JPS62260034A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPS62260034A
JPS62260034A JP61084899A JP8489986A JPS62260034A JP S62260034 A JPS62260034 A JP S62260034A JP 61084899 A JP61084899 A JP 61084899A JP 8489986 A JP8489986 A JP 8489986A JP S62260034 A JPS62260034 A JP S62260034A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
magnetic field
subjected
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61084899A
Other languages
Japanese (ja)
Inventor
Taku Osada
卓 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61084899A priority Critical patent/JPS62260034A/en
Publication of JPS62260034A publication Critical patent/JPS62260034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an easily magnetizable permanent magnet by substituting specific amounts of Ti for a part of Co in an alloy consisting of R-Co-Fe-Cu-Zr composed mainly of RCo17 intermetallic compound so as to reduce demagnetizing characteristic iHe. CONSTITUTION:The alloy has a composition consisting of, by weight, 26% of, e.g., Sm as rare earth element, 15% Fe, 5% Cu, 2.5% Zr, and the balance Co. Moreover, in the above composition, 0.1-0.5% Ti is substituted for a part of Co. This alloy is melted and the resulting magnetic alloy is pulverized, which is subjected to parallel magnetic field compacting in a magnetic field and the resulting green compact is sintered and then subjected to solution heat treatment to be formed into a permanent magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、RCo  系金属間化合物の組成に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the composition of RCo 2 -based intermetallic compounds.

〔従来の技術〕[Conventional technology]

従来からR−Co −Fe −Cu −Zrからなる合
金系は。
Conventionally, the alloy system consists of R-Co-Fe-Cu-Zr.

優れた出気特性が得られていることが知られている。こ
こでRは希土類金属元素であるが減磁曲線の第2象限に
゛くに〈点”を持つために、低い動作点での使用が出来
ない欠点があった。又、従来組成においても、熱処理条
件を選ぶことによフ。
It is known that excellent air output characteristics are obtained. Here, R is a rare earth metal element, but because it has a "point" in the second quadrant of the demagnetization curve, it has the disadvantage that it cannot be used at a low operating point.Also, even in the conventional composition, heat treatment By choosing the conditions.

“〈に〈点”を下げ、低い動作点で使用することは出来
るが、減磁特性のiHcが大きくなシ1着磁がしにくく
なる欠点があった。
Although it is possible to lower the "point" and use it at a lower operating point, it has the disadvantage that the iHc of the demagnetizing characteristic is large, making it difficult to magnetize.

〔発明の目的〕[Purpose of the invention]

不発明は、これらの欠点を除去し減磁曲線第2象限の°
くにぐ点″を下げて、低い動作点で使用できる様にし、
又、減磁特性iHcを小さくシ2着磁しやすい永久磁石
を提供する事を目的とする。
The invention is to eliminate these drawbacks and reduce the demagnetization curve to the second quadrant.
By lowering the "kunigu point", it can be used at a lower operating point,
Another object of the present invention is to provide a permanent magnet that has a small demagnetization characteristic iHc and is easy to magnetize.

〔発明の構成〕[Structure of the invention]

本発明は+ RCo17系金属化合物を主体とするR−
Co−Fe −Cu−Zrからなる合金において、 C
oの一部をO,]乃至0.5 wt%のTiで置換した
永久磁石である。
The present invention is directed to + RCo17 based metal compounds.
In an alloy consisting of Co-Fe-Cu-Zr, C
This is a permanent magnet in which a part of o is replaced with O,] to 0.5 wt% of Ti.

〔作用〕[Effect]

着磁性を良好KL、且つ低い動作点でも使用できる。 It has good magnetization KL and can be used even at a low operating point.

〈実施例1〉 組成26wt%Sm 、 15wt%Fe l 5 w
t%Cu 。
<Example 1> Composition 26wt%Sm, 15wt%FeI5w
t%Cu.

2、5 wt% Zr 、残部Coの合金と、coの0
.1 、0.3゜0.5 、0.7 wt%をTiで置
換した合金を溶解し、得られた磁石合金を平均粒径4μ
mに微粉砕し、10KOeの磁場中で千行砒場ゾレス成
形を行い、 1215℃で2時間焼結後、1200℃で
5時間溶体化処理を行った。
2.5 wt% Zr, balance Co alloy and 0 co
.. An alloy in which 1,0.3°0.5,0.7 wt% was replaced with Ti was melted, and the resulting magnetic alloy had an average grain size of 4μ.
The material was pulverized to 500 ml of powder, subjected to Soles molding in a 10 KOe magnetic field, sintered at 1215°C for 2 hours, and then solution treated at 1200°C for 5 hours.

次いで時効処理として780℃×10H後10’C/m
inで40℃まで徐冷後、急冷を行った。得ら九た磁石
の磁気特性を第1図に示す。
Then, as aging treatment, after 780°C x 10H, 10'C/m
After slow cooling to 40° C., rapid cooling was performed. The magnetic properties of the obtained magnet are shown in Figure 1.

第1図かられかる通p 、 Coの一部をTiで置換す
る事によシ、ある量まで減磁特性gHcが上昇し。
As shown in Figure 1, by substituting a part of Co with Ti, the demagnetization characteristic gHc increases up to a certain amount.

