JPS63107004A - Manufacture of nb3sn series superconductive disk - Google Patents

Manufacture of nb3sn series superconductive disk

Info

Publication number
JPS63107004A
JPS63107004A JP25217786A JP25217786A JPS63107004A JP S63107004 A JPS63107004 A JP S63107004A JP 25217786 A JP25217786 A JP 25217786A JP 25217786 A JP25217786 A JP 25217786A JP S63107004 A JPS63107004 A JP S63107004A
Authority
JP
Japan
Prior art keywords
heat treatment
substrate
superconducting
disk
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25217786A
Other languages
Japanese (ja)
Inventor
Masaru Sugimoto
優 杉本
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Nobuyuki Sadakata
伸行 定方
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP25217786A priority Critical patent/JPS63107004A/en
Publication of JPS63107004A publication Critical patent/JPS63107004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To form a superconductive intermetallic compound uniformly in the whole region of a disk, and to manufacture the superconducting disk displaying stable superconductive characteristics by covering a substrate with a thin member containing Sn and executing heat treatment through which a laminated plate is heated at a specific temperature. CONSTITUTION:A first substrate 11 in a laminated plate 14 with the first substrate 11 containing Cu and a second substrate 12 including Nb is covered with a thin member 15 containing Sn, and first heat treatment through which the laminated plate 14 is heated at a temperature higher than the melting point of Sn and lower than 300 deg.C is executed. Second heat treatment through which the laminated plate 14 is heated at a temperature higher than the first heat treatment temperature and lower than a diffusion heat treatment temperature is carried out, and diffusion heat treatment for forming Nb3Sn is executed, thus manufacturing a superconductive disk 20. The thin member 15 such as one consisting of Sn is stuck onto the surface of the laminated plate 14 in which the first substrate 11 such as one composed of Cu, the second sub strate 12 such as one made up of Sn and a stabilized substrate such as one 13 consisting of Cu are laminated. The upper surface of the member 15 is covered with a ceramic board 16 and first heat treatment is carried out, and an intermediate layer 11a composed of Cu and Sn is formed.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、粒子加速器用マグネット、核磁気共鳴装置用
マグネット等に用いられるNb3Sn系超電導ディスク
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a Nb3Sn-based superconducting disk used for a magnet for a particle accelerator, a magnet for a nuclear magnetic resonance apparatus, etc.

「従来の技術」 臨界温度が高く、大きな臨界電流密度を得ることができ
る超電導体としてNb3Sn系超電導体が知られている
。このNb3Sn系超電導体を用いて構成される超電導
ディスクの製造方法の一例として、従来、第6図と第7
図を基に以下に説明する方法が知られている。
"Prior Art" Nb3Sn-based superconductors are known as superconductors that have a high critical temperature and can obtain a large critical current density. As an example of a method for manufacturing a superconducting disk constructed using this Nb3Sn-based superconductor, conventional methods shown in FIGS.
A method described below based on the figures is known.

前記Nb3Sn系超電導ディスクを製造するには、まず
、第6図に示すようにCuまたはCu−Sn合金からな
る第1基板lと、 Nbからなる第2基板2と、Cuま
たはCu合金からなる安定化基板3とを接合して積層板
4を形成するとともに、第1基板lの表面に電気メツキ
法によりSnメッキ層5を形成する。
To manufacture the Nb3Sn-based superconducting disk, first, as shown in FIG. 6, a first substrate l made of Cu or a Cu-Sn alloy, a second substrate 2 made of Nb, and a stable substrate made of Cu or Cu alloy A laminated plate 4 is formed by bonding the first substrate 1 and the first substrate 1, and a Sn plating layer 5 is formed on the surface of the first substrate 1 by electroplating.

次に、前記積層板4に熱処理を施し、Snメッキ層5の
Snを第1基板lの内部に拡散させて第1基板1を第7
図に示す高SnQ度の合金板6とする。
Next, the laminated plate 4 is heat-treated to diffuse Sn in the Sn plating layer 5 into the first substrate 1, so that the first substrate 1 is
The alloy plate 6 shown in the figure has a high SnQ degree.

