JPS62277704A - Manufacture of superconducting sheet coil - Google Patents

Manufacture of superconducting sheet coil

Info

Publication number
JPS62277704A
JPS62277704A JP61120428A JP12042886A JPS62277704A JP S62277704 A JPS62277704 A JP S62277704A JP 61120428 A JP61120428 A JP 61120428A JP 12042886 A JP12042886 A JP 12042886A JP S62277704 A JPS62277704 A JP S62277704A
Authority
JP
Japan
Prior art keywords
superconducting
substrate
groove
circuit
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61120428A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP61120428A priority Critical patent/JPS62277704A/en
Publication of JPS62277704A publication Critical patent/JPS62277704A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To improve critical current characteristics in a high magnetic field region, and to facilitate processing while freely controlling the quantity of a third element added by arranging an addition member between a substrate and a metallic plate to form a laminated plate while executing diffusion thermal treatment and circuit formation treatment to the laminated plate. CONSTITUTION:A groove 11 having the same plane shape as a circuit pattern to be shaped is formed to the surface of a substrate 10 consisting of Nb. A bar body 12 composed of Ti is inserted along the groove 11 in the spirally shaped groove 11 in the substrate 10. A metallic plate 13 made up of a Cu-Sn alloy is joined with the surface of the substrate 10 by using a joining means, such as explosion pressure-welding, rolling, friction pressure-welding or the like, and tolled, thus manufacturing a laminated plate 15. Nb in the substrate 10 and Sn in the metallic plate 13 are diffused and reacted through the irradiation of laser beams or heating beams such as electron beams along the groove 11 in the laminated plate 15 while Ti in the groove 11 is diffused, and a superconducting circuit 16 consisting of an Nb3Sn-Ti superconducting intermetallic compound layer is formed, thus manufacturing a superconducting sheet coil 17.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、核融合トロイダルマグネット、粒子加速器用
マグネット、超電導発電機用マグネット等に使用され、
特に、高磁界域において高い臨界電流特性を発揮する超
電導シートコイルを製造する方法に関する乙のである。
[Detailed Description of the Invention] "Industrial Application Field" The present invention is used for nuclear fusion toroidal magnets, particle accelerator magnets, superconducting generator magnets, etc.
In particular, this article relates to a method for manufacturing a superconducting sheet coil that exhibits high critical current characteristics in a high magnetic field region.

「従来の技術」 Nb3Sn超電導金属間化合物等の超電導導体において
、Ti等の第3元素を添加することにより高磁界域にお
ける臨界電流特性を向上できることが知られている。
"Prior Art" It is known that critical current characteristics in a high magnetic field region can be improved by adding a third element such as Ti to a superconducting conductor such as a Nb3Sn superconducting intermetallic compound.

、そして従来、前述の超電導導体かみなる回路を有する
超電導シートコイルを製造する方法として、第6図と第
7図を基に以下に説明する2つの方法が知られている。
Conventionally, two methods described below based on FIGS. 6 and 7 are known as methods for manufacturing a superconducting sheet coil having a circuit made up of the above-mentioned superconducting conductors.

第1の従来方法は、CuあるいはCu−9n合金からな
る第6図に示す基数1と、Tiを添加したNb−Ti合
金からなる金属板2とを爆発圧接等の接合手段を用いて
接合し、更に、圧延加工を施して所要厚さの積層板を構
成し、この積層板に拡散熱処理と回路形成処理を後述す
る如く施してNb3Sn超電導金属間化合物回路を有す
る超電導シートコイルを製造する方法である。
The first conventional method is to join base number 1 shown in FIG. 6 made of Cu or Cu-9n alloy to metal plate 2 made of Nb-Ti alloy added with Ti using a joining means such as explosive welding. Further, in a method of manufacturing a superconducting sheet coil having a Nb3Sn superconducting intermetallic compound circuit by performing rolling processing to form a laminate of a required thickness, and subjecting this laminate to diffusion heat treatment and circuit forming treatment as described later. be.

