

「製造例」 Sn13wt%を含有する厚さ2mmのブロンズ仮と、
厚さ0.5mmのNb板と、厚さ3mmの無酸素銅板を
爆発圧着により接合して板体を作製し、この板体に圧延
加工を施して厚さ0 、 l mmの基板を作製した。
"Manufacturing example" A bronze temporary with a thickness of 2 mm containing 13 wt% Sn,
A plate body was produced by joining a 0.5 mm thick Nb plate and a 3 mm thick oxygen-free copper plate by explosive crimping, and this plate body was rolled to produce a substrate with a thickness of 0.1 mm. .

この基板において、ブロンズ部分は厚さ40μm5Nb
部分は厚さ10μm1無酸素銅部分は厚さ50μmとな
っている。この基板から直径300mmの円板を切り出
し、ブロンズ部分の表面に、出力5KWの炭酸ガスレー
ザを用い、照射幅を2mmに、非照射部分の幅を2mm
に設定して渦巻き状に照射し、Nb3Sn金属間化合物
を生成させて電流回路を生成した。
In this substrate, the bronze part has a thickness of 40 μm 5Nb
The thickness of the portion is 10 μm, and the thickness of the oxygen-free copper portion is 50 μm. A disk with a diameter of 300 mm was cut out from this substrate, and a carbon dioxide laser with an output of 5 KW was used on the surface of the bronze part to make the irradiation width 2 mm and the width of the non-irradiated part 2 mm.
irradiation in a spiral manner to generate an Nb3Sn intermetallic compound to generate a current circuit.

完成した超電導マグネットコイルの電流回路において、
電流回路両端における臨界電流特性を測定したところ、
10T(テスラ)において1000A/mm’を示した
。この超電導マグネットコイルの内部構造を顕微鏡観察
したところ、厚さ約5μmのNb3Sn層が生成されて
いることを観7則てきた。
In the current circuit of the completed superconducting magnet coil,
When we measured the critical current characteristics at both ends of the current circuit, we found that
It showed 1000 A/mm' at 10T (Tesla). When the internal structure of this superconducting magnet coil was observed under a microscope, it was found that an Nb3Sn layer with a thickness of about 5 μm was formed.

なお、前記した実施例においては、Nb3Sn超電導金
属間化合物からなる電流回路を有する超電導マグネット
コイルAの製造について説明したが、池の化合物系超電
導金属間化合物(例えばVaGa系超電導金属間化合物
等)の電流回路を有する超電導マグネットコイルの製造
に本発明方法を適用しても良いのは勿論である。
In the above-mentioned embodiments, the manufacturing of superconducting magnet coil A having a current circuit made of Nb3Sn superconducting intermetallic compound was explained. Of course, the method of the present invention may be applied to manufacturing a superconducting magnet coil having a current circuit.

「発明の効果」 以上説明したように本発明は、超電導金属間化合物を構
成する金属元素からなる金属板を積層して構成した基板
に、製造すべき超電導マグネットコイルの電流回路と同
一軌跡を描くように加熱ビームを照射して照射部分のみ
に拡散熱処理を施し、これによって電流回路を生成する
ものであるために、従来行っていたエツチング加工や機
械加工を行うことなく超電導電流回路を生成することが
できる。従って基板に溝加工を行う必要がなくなり、機
械強度の高い超電導マグネシトコイルを製造することが
できる。また、加熱ビームの照射方向を自由に設定する
ことにより自由な形状の電流回路を作製できろために、
曳雅な電流回路でも製造できるととらに、加熱ビームの
照射幅を調節することによって所望の幅の電流回路を有
する超電導マグネットコイルを製造できる効果がある。
"Effects of the Invention" As explained above, the present invention draws the same trajectory as the current circuit of the superconducting magnet coil to be manufactured on a substrate formed by laminating metal plates made of metal elements constituting a superconducting intermetallic compound. In this method, a heating beam is irradiated and diffusion heat treatment is applied only to the irradiated area, thereby generating a current circuit. Therefore, a superconducting current circuit can be generated without the conventional etching or machining. Can be done. Therefore, there is no need to process grooves on the substrate, and a superconducting magnetite coil with high mechanical strength can be manufactured. In addition, by freely setting the heating beam irradiation direction, it is possible to create a current circuit with a free shape.
Not only can a smooth current circuit be manufactured, but also a superconducting magnet coil having a current circuit with a desired width can be manufactured by adjusting the irradiation width of the heating beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は、本発明の一実施例を説明するための
らので、第1図は電流回路を形成している状態を示す斜
視図、第2図は基板の断面図、第3図は基板の他の例を
示す断面図である。 A・・・・・超電導マグネシトコイル、B・・・・・・
加熱ビーム、 1・・・・・基板、      2・・・・安定化プレ
ート、3・・・・・・第1金属板、  4・・・・第2
金属板、5・・・・・・ビーム発生装置、 6・・・・・・電流回路。
1 and 2 are for explaining one embodiment of the present invention, so that FIG. 1 is a perspective view showing a state in which a current circuit is formed, FIG. 2 is a sectional view of the board, and FIG. FIG. 3 is a sectional view showing another example of the substrate. A...Superconducting magneto coil, B...
heating beam, 1... substrate, 2... stabilizing plate, 3... first metal plate, 4... second
Metal plate, 5... Beam generator, 6... Current circuit.