次いで前記積層板4の表面側に溝加工等の回路形成加工
を施し、加工後にNb3Sn生成のための拡散熱処理を
施してNbとSnを拡散し反応させてNb3Sn超電導
金属間化合物からなる超電導回路を形成し、超電導シー
トコイルを製造していた。
Next, circuit forming processing such as groove processing is performed on the surface side of the laminated plate 4, and after processing, a diffusion heat treatment is performed to generate Nb3Sn to diffuse and react Nb and Sn, thereby forming a superconducting circuit made of the Nb3Sn superconducting intermetallic compound. and manufactured superconducting sheet coils.

[発明が解決しようとする問題点」 前記製造方法により大型の超電導ディスクを製造す乞場
合、従来はNb3Snの生成に寄与するSnを電気メツ
キ法により供給していた関係から、第1基板lの表面に
形成されるSnメッキ層5が不均一な厚さとなった場合
に、Snの拡散が均一になされない問題を生じる。
[Problems to be Solved by the Invention] When manufacturing a large-sized superconducting disk using the above-mentioned manufacturing method, since Sn, which contributes to the formation of Nb3Sn, has conventionally been supplied by electroplating, it is necessary to If the Sn plating layer 5 formed on the surface has a non-uniform thickness, a problem arises in that Sn is not uniformly diffused.

ここで、第8図と第9図に、電気メツキ法によって積層
板4の表面部に形成されたメッキ層の厚さを曲線B、C
で示す。第8図の曲線Bは積層板4の横方向に沿う各部
分のメッキ厚を示し、第9図の曲線Cは積層板4の縦方
向に沿う各部分のメッキ厚を示している。第8図と第9
図を参照して明らかなように、積層板4の外周部側の部
分のメッキ厚が積層板の中央部分のメッキ厚よりも厚く
形成される傾向が見られ、Snメッキ層5の厚さに不均
一性を生じていることが明らかになった。
Here, in FIGS. 8 and 9, the thickness of the plating layer formed on the surface of the laminate 4 by the electroplating method is shown by curves B and C.
Indicated by Curve B in FIG. 8 indicates the plating thickness at each portion along the lateral direction of the laminate 4, and curve C in FIG. 9 indicates the plating thickness at each portion along the longitudinal direction of the laminate 4. Figures 8 and 9
As is clear from the figure, there is a tendency for the plating thickness on the outer peripheral side of the laminate 4 to be thicker than the plating thickness on the central part of the laminate, and the thickness of the Sn plating layer 5 It became clear that non-uniformity was occurring.

そして、前記の如<Snメッキ層5の厚さに不均一性を
有する積層板4を用い、この積層板4にSnを拡散させ
る目的で熱処理を行って高Snn度のCu−Sn合金板
を作成した場合、第1θ図に示すように、積層板4の最
外周部にSn濃度の極めて高い部分りを生じ、その内側
にSn1度の高い部分Eを生じ、積層板4の中央部分の
みにSn濃度の均一な部分Fを生じることになる。そし
て、Sn濃度に不均一性を有する積層板4に拡散熱処理
を施し、Snを拡散してNb3Snを生成させた場合、
N bs S nの生成量が部分的に不均一になるばか
りか、形成される超電導回路に不連続部分を生じて超電
導通路が不連続となる問題がある。また、積層板4の外
周部側はど5nffiが多い関係から、5nfiの多い
外周部分に、脆いCu−Sn化合物が生じるために、超
電導ディスクの機械的特性が低下する欠点があった。
Then, using the laminated plate 4 having non-uniformity in the thickness of the Sn plating layer 5 as described above, heat treatment is performed for the purpose of diffusing Sn into the laminated plate 4 to form a Cu-Sn alloy plate with a high Snn degree. When this is done, as shown in Fig. 1θ, a portion with an extremely high Sn concentration is generated at the outermost circumference of the laminate 4, a portion E with a high Sn concentration of 1 degree is generated inside the laminate, and only the center portion of the laminate 4 has a portion E with a high Sn concentration. This results in a portion F having a uniform Sn concentration. Then, when the laminate 4 having non-uniform Sn concentration is subjected to diffusion heat treatment to diffuse Sn and generate Nb3Sn,
There is a problem in that not only the amount of N bs S n produced is partially nonuniform, but also discontinuous portions occur in the formed superconducting circuit, resulting in discontinuous superconducting paths. Furthermore, since there is a large amount of 5nffi on the outer peripheral side of the laminate 4, a brittle Cu-Sn compound is generated in the outer peripheral portion where there is a large amount of 5nfi, which has the disadvantage of deteriorating the mechanical properties of the superconducting disk.