ところで従来、拡散熱処理と回路形成処理を実施してN
 bz S n超電導金属間化合物回路を形成する具体
的方法として知られているのは、積層板の全体に拡散熱
処理を施してNb、Sn超電導金属間化合物層を生成さ
せ・、この後に、積層板に形成すべき回路パターンの周
囲部分を切削して除去し、回路パターンに沿ってNb5
Sn超電導金属間化合物層を残すことにより超電導回路
を形成する方法、あるいは、形成する予定の回路パター
ンの周囲部分を拡散熱処理以前に切削して除去した後に
拡散熱処理を施し、回路パターンに沿ってNb5Sn超
電導金属間化合物層を生成させて超電導回路を形成する
方法である。
By the way, in the past, diffusion heat treatment and circuit formation treatment were performed to
A known specific method for forming a bz S n superconducting intermetallic compound circuit is to apply diffusion heat treatment to the entire laminate to generate a Nb, Sn superconducting intermetallic compound layer; The surrounding part of the circuit pattern to be formed is cut and removed, and Nb5 is applied along the circuit pattern.
A method of forming a superconducting circuit by leaving a Sn superconducting intermetallic compound layer, or a method in which the surrounding area of the circuit pattern to be formed is cut and removed before diffusion heat treatment, and then diffusion heat treatment is performed to form Nb5Sn along the circuit pattern. This is a method of forming a superconducting circuit by generating a superconducting intermetallic compound layer.

第2の従来方法は、Ti等の第3元素を添加したCuま
たはCu−5n合金からなる第7図に示す基板3に、N
bからなる金属板4を爆発圧接等の接合手段を用いて接
合し、更に圧延加工を施して所要厚さの積層板を構成し
、この積層板に前述の如く拡散熱処理と回路形成処理を
施してNb3Sn超電導金属間化合物回路を有する超電
導ソートコイルを製造する方法である。
The second conventional method is to add N to a substrate 3 shown in FIG.
The metal plates 4 made of B are joined using a joining means such as explosive welding, and further rolled to form a laminate of the required thickness, and this laminate is subjected to diffusion heat treatment and circuit forming treatment as described above. This is a method for manufacturing a superconducting sort coil having a Nb3Sn superconducting intermetallic compound circuit.

「発明が解決しようとする問題点」 前記第1の従来方法において、Ti等の活性な第3元素
を添加した金属板2を製造するためには、第3元素を添
加するために電子ビーム溶解、あるいは、アーク溶解等
の特別な溶解法を用いる必要があるとともに、添加する
第3元素量が2wt%程度の微量であるために、第3元
素を均一に添加できない問題があった。また、Tiを添
加して製造した金属板2は、加工硬化が著しく、均一な
加工が困難な問題がある。
"Problems to be Solved by the Invention" In the first conventional method, in order to manufacture the metal plate 2 to which an active third element such as Ti is added, electron beam melting is required to add the third element. Alternatively, it is necessary to use a special melting method such as arc melting, and the amount of the third element to be added is as small as about 2 wt %, so there is a problem that the third element cannot be added uniformly. Further, the metal plate 2 manufactured by adding Ti has a problem that work hardening is significant and uniform processing is difficult.

一方、第2の従来方法において、第3元素を添加したC
uまたはCu−5n合金からなる基板3を製造する場合
には、合金作成時に溶解工程が必要となるとともに、添
加する第3元素量が1wt%程度の微量であるために、
第3元素を均一に添加できない問題がある。また、Ti
を添加して製造した金属板3は加工硬化が著しいために
、後に行う圧延加工において、中間焼鈍処理を繰り返し
行う必要を生じて縮径加工工程が複雑化する問題があっ
た。
On the other hand, in the second conventional method, C
When manufacturing the substrate 3 made of u or Cu-5n alloy, a melting process is required during alloy creation, and the amount of the third element added is a small amount of about 1 wt%.
There is a problem that the third element cannot be added uniformly. Also, Ti
Since the metal plate 3 manufactured by adding the .