Claims (1)

【特許請求の範囲】[Claims]  超電導金属間化合物を構成する2つ以上の金属元素の
内、少なくとも1つを含有する第1金属板と、前記金属
元素の内、残りの金属元素を含有する第2金属板を積層
して基板を作製し、この基板の外方から基板の表面また
は裏面に対し、製造すべき超電導マグネットコイルの電
流回路と同一軌跡を描くように加熱ビームを照射して基
板内部を高温度に加熱し、前記第1金属板に含有された
金属元素と第2金属板に含有された金属元素を基板の内
部で反応させて超電導金属間化合物からなる電流回路を
形成することを特徴とする化合物系超電導マグネットコ
イルの製造方法。
A substrate obtained by laminating a first metal plate containing at least one of two or more metal elements constituting a superconducting intermetallic compound and a second metal plate containing the remaining metal element among the metal elements. The inside of the substrate is heated to a high temperature by irradiating a heating beam from outside the substrate onto the front or back surface of the substrate so as to draw the same trajectory as the current circuit of the superconducting magnet coil to be manufactured. A compound-based superconducting magnet coil characterized in that a metal element contained in the first metal plate and a metal element contained in the second metal plate are reacted inside the substrate to form a current circuit made of a superconducting intermetallic compound. manufacturing method.
JP10907086A 1986-05-13 1986-05-13 Manufacture of compound superconducting magnet coil Pending JPS62264605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10907086A JPS62264605A (en) 1986-05-13 1986-05-13 Manufacture of compound superconducting magnet coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10907086A JPS62264605A (en) 1986-05-13 1986-05-13 Manufacture of compound superconducting magnet coil

Publications (1)

Publication Number Publication Date
JPS62264605A true JPS62264605A (en) 1987-11-17

Family

ID=14500835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10907086A Pending JPS62264605A (en) 1986-05-13 1986-05-13 Manufacture of compound superconducting magnet coil

Country Status (1)

Country Link
JP (1) JPS62264605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021539A1 (en) * 1992-04-16 1993-10-28 Good Jeremy A Improvements in and relating to superconducting magnets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021539A1 (en) * 1992-04-16 1993-10-28 Good Jeremy A Improvements in and relating to superconducting magnets
US5635888A (en) * 1992-04-16 1997-06-03 Good; Jeremy A. Super-conducting magnets

Similar Documents

Publication Publication Date Title
US5134040A (en) Melt formed superconducting joint between superconducting tapes
EP0469894B1 (en) Method of forming a joint between superconducting tapes
JPS62264605A (en) Manufacture of compound superconducting magnet coil
US3775840A (en) Method of producing a composite conductor band for use in making a tubular superconductor
JPS62277704A (en) Manufacture of superconducting sheet coil
JP6694453B2 (en) Method for producing a semi-finished product of at least two-part structure, in particular superconducting wire
US3783503A (en) Method of producing a composite conductor band for use in making a tubular superconductor
US5164361A (en) Method to produce ceramic superconducting filaments bonded to metals
JP2523524B2 (en) Superconducting wire manufacturing method
US5843584A (en) Superconductive article and method of making
JPS63107003A (en) Manufacture of superconductive sheet coil
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JPS61289608A (en) Manufacture of compound base superconductive magnet coil
JPS63107004A (en) Manufacture of nb3sn series superconductive disk
KR880000395B1 (en) Magnetic head comprising two spot-welded metal plate
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPS62230958A (en) Manufacture of nb3sn superconducting wire
JPH03251800A (en) X-ray window of x-ray irradiation device and its manufacturing method
JPH05880B2 (en)
JP3016294B2 (en) Method of manufacturing superconducting magnetic shield structure
JPS6249612A (en) Manufacture of iron core
JPS61201766A (en) Manufacture of cu-stabilized nb-ti superconducting wire
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture
JPH0376101A (en) Joint of superconductive conductor
JPS62109639A (en) Amorphous alloy laminated board