本発明は、前記問題に鑑みてなされたもので、ディスク
の全域に超電導金属間化合物を均一に生成させることが
でき、安定した超電導特性を発揮する超電導ディスクを
製造できるとともに、繁雑なメッキ工程を省略して製造
効率を向上することができ、所望のmの超電導金属間化
合物を有する超電導ディスクを製造できる方法を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and can produce superconducting intermetallic compounds uniformly over the entire area of the disk, making it possible to manufacture a superconducting disk that exhibits stable superconducting properties, as well as eliminating the complicated plating process. It is an object of the present invention to provide a method that can improve manufacturing efficiency by omitting this step and can manufacture a superconducting disk having a desired m of superconducting intermetallic compounds.

「問題点を解決するための手段」 本発明は、前記問題点を解決するために、Cuを含有す
る第1基板と、Nbを含有する第2基板とを具備してな
る積層板にSnを供給した後に拡散熱処理を施し、超電
導回路を形成してNb3Sn系超電導ディスクを製造す
る方法において、Snを含有した薄肉部材を前記第1基
板に被せるとともに、Snの融点よりも高い温度であっ
て300℃よりも低い温度に前記積層板を加熱する第1
熱処理を施し、この後に、前記積層板を第1熱処理温度
よりも高く拡散熱処理温度よりも低い温度に加熱する第
2熱処理を施し、更に、Nb3Sn生成用の拡散熱処理
を施すものである。
"Means for Solving the Problems" In order to solve the above-mentioned problems, the present invention provides a laminate including a first substrate containing Cu and a second substrate containing Nb, in which Sn is applied. In the method of manufacturing an Nb3Sn-based superconducting disk by applying diffusion heat treatment to forming a superconducting circuit after supplying the first substrate, a thin member containing Sn is covered with the first substrate, and at a temperature higher than the melting point of Sn, a first step of heating the laminate to a temperature lower than °C;
A heat treatment is performed, and then a second heat treatment is performed to heat the laminate to a temperature higher than the first heat treatment temperature and lower than the diffusion heat treatment temperature, and a diffusion heat treatment for Nb3Sn generation is further performed.

「作用」 薄肉部材を第1基板に被せ、Snの溶融温度よりも高(
、しかも、300℃よりも低い温度に加熱することによ
って、薄肉部材のSnを第1基板内に均一に拡散させて
第1基板内にη相を生成させ、この後に第1熱処理温度
よりも高く拡散熱処理温度より低い温度に加熱すること
によってη相を消失させ、更に拡散熱処理を施すことに
より、Snを第2基板のNbと反応させてNb3Sn超
電導金属間化合物を生成する。
"Operation" A thin-walled member is placed over the first substrate and heated to a temperature higher than the melting temperature of Sn (
Moreover, by heating to a temperature lower than 300° C., Sn in the thin member is uniformly diffused into the first substrate to generate an η phase in the first substrate, and then heated to a temperature higher than the first heat treatment temperature. By heating to a temperature lower than the diffusion heat treatment temperature, the η phase disappears, and by further performing the diffusion heat treatment, Sn reacts with Nb of the second substrate to generate a Nb3Sn superconducting intermetallic compound.