本発明は、前記問題に鑑みてなされたもので、高磁界域
における臨界電流特性に優れ、加工が容易であるとと乙
に、添加する第3元素の量を自由に制御できる化合物系
超電導シートコイルの製造方法を提供することを目的と
する。
The present invention has been made in view of the above problems, and is a compound-based superconducting sheet that has excellent critical current characteristics in a high magnetic field region, is easy to process, and can freely control the amount of a third element added. The purpose of the present invention is to provide a method for manufacturing a coil.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、超電導金属間
化合物を構成する2つ以上の金属元素のうち、少なくと
も1つを含有する基板と、前記金属元素のうち、残りの
金属元素を含有する金属板とを重ねて積層板を構成し、
この債層仮に超電導金属間化合物を生成させろ拡散熱処
理と回路形成処理を施して超電導シートコイルを製造す
る方法において、前記超電導金属間化合物の高磁界域に
おける臨界電流特性を向トさせるTi、Ta、Hf、I
n5SiSAl、Zr等の第3元素のうち、少なくとも
1種の元素からなる添加部材を用意し、前記基板と金属
板の間に前記添加部材を配して積層板を形成するととも
に、この積層板に拡散熱処理と回路形成処理を施して超
電導金属間化合物からなる超電導回路を生成するもので
ある。
"Means for Solving the Problems" In order to solve the problems, the present invention provides a substrate containing at least one of two or more metal elements constituting a superconducting intermetallic compound, and a substrate containing the metal A laminate is formed by stacking metal plates containing the remaining metal elements among the elements,
In this method of manufacturing a superconducting sheet coil by generating a superconducting intermetallic compound and subjecting it to diffusion heat treatment and circuit forming treatment, Ti, Ta, which alters the critical current characteristics of the superconducting intermetallic compound in a high magnetic field region, Hf,I
An additive member made of at least one type of third element such as n5SiSAl, Zr, etc. is prepared, and the additive member is placed between the substrate and the metal plate to form a laminate, and the laminate is subjected to diffusion heat treatment. A superconducting circuit made of a superconducting intermetallic compound is produced by performing a circuit forming process.

「作用」 第3元素を添加していない状態の基板と金属板を加工で
きるために、加工性が向上するとともに、添加部材の第
3元素が拡散熱処理により拡散して高磁界域における臨
界電流特性を向上させるとともに、添加部材の直径や厚
みを調節することによって添加する第3元素量を所望の
値に制御できる。
"Function" Since it is possible to process substrates and metal plates without the addition of a third element, processability is improved, and the third element in the additive member is diffused by diffusion heat treatment, resulting in critical current characteristics in high magnetic field regions. In addition, by adjusting the diameter and thickness of the additive member, the amount of the third element added can be controlled to a desired value.

「実施例」 第1図ないし第4図は、本発明方法をNbzSn超電導
回路を有するシートコイルの製造に適用した一実施例を
説明するためのもので、シートコイルを製造するには、
まず、第1図に示すNbからなる堰板10の表面に、形
成すべき回路パターンと同一平面形状の溝11を形成す
る。なお、本実施例においては、らせん状の超電導回路
を形成しようとする関係から前記溝llはらせん状に形
成する。
"Example" Figures 1 to 4 are for explaining an example in which the method of the present invention is applied to the production of a sheet coil having an NbzSn superconducting circuit.
First, grooves 11 having the same planar shape as the circuit pattern to be formed are formed on the surface of the weir plate 10 made of Nb shown in FIG. In this embodiment, the groove 11 is formed in a spiral shape because a spiral superconducting circuit is to be formed.