「実施例」 第1図ないし第5図は本発明の製造方法の一例を示すも
ので、Nb3Sn系超電導シートコイルを製造するには
、まず、CuあるいはCu−Sn合金からなる第1基板
11と、Snからなる箔状あるいは板状の第2基板12
と、CuあるいはCu合金からなる安定化基板13を爆
発圧接や圧延等の接合手段を用いて積層し、第1図に示
す積層板14を作成する。続いて積層板14の第1基板
l!の表面に、Snからなる箔状あるいは板状の薄肉部
材15を第1図に示すように貼り付ける。
"Example" Figures 1 to 5 show an example of the manufacturing method of the present invention. In order to manufacture an Nb3Sn superconducting sheet coil, first a first substrate 11 made of Cu or a Cu-Sn alloy is prepared. , a foil-like or plate-like second substrate 12 made of Sn.
Then, a stabilizing substrate 13 made of Cu or a Cu alloy is laminated using a joining means such as explosive welding or rolling to create a laminated plate 14 shown in FIG. Next, the first substrate l! of the laminate 14! A foil-like or plate-like thin member 15 made of Sn is pasted on the surface as shown in FIG.

次に、不活性ガス雰囲気、あるいは、真空雰囲気におい
て、前記薄肉部材I5の上面にセラミック板16を被せ
、全体を保持した状態から、Snの溶融温度(232℃
)より高い温度であって、300℃以下の温度に数十時
間加熱する第1熱処理を施す。この第1熱処理時にあっ
ては、Snの流動を抑制するためにセラミック板16と
第1基板11により薄肉部材15を挾むことにする。こ
こでセラミック板■6の表面には微細な凹凸が存在して
いるために薄肉部材t5の溶融による流動を阻止するこ
とができる。この第1熱処理によって、薄肉部材15の
Snを第1基[11内に完全に均一に拡散することがで
き、第1基板itの表面部に第3図に示すようにη相(
CusSn)からなる中間層11aを生成させ、薄肉部
材15を消失さU“る。なお第1熱処理において加熱温
度の上限を300°Cに限定したのは、300℃を越え
る温度に加熱した場合に、η相以外の金属間化合物相が
生成するためである。
Next, in an inert gas atmosphere or a vacuum atmosphere, the ceramic plate 16 is placed on the top surface of the thin member I5, and while the whole is held, the melting temperature of Sn (232° C.
) A first heat treatment is performed at a higher temperature of 300° C. or less for several tens of hours. During this first heat treatment, the thin member 15 is sandwiched between the ceramic plate 16 and the first substrate 11 in order to suppress the flow of Sn. Here, since there are fine irregularities on the surface of the ceramic plate 6, it is possible to prevent the thin member t5 from flowing due to melting. By this first heat treatment, the Sn of the thin member 15 can be completely and uniformly diffused into the first group [11], and the η phase (
The reason why the upper limit of the heating temperature in the first heat treatment is limited to 300°C is because the upper limit of the heating temperature in the first heat treatment is 300°C. This is because an intermetallic compound phase other than the η phase is generated.

次に、前記積層板4を500〜600℃に数十時間加熱
する第2熱処理を施す。この第2熱処理によって第2基
板12を第4図に示す高Sn濃度のCu−Sn合金板1
7とすることができ、η相中のSnを拡散させてη相も
消失させることができる。この第2熱処理にあっては、
前記第1熱処理によってSnが既に第1基板11に均一
に拡散しているために、Snを均一に含有するCu−S
n合金板」7を作成することができる。なお、第2熱処
理を施す温度範囲を500〜600°Cに限定したのは
、Cu−5n系合金状態図から明らかなように、Snが
Cu中に固溶しやすい温度範囲のためである。
Next, a second heat treatment is performed to heat the laminated plate 4 at 500 to 600° C. for several tens of hours. This second heat treatment transforms the second substrate 12 into a Cu-Sn alloy plate 1 with a high Sn concentration as shown in FIG.
7, and the Sn in the η phase can be diffused and the η phase can also be eliminated. In this second heat treatment,
Since Sn has already been uniformly diffused into the first substrate 11 by the first heat treatment, Cu-S containing Sn uniformly
n alloy plate" 7 can be created. The temperature range in which the second heat treatment is performed is limited to 500 to 600°C because, as is clear from the Cu-5n alloy phase diagram, this is the temperature range in which Sn easily forms a solid solution in Cu.