次に第2図に示すように基板IOの7NIlの内部に溝
11に沿わせてTi(第3元素)からなる棒体12を挿
入する。なお、この棒体12の大きさは、製造すべき超
電導ンートコイルに必要なTi量を供給できる大きさに
設定される。
Next, as shown in FIG. 2, a rod 12 made of Ti (third element) is inserted into the 7NIl of the substrate IO along the groove 11. The size of this rod 12 is set to a size that can supply the necessary amount of Ti to the superconducting root coil to be manufactured.

続いて前記基板10の表面に、この表面を覆わせて第3
図に示すようにCu−Sn合金からなる金属板13を爆
発圧接、圧延、あるいは摩擦圧接等の接合手段を用いて
接合し、更に圧延加工を施して積層板15を作製する。
Subsequently, a third layer is applied to the surface of the substrate 10, covering this surface.
As shown in the figure, metal plates 13 made of a Cu-Sn alloy are joined using a joining means such as explosive welding, rolling, or friction welding, and then rolled to produce a laminate 15.

なお、金属板13は銅板であっても良いが、その場合は
、基板lOと金属板I3の間に高濃度のSnを含有した
Cu−5n板あるいはSn板を介在させることにする。
Note that the metal plate 13 may be a copper plate, but in that case, a Cu-5n plate or a Sn plate containing a high concentration of Sn is interposed between the substrate IO and the metal plate I3.

そして前記積層板L5の溝11に沿ってらせん状にレー
ザビームあるいは電子線等の加熱ビームを照射して基板
lOのNbと金属板13のSnを拡散し反応させるとと
もに、11111の内部のTiを拡散させて第4図に示
すらせん状のNb3Sn  T’+超電導金属間化合物
層からなる超電導回路16を形成して超電導ノートコイ
ル■7を製造する。
Then, a heating beam such as a laser beam or an electron beam is irradiated spirally along the groove 11 of the laminated plate L5 to diffuse and react the Nb of the substrate IO and the Sn of the metal plate 13, and at the same time, the Ti inside the laminate 11111 is This is diffused to form a superconducting circuit 16 consisting of a spiral Nb3Sn T'+superconducting intermetallic compound layer shown in FIG. 4, thereby manufacturing a superconducting notebook coil (7).

なお、この超電導回路16を形成する場合、以下に説明
する方法によっても良い。即ち、まず、積層板15の全
体に拡散熱処理(600〜800℃に20〜200時間
加熱する処理)を施して積層板I5全体のNbとSnを
拡散し反応させてNb3Snを生成させるとともに溝l
l内のT1を拡散させてNb+5n−Ti層を生成し、
この後に、苛11の周囲部分以外に生成されたNb*S
n層をエツチング等の化学的手段、あるいは、切削加工
等の機械的手段により除去して超電導回路16を形成し
、超電導ンートコイル17を製造することらできる。
Note that when forming this superconducting circuit 16, the method described below may be used. That is, first, the entire laminate plate 15 is subjected to diffusion heat treatment (heating treatment at 600 to 800°C for 20 to 200 hours) to diffuse and react Nb and Sn in the entire laminate plate I5 to generate Nb3Sn, and to form grooves l.
Diffuse T1 in l to generate a Nb+5n-Ti layer,
After this, Nb*S generated in areas other than the surrounding area of 11
The superconducting circuit 16 can be formed by removing the n-layer by chemical means such as etching or mechanical means such as cutting, and the superconducting route coil 17 can be manufactured.

あるいは、前記拡散熱処理を施す前に、積層板15に形
成すべき回路パターンの周囲部分を切削あるいはエツチ
ングにより除去し、その後に拡散熱処理を施してNb5
Sn−Ti層を生成させ、超電導回路16を形成して超
電導ンートコイル17を製造することもできる。
Alternatively, before performing the diffusion heat treatment, the peripheral portion of the circuit pattern to be formed on the laminate 15 is removed by cutting or etching, and then the diffusion heat treatment is performed to form the Nb5
It is also possible to produce the superconducting coil 17 by forming a Sn--Ti layer and forming the superconducting circuit 16.

以上説明したように超電導ンートコイル17を製造する
ならば、従来方法において行っていた第3元素を添加し
た合金を作成する工程がなくなるために、基板10と金
属板I3の加工性を損なうことがなくなり、中間焼鈍条
件が有利になり、従来方法に比較して加工性が向上する
If the superconducting root coil 17 is manufactured as explained above, there is no need to create an alloy containing a third element, which was done in the conventional method, so the workability of the substrate 10 and the metal plate I3 is not impaired. , intermediate annealing conditions become advantageous, and workability is improved compared to conventional methods.

第5図は本発明方法の他の実施例を説明するためのらの
で、本実施例においては、Cu−Sn合金板からなる基
板20と純Tiからなる添加仮21と純Nbからなる金
属板22を接合して積層板を構成し、この積層板に前述
のように拡散熱処理と回路形成処理を施す。
Since FIG. 5 is for explaining another embodiment of the method of the present invention, in this embodiment, a substrate 20 made of a Cu-Sn alloy plate, an additive material 21 made of pure Ti, and a metal plate made of pure Nb are used. 22 are joined together to form a laminate, and this laminate is subjected to diffusion heat treatment and circuit forming treatment as described above.

以上説明した方法によっても超電導ソートコイルを製造
することができる。
A superconducting sort coil can also be manufactured by the method described above.

なお、超電導金属間化合物の高磁界域における臨界電流
特性を向上させる第3元素として知られているのは、T
iの(也に、Ta、 Hf、  I n、 S i、A
LZr等てあろために、溝11に挿入する棒体は、これ
ら第3元素のいずれかからなる乙の、あるいはこれら第
3元素の2つ以上からなる合金棒であっても良い。更に
、前記実施例においては、基板10に溝11を形成した
が溝11は金属板13に、あるいは基板10と金属板1
3の両方に形成しても良い。
The third element known to improve the critical current characteristics of superconducting intermetallic compounds in the high magnetic field region is T.
i's (also, Ta, Hf, I n, S i, A
The rod to be inserted into the groove 11 may be an alloy rod made of any of these third elements or an alloy rod made of two or more of these third elements. Further, in the above embodiment, the groove 11 was formed in the substrate 10, but the groove 11 was formed in the metal plate 13, or between the substrate 10 and the metal plate 1.
3 may be formed.

「製造例1」 厚さ0.5mmのNb板の表面に切削加工によって幅4
0μm、深さ40μmであって、隣接する溝の間の間隔
を40μmに設定したらせん溝を形成し、このら仕ん溝
に挿入自在な大きさの直径40μmのTi棒を埋め込む
。次に、このNb板の表面側に、13wt%のSnを含
有し、厚さ2mmのブロンズ仮を被せ、更に底面側に厚
さ3mmの無酸素銅板を彼せ、これらを爆発圧接によっ
て接合するとともに圧延加工を在して厚さO、l mm
の積層板を作製した。この積層板においてブロンズ仮の
厚さは36μmであり、無酸素銅板の厚さは55μmで
あり、Nb板の厚さは9μmS溝幅は2 、2 mm1
隣接する溝間隔は2.2mmであった。
"Manufacturing Example 1" By cutting the surface of a 0.5 mm thick Nb plate, a width of 4
A spiral groove having a diameter of 0 μm, a depth of 40 μm, and an interval between adjacent grooves of 40 μm is formed, and a Ti rod having a diameter of 40 μm and having a size that can be freely inserted is embedded in this spiral groove. Next, the front side of this Nb plate is covered with a temporary bronze plate containing 13 wt% Sn and 2 mm thick, and then a 3 mm thick oxygen-free copper plate is placed on the bottom side, and these are joined by explosive pressure welding. With rolling process, the thickness is O, l mm.
A laminate of the following was produced. In this laminate, the temporary bronze thickness is 36 μm, the oxygen-free copper plate thickness is 55 μm, the Nb plate thickness is 9 μm, and the S groove width is 2.2 mm1.
The distance between adjacent grooves was 2.2 mm.