次に、前記積層板4に渦巻き状の溝加工を施し、更に、
Nb3Sn生成用の拡散熱処理(600〜850℃に2
0〜300時間程度加熱する処理)を施して合金板17
のSnを第2基板12に拡散させて第5図に示す如き渦
巻き状のNb3Sn超電導回路18を備えた超電導ディ
スク20を製造する。
Next, the laminated plate 4 is processed with a spiral groove, and further,
Diffusion heat treatment for Nb3Sn generation (600-850℃ for 2
The alloy plate 17 is heated for about 0 to 300 hours.
By diffusing Sn into the second substrate 12, a superconducting disk 20 having a spiral Nb3Sn superconducting circuit 18 as shown in FIG. 5 is manufactured.

なお、積層板4から超電導ディスク20を製造する場合
、ビーム幅を規定したレーザビームを用い、積層板4を
渦巻き状に加熱しつつ拡散熱処理を施すことによって渦
巻状の超電導回路を作成することもできる。
Note that when manufacturing the superconducting disk 20 from the laminate 4, a spiral superconducting circuit may be created by performing diffusion heat treatment while heating the laminate 4 in a spiral using a laser beam with a defined beam width. can.

以上の方法により製造された超電導ディスク20にあっ
ては、Snを均一に分散させたCu−Sn合金板I7か
らSnを第2基板12に拡散させてNb3Snを生成さ
せて製造されているために、第2基板12の全体に均一
にNb3Snが生成し、超電導特性の劣化を生じない。
The superconducting disk 20 manufactured by the above method is manufactured by diffusing Sn from the Cu-Sn alloy plate I7 in which Sn is uniformly dispersed into the second substrate 12 to generate Nb3Sn. , Nb3Sn is generated uniformly over the entire second substrate 12, and the superconducting properties do not deteriorate.

また、前記方法にあっては、薄肉部材15を用いてSn
を供給しているために、薄肉部材15の厚さを所要の値
にすることによって供給する5nffiを調節すること
ができる。従って所望量のNb3Sn超電導金属間化合
物を有する超電導ディスクを製造することができる。
Further, in the method, using the thin member 15, Sn
Since 5nffi is supplied, the supplied 5nffi can be adjusted by adjusting the thickness of the thin member 15 to a desired value. Therefore, a superconducting disk having a desired amount of Nb3Sn superconducting intermetallic compound can be manufactured.

更に、積層板4に均一なmのSnを供給できるために、
大型の超電導ディスクを製造した場合であってもNb+
Sn生成mの安定した超電導ディスクを製造することが
できる効果がある。なお、従来行う′必要があったメッ
キ工程を省略できるために、超電導ディスクの製造工程
の簡略化をなしうる。
Furthermore, since m of Sn can be uniformly supplied to the laminated plate 4,
Even when manufacturing large superconducting disks, Nb+
This has the effect of making it possible to manufacture a superconducting disk with stable Sn generation. In addition, since the plating process that was conventionally required to be performed can be omitted, the manufacturing process of the superconducting disk can be simplified.

一方前記実施例においては、第1基板11に被せる薄肉
部材15として純Snからなるものを用いたが、化合物
系超電導体の高磁界域における臨界電流特性を向上させ
る第3元素として知られているTis Ta、  In
、 Hr、 Al、 Siのうち、1種以上を含有させ
たSn合金製の薄肉部材を用いることもできる。そして
このSn合金製の薄肉部材を用いた場合に得られる超電
導ディスクは高磁界域における超電導特性が向上する。
On the other hand, in the above embodiment, pure Sn was used as the thin member 15 to cover the first substrate 11, but Sn is known as a third element that improves the critical current characteristics of compound superconductors in high magnetic field regions. Tis Ta, In
A thin member made of an Sn alloy containing one or more of Hr, Al, and Si may also be used. A superconducting disk obtained by using this Sn alloy thin member has improved superconducting properties in a high magnetic field region.