次に前記fslt層仮に、ビーム幅を2mmに設定した
出力5KWの炭酸ガスレーザビームをろ仕ん溝に沿うよ
うに照射して積層板の内部に拡散熱処理を施してNba
Sn層を生成させて超電導シートコイルを製造した。
Next, the fslt layer was heated by irradiating the inside of the laminate with a carbon dioxide laser beam with a 5KW output and a beam width of 2mm along the filter grooves to perform a diffusion heat treatment on the inside of the laminate.
A superconducting sheet coil was manufactured by forming a Sn layer.

完成した超電導シートコイルにおいて超電導回路の両端
で超電導特性を測定したところ、14T(テスラ)にお
いて、Jc値として500A/am”を示した。
When the superconducting properties of the completed superconducting sheet coil were measured at both ends of the superconducting circuit, it showed a Jc value of 500 A/am'' at 14 T (Tesla).

前記のように製造された超電導シートコイルの内部を顕
微鏡観察したところ、約5μm厚のNb。
When the inside of the superconducting sheet coil manufactured as described above was observed under a microscope, it was found that Nb was about 5 μm thick.

Sn層を確認することができた。It was possible to confirm the Sn layer.

なお、Tiを添加していない超電導シートコイルを製造
したところ、14TにおいてJc値として200Aを示
した。
In addition, when a superconducting sheet coil to which Ti was not added was manufactured, it showed a Jc value of 200 A at 14T.

従ってTiを添加して本発明により製造された超電導シ
ートコイルは、従来方法により製造された超電導シート
コイルに比較して、特に、高磁界域において優れた臨界
電流値を示すことが明らかになった。
Therefore, it has been revealed that the superconducting sheet coil manufactured by the present invention with addition of Ti exhibits an excellent critical current value, especially in the high magnetic field region, compared to the superconducting sheet coil manufactured by the conventional method. .

「製造例2」 +3wt%のSnを含有する厚さ4mmのブロンズ仮と
、厚さ0 、1 mmのTi板と、厚さI minのN
b仮と、厚さ6n+mの無酸素銅板を爆発圧接により接
合し、圧延加工を施して厚さ0 、1 mmnの圧延板
を作製した。この圧延板において、ブロンズ部分の厚さ
は36μmであり、Ti部分の厚さは0.9μm。
"Manufacturing Example 2" A 4 mm thick bronze temporary containing +3wt% Sn, a Ti plate with a thickness of 0 and 1 mm, and an N plate with a thickness of I min.
Temporary B and an oxygen-free copper plate with a thickness of 6n+m were joined by explosive welding and rolled to produce a rolled plate with a thickness of 0.1 mm. In this rolled plate, the thickness of the bronze portion is 36 μm, and the thickness of the Ti portion is 0.9 μm.

Nb部分の厚さは9μmであり、Cu部分の厚さは54
μmであった。
The thickness of the Nb part is 9 μm, and the thickness of the Cu part is 54 μm.
It was μm.

次に、この圧延板から直径300nonの円板状の積層
板を切り出し、幅2mmのらせん状の回路を放電加工に
より形成した。この後に前記らせん状の回路を750℃
に1000時間加熱する拡散熱処理を施し、Nb5Sn
超電導動超電導形成した。
Next, a disc-shaped laminate with a diameter of 300 non was cut out from this rolled plate, and a spiral circuit with a width of 2 mm was formed by electrical discharge machining. After this, the spiral circuit was heated to 750°C.
Nb5Sn
Superconducting superconductor was formed.

製造されたNb3Sn超電導回路の両端における超電導
特性を測定したところ、+4Tの外部磁界のもとでJc
値として500A/μmを示した。
When we measured the superconducting characteristics at both ends of the manufactured Nb3Sn superconducting circuit, we found that Jc under an external magnetic field of +4T.
The value was 500 A/μm.

なお、Tiを添加していない超電導シートコイルを製造
したところ14Tの外部磁界において200A/am″
を示している。
In addition, when we manufactured a superconducting sheet coil that did not contain Ti, it was 200 A/am'' in an external magnetic field of 14 T.
It shows.

このためTiを添加して本発明により製造された超電導
シートコイルは、従来方法により製造されたTiを含有
していない超電導シートコイルに比較して、特に高磁界
域において優れた臨界電流値を示すことが明らかになっ
た。
Therefore, the superconducting sheet coil manufactured according to the present invention with the addition of Ti exhibits superior critical current values, especially in high magnetic field regions, compared to superconducting sheet coils manufactured by conventional methods that do not contain Ti. It became clear.

「発明の効果」 以上説明したように本発明方法によって超電導ンートコ
イルを製造するならば、基板と金属板を合金化すること
なく第3元素を添加して超電導回路を生成させることが
できるために、高磁界域において優れた臨界電流特性を
発揮する超電導シートコイルを製造できる。また、基板
と金属板に第3元素を添加することなく加工できるため
に加工ら容易である。また、基板と金属板の間に配する
添加部材の厚さや直径を所要の値に設定することにより
、所望量の第3元素を含有させて所望の臨界電流特性を
発揮する超電導シートコイルを製造できる効果がある。
"Effects of the Invention" As explained above, if a superconducting root coil is manufactured by the method of the present invention, a superconducting circuit can be created by adding a third element without alloying the substrate and the metal plate. It is possible to manufacture superconducting sheet coils that exhibit excellent critical current characteristics in high magnetic field regions. Further, since the substrate and the metal plate can be processed without adding a third element, processing is easy. In addition, by setting the thickness and diameter of the additive member placed between the substrate and the metal plate to the required values, it is possible to manufacture a superconducting sheet coil that contains the desired amount of the third element and exhibits the desired critical current characteristics. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は、本発明の一実施例を説明するた
めのらので、第1図は溝を形成した基板の断面図、第2
図は溝内に第3元素線を挿入した状態を示す断面図、第
3図は積層板の断面図、第4図は超電導シートコイルの
斜視図、第5図は本発明の第2実施例に使用する積層板
の分解側面図、第6図は第1の従来方法を説明するため
の側面図、第7図は第2の従来方法を説明するための側
面図である。 lO・・・・・・基板、   11・・・・・・溝、1
2・・・・・・添加部材、    13・・・・・・金
属板、15・・・・・・積層板、     16・・・
・・・超電導回路、17・・・・・・超電導シートコイ
ル。
1 to 4 are for explaining one embodiment of the present invention, and FIG.
The figure is a cross-sectional view showing the third element wire inserted into the groove, Figure 3 is a cross-sectional view of the laminated plate, Figure 4 is a perspective view of a superconducting sheet coil, and Figure 5 is a second embodiment of the present invention. FIG. 6 is a side view for explaining the first conventional method, and FIG. 7 is a side view for explaining the second conventional method. lO...Substrate, 11...Groove, 1
2... Additive member, 13... Metal plate, 15... Laminate plate, 16...
...Superconducting circuit, 17...Superconducting sheet coil.

Claims (1)