「製造例」 8重量%のSnを含有する厚さ4mmのブロンズ板と、
厚さ!IIIIIlのNb板と、厚さ6mmの無酸素銅
板とを爆発圧接により接合した後に、圧延加工を施して
厚さ0 、1111111%幅400 mm、長さ40
0mmの積層板を作成した。この積層板においてブロン
ズ部分の厚さは36μm、Nb部分の厚さは9μm1C
u部分の厚さは55μmであった。
"Manufacturing Example" A 4 mm thick bronze plate containing 8% by weight of Sn,
thickness! After joining a IIIIIII Nb plate and a 6 mm thick oxygen-free copper plate by explosive welding, they were rolled to a thickness of 0, 1111111%, width of 400 mm, length of 40 mm.
A 0 mm laminate was created. In this laminate, the thickness of the bronze part is 36 μm, and the thickness of the Nb part is 9 μm.
The thickness of the u portion was 55 μm.

前記積層板に厚さ4μmのSn箔を貼り合わせるととも
にSn箔の上にセラミック板を被せ、全体を250℃に
50時間加熱する第1熱処理と、550℃に50時間加
熱する第2熱処理を順次施した。セラミック板を取り除
いた後に、放電加工によって幅2ma+の渦巻き状の溝
を溝幅2IIII11になるように形成した。この後に
800℃に50時間加熱する拡散熱処理を施すことによ
り、NbとSnを反応させてNb3Sn系超電導ディス
クを製造した。
A Sn foil with a thickness of 4 μm is bonded to the laminate, a ceramic plate is placed on top of the Sn foil, and a first heat treatment in which the whole is heated to 250 ° C. for 50 hours and a second heat treatment in which the whole is heated to 550 ° C. for 50 hours are sequentially performed. provided. After removing the ceramic plate, a spiral groove with a width of 2 ma+ was formed by electric discharge machining so that the groove width was 2III11. Thereafter, a diffusion heat treatment of heating at 800° C. for 50 hours was performed to react Nb and Sn to produce a Nb3Sn-based superconducting disk.

完成したNb3Sn超電導回路の両端で超電導特性を測
定したところ、l0T(テスラ)における臨界電流特性
値として80Aを得ることができ、電流密度として10
00 A/mm″の優秀な値を示した。なお、この超電
導ディスクの内部を観察したところ、Nb1Sn層は各
回路の部分で約5μm生成されていた。
When we measured the superconducting characteristics at both ends of the completed Nb3Sn superconducting circuit, we were able to obtain a critical current characteristic value of 80 A at 10T (Tesla), and a current density of 10
It showed an excellent value of 00 A/mm''. When the inside of this superconducting disk was observed, it was found that the Nb1Sn layer had a thickness of about 5 μm in each circuit portion.

「発明の効果」 以上説明したように本発明は、Cuを含有する第1基板
とSnを含有する第2基板を具備してなる積層板に拡散
熱処理を施して製造される超電導ディスクの製造方法に
おいて、Snを含有する薄肉部材を第1基板に被せ、こ
の後にSnの融点よりも高い温度であって300℃以下
の温度に加熱する第1熱処理と、拡散熱処理温度よりも
低い温度に加熱する第2熱処理を施すものであるために
、第1熱処理によってSnを第1基板に均一に拡散させ
ることができる。このため・拡散熱処理時に金属元素を
積層板に均一に拡散させてNb3Snを均一に生成させ
ることができ、超電導特性の不均一性のない超電導ディ
スクを製造できる効果がある。
"Effects of the Invention" As explained above, the present invention provides a method for manufacturing a superconducting disk, which is manufactured by subjecting a laminate including a first substrate containing Cu and a second substrate containing Sn to diffusion heat treatment. In this step, a thin member containing Sn is placed on the first substrate, and then a first heat treatment is performed in which the thin member containing Sn is heated to a temperature higher than the melting point of Sn and 300° C. or less, and then heated to a temperature lower than the diffusion heat treatment temperature. Since the second heat treatment is performed, Sn can be uniformly diffused into the first substrate by the first heat treatment. Therefore, during the diffusion heat treatment, the metal element can be uniformly diffused into the laminated plate to uniformly generate Nb3Sn, and there is an effect that a superconducting disk without non-uniformity in superconducting properties can be manufactured.