【特許請求の範囲】[Claims]  超電導金属間化合物を構成する2つ以上の金属元素の
うち、少なくとも1つを含有する基板と、前記金属元素
のうち、残りの金属元素を含有する金属板とを重ねて積
層板を構成し、この積層板に超電導金属間化合物を生成
させる拡散熱処理と回路形成処理を施して超電導シート
コイルを製造する方法において、前記超電導金属間化合
物の高磁界域における臨界電流密度を向上させるTi、
Ta、Hf、In、Si、Al、Zr等の第3元素のう
ち、少なくとも1種の元素からなる添加部材を用意し、
前記基板と金属板の間に前記添加部材を配して積層板を
形成するとともに、この積層板に拡散熱処理と回路形成
処理を施して超電導金属間化合物からなる超電導回路を
形成することを特徴とする超電導シートコイルの製造方
法。
A laminate is formed by stacking a substrate containing at least one of the two or more metal elements constituting the superconducting intermetallic compound and a metal plate containing the remaining metal element among the metal elements, In the method of manufacturing a superconducting sheet coil by subjecting this laminate to diffusion heat treatment and circuit forming treatment to generate a superconducting intermetallic compound, Ti, which improves the critical current density of the superconducting intermetallic compound in a high magnetic field region;
Prepare an additive member made of at least one element among third elements such as Ta, Hf, In, Si, Al, and Zr,
A superconductor characterized in that the additive member is placed between the substrate and the metal plate to form a laminate, and the laminate is subjected to diffusion heat treatment and circuit forming treatment to form a superconducting circuit made of a superconducting intermetallic compound. Method of manufacturing sheet coils.
JP61120428A 1986-05-26 1986-05-26 Manufacture of superconducting sheet coil Pending JPS62277704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61120428A JPS62277704A (en) 1986-05-26 1986-05-26 Manufacture of superconducting sheet coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61120428A JPS62277704A (en) 1986-05-26 1986-05-26 Manufacture of superconducting sheet coil

Publications (1)

Publication Number Publication Date
JPS62277704A true JPS62277704A (en) 1987-12-02

Family

ID=14785974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120428A Pending JPS62277704A (en) 1986-05-26 1986-05-26 Manufacture of superconducting sheet coil

Country Status (1)

Country Link
JP (1) JPS62277704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255451A (en) * 1988-04-04 1989-10-12 Canon Inc Coreless motor and lead
US5099162A (en) * 1987-07-22 1992-03-24 Canon Kabushiki Kaisha Coil of superconducting material for electric appliance and motor utilizing said coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099162A (en) * 1987-07-22 1992-03-24 Canon Kabushiki Kaisha Coil of superconducting material for electric appliance and motor utilizing said coil
JPH01255451A (en) * 1988-04-04 1989-10-12 Canon Inc Coreless motor and lead

Similar Documents

Publication Publication Date Title
JP3549663B2 (en) Manufacturing method of wire electrode
JP2771232B2 (en) Method of manufacturing wire electrode for electric discharge cutting
EP0202895A2 (en) Method of manufacturing compound superconductors
JPH05503495A (en) Method of forming electrical connections in high temperature superconductors using metal precursors and products formed by the method
JPS62277704A (en) Manufacture of superconducting sheet coil
CA2042150A1 (en) Method of melt forming a superconducting joint between superconducting tapes
JPS6117325B2 (en)
RU2285743C1 (en) Method of synthesis of superconducting inter-metallic joint in films
JPS62264605A (en) Manufacture of compound superconducting magnet coil
EP0192874B1 (en) Method for injecting exotic atoms into a solid material with electron beams
JPS63107003A (en) Manufacture of superconductive sheet coil
JPS61289608A (en) Manufacture of compound base superconductive magnet coil
JPS63107004A (en) Manufacture of nb3sn series superconductive disk
JPS61138417A (en) Manufacture of a-15 type super conducting compound
JP7401899B2 (en) Lithium target for neutron generation and its manufacturing method
JPH0368721A (en) Manufacture of gradient material
JPH0463485B2 (en)
US3761254A (en) Alloy for superconductive magnet
JPH05185320A (en) Electrode wire for electric discharge working and its manufacture
JPH05880B2 (en)
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture
DE1283975B (en) Method for non-blocking contacting of p-conductive gallium arsenide
JP2000348546A (en) Oxide superconducting wire and manufacture thereof
JPH02265116A (en) Manufacture of superconductive material
KR20000000707A (en) Different sort metal material bound having cube structure and manufacturing method thereof