また、薄肉部材の厚さを所望の値にすることにより、積
層板に供給する5nfflを所望の値にすることができ
、所望量のN bs S nを有する超電導ディスクを
製造できる効果がある。ところで、従来方法にあっては
Snメッキの厚さに不均一性を生じる関係から、大型の
超電導ディスクを製造する場合に不均一にNb3Snを
生成させる問題が生じていたが、本発明方法にあっては
メッキ処理を行わなくとも積層板に均一に金属元素を供
給できるために所望の特性を有する大型の超電導ディス
クを製造できる効果がある。
Further, by setting the thickness of the thin member to a desired value, it is possible to set the 5nffl supplied to the laminate to a desired value, and there is an effect that a superconducting disk having a desired amount of N bs S n can be manufactured. By the way, in the conventional method, due to non-uniformity in the thickness of Sn plating, there was a problem in which Nb3Sn was produced non-uniformly when manufacturing large superconducting disks, but the method of the present invention has this problem. In addition, since metal elements can be uniformly supplied to the laminate without plating, it is possible to manufacture large-sized superconducting disks with desired characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は、本発明の一実施例を説明するた
めのもので、第1図は積層板にセラミック板を彼せる状
態を示す斜視図、第2図は積層板にセラミック板を被せ
た状態を示す側面図、第3図は第!熱処理を施した後の
状態を示す側面図、第4図は積層板に第2熱処理を施し
た後の状態を示す側面図、第5図は超電導ディスクを示
す斜視図、第6図と第7図は従来の超電導線の製造方法
を説明するためのもので、第6図は積層板の断面図、第
7図は熱処理後の積層板の断面図、第8図は積層板の横
方向に沿うメッキ厚を示す平面図、第9図は積層板の縦
方向に沿うメッキ厚を示す平面図、第1O図は積層板内
部のSnの濃度分布状況を示す平面図である。 !l・・・・・・第1基板、   12・・・・・・第
2基板、13・・・・・・安定化基板、  15・・・
・・・薄肉部材、20・・・・・・超電導ディスク。
Figures 1 to 5 are for explaining one embodiment of the present invention. Figure 1 is a perspective view showing a state in which a ceramic plate is placed over a laminate, and Figure 2 is a perspective view showing a state in which a ceramic plate is placed over a laminate. A side view showing the state in which it is covered, Figure 3 is Figure 3! FIG. 4 is a side view showing the state after the second heat treatment is applied to the laminate, FIG. 5 is a perspective view showing the superconducting disk, and FIGS. 6 and 7 The figures are for explaining the conventional manufacturing method of superconducting wires. Figure 6 is a cross-sectional view of a laminate, Figure 7 is a sectional view of a laminate after heat treatment, and Figure 8 is a cross-sectional view of a laminate in the lateral direction. FIG. 9 is a plan view showing the plating thickness along the longitudinal direction of the laminate, and FIG. 1O is a plan view showing the Sn concentration distribution inside the laminate. ! l...First substrate, 12...Second substrate, 13...Stabilizing substrate, 15...
...Thin-walled member, 20...Superconducting disk.

Claims (1)

【特許請求の範囲】[Claims] Cuを含有する第1基板と、Nbを含有する第2基板と
を具備してなる積層板にSnを供給した後に拡散熱処理
を施し、Nb_3Sn超電導回路を形成してNb_3S
n系超電導ディスクを製造する方法において、Snを含
有した薄肉部材を前記第1基板に被せた後に、Snの融
点よりも高い温度であって300℃よりも低い温度に前
記積層板を加熱する第1熱処理を施し、次いで前記積層
板を第1熱処理温度よりも高い温度であって拡散熱処理
温度よりも低い温度に加熱する第2熱処理を施し、この
後にNb_3Sn生成用の拡散熱処理を施すことを特徴
とするNb_3Sn系超電導ディスクの製造方法。
After supplying Sn to a laminate comprising a first substrate containing Cu and a second substrate containing Nb, a diffusion heat treatment is performed to form an Nb_3Sn superconducting circuit, thereby forming an Nb_3S superconducting circuit.
In the method for manufacturing an n-based superconducting disk, after covering the first substrate with a thin member containing Sn, the laminate is heated to a temperature higher than the melting point of Sn and lower than 300°C. 1 heat treatment, then performs a second heat treatment in which the laminate is heated to a temperature higher than the first heat treatment temperature and lower than the diffusion heat treatment temperature, and then a diffusion heat treatment for Nb_3Sn generation is performed. A method for manufacturing a Nb_3Sn-based superconducting disk.
JP25217786A 1986-10-23 1986-10-23 Manufacture of nb3sn series superconductive disk Pending JPS63107004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25217786A JPS63107004A (en) 1986-10-23 1986-10-23 Manufacture of nb3sn series superconductive disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25217786A JPS63107004A (en) 1986-10-23 1986-10-23 Manufacture of nb3sn series superconductive disk

Publications (1)

Publication Number Publication Date
JPS63107004A true JPS63107004A (en) 1988-05-12

Family

ID=17233565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25217786A Pending JPS63107004A (en) 1986-10-23 1986-10-23 Manufacture of nb3sn series superconductive disk

Country Status (1)

Country Link
JP (1) JPS63107004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310705A (en) * 1993-01-04 1994-05-10 The United States Of America As Represented By The United States Department Of Energy High-field magnets using high-critical-temperature superconducting thin films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310705A (en) * 1993-01-04 1994-05-10 The United States Of America As Represented By The United States Department Of Energy High-field magnets using high-critical-temperature superconducting thin films

Similar Documents

Publication Publication Date Title
US4043028A (en) Method of fabricating composite superconductors
JP2007200831A (en) Superconductor base material and method for fabrication thereof
JPS5913036A (en) Production of nb3sn superconductive wire rod using cu-4a group element alloy
JPH0419918A (en) Nb3al-type superconductor wire manufacturing method and its apparatus
JPS63107004A (en) Manufacture of nb3sn series superconductive disk
Dietderich et al. The critical current density and microstructural state of an internal tin multifilamentary superconducting wire
US3868768A (en) Method of producing a composite superconductor
US5843584A (en) Superconductive article and method of making
US5747181A (en) Superconductive article and method of making
JPS61289608A (en) Manufacture of compound base superconductive magnet coil
JPS63107003A (en) Manufacture of superconductive sheet coil
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
Takeuchi et al. Microstructures and superconducting properties of in situ V 3 Ga composite prepared by external diffusion process
JP2893039B2 (en) Method of manufacturing superconducting three-layer foil material
US3761254A (en) Alloy for superconductive magnet
JPS63294615A (en) Compound superconduction stabilizing thin plate and its manufacture
JPH0355011B2 (en)
JPS639582B2 (en)
JPS5838404A (en) Method of producing stabilized superconductor
JPH0574508A (en) Superconductive wire connecting method
JPS60145371A (en) Manufacture of superconductive wire rod of compound containing dispersed nb3sn fiber
JPH05101720A (en) Compound superconductive wire and manufacture thereof
JPH0443515A (en) Manufacture of nb3sn superconductor
JPS6348404B2 (en)
JPS63294620A (en) Superconduction stabilizing thin plate, its manufacture and use