0、6%以上ではTi置換の効果がなく逆に低下してい
る。
At 0.6% or more, the Ti substitution has no effect and on the contrary decreases.

第2図にB−H曲線の例を書いたが、′〈にく点”の評
価は、 BHcが大きい方が良い事を示している。従っ
てTiの含有量が0.3wt%の時がもっともBHcが
高く、“′くにく点”を低くしている事が分かる。
An example of the B-H curve is shown in Fig. 2, and the evaluation of the ``nikk point'' indicates that the larger the BHc, the better.Therefore, when the Ti content is 0.3 wt%, However, it can be seen that the BHc is the highest and the ``kuniku point'' is low.

〈実施例2〉 実施例1で得られた溶体化処理後の磁石について1時効
処理条件を変えて行った。時効処理として、820℃×
10H後、10℃/m i nで400℃まで徐冷後、
急冷を行った。得られた磁石の母性特性を第3図に示す
。第3図かられかる通り、実施例1より、全体的にBH
c値が高く得られ、Ti置換によって、 BHcを大き
くしてもiHcの値は低く押える事ができる。このiH
cが重要な事を第4図で説明すると、100%着礎する
のに、 iHcが小さいものは低い着磁磁場で良(、i
Hcの大きいものは高い着磁磁場が必要である。着凪母
場を大きくする事は1着磁の・ぐターン等で不可能な事
もあり。
<Example 2> The solution-treated magnet obtained in Example 1 was subjected to aging treatment under different aging conditions. As aging treatment, 820℃×
After 10 hours, slowly cooled to 400°C at 10°C/min,
Rapid cooling was performed. Figure 3 shows the maternal characteristics of the obtained magnet. As can be seen from FIG. 3, from Example 1, overall BH
A high c value can be obtained, and by replacing Ti, the iHc value can be kept low even if the BHc is increased. This iH
The importance of c is explained in Figure 4. For 100% anchoring, a small iHc can be achieved with a low magnetizing field (, i
A material with a large Hc requires a high magnetizing magnetic field. It may be impossible to increase the calming base field in one turn of magnetization.

極力小さな着磁磁場で100%着磁出来る事が。It is possible to achieve 100% magnetization with the smallest possible magnetizing magnetic field.

良い3石が得らnることである。It is important to get a good 3 stones.

〔効果〕〔effect〕

以上述べたごとく2本発明によれば、 Coの一部をT
iで置換する事により、”<にく点″を低クシ。
As described above, according to the present invention, a part of Co is replaced by T
By replacing it with i, the "<nikku point" is lowered.

しかも着磁のしやすい低い動作点で使用の出きるR2C
017系永久磁石を得ることができる。
Moreover, R2C can be used at a low operating point that is easy to magnetize.
A 017 series permanent magnet can be obtained.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1におけるTiの含有率に対するBHc
特性を、第2図は“くにく点”とBHcとの関係図を示
す。第3図は実施例2におけるTiの含有率に対する1
)(cとnHcの特性図を、第4図は同じく着磁磁場と
着磁率との関係図を示す。 第11
Figure 1 shows BHc versus Ti content in Example 1.
Regarding the characteristics, FIG. 2 shows a relationship diagram between the "kuniku point" and BHc. Figure 3 shows 1 for the Ti content in Example 2.
) (A characteristic diagram of c and nHc, and Figure 4 also shows a diagram of the relationship between the magnetizing magnetic field and the magnetization rate. 11th

Claims (1)

【特許請求の範囲】[Claims] 1、R_2(Rは、希土類金属)Co_1_7系金属間
化合物を主体とするR−Co−Fe−Cu−Zrからな
る合金においてCoを0.1乃至0.5wt%のTiで
置換することを特徴とする永久磁石合金。
1. R_2 (R is a rare earth metal) An alloy consisting of R-Co-Fe-Cu-Zr mainly composed of Co_1_7 intermetallic compounds, characterized by replacing Co with 0.1 to 0.5 wt% of Ti. Permanent magnetic alloy.
JP61084899A 1986-04-15 1986-04-15 Permanent magnet Pending JPS62260034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61084899A JPS62260034A (en) 1986-04-15 1986-04-15 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61084899A JPS62260034A (en) 1986-04-15 1986-04-15 Permanent magnet

Publications (1)

Publication Number Publication Date
JPS62260034A true JPS62260034A (en) 1987-11-12

Family

ID=13843584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61084899A Pending JPS62260034A (en) 1986-04-15 1986-04-15 Permanent magnet

Country Status (1)

Country Link
JP (1) JPS62260034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087631B2 (en) 2008-11-19 2015-07-21 Kabushiki Kaisha Toshiba Permanent magnet and method of manufacturing the same, and motor and power generator using the same
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196502A (en) * 1981-05-29 1982-12-02 Tohoku Metal Ind Ltd Material for permanent magnet
JPS5848650A (en) * 1981-09-16 1983-03-22 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS59165402A (en) * 1983-03-10 1984-09-18 Seiko Epson Corp Thermal resistance-improved composite permanent magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196502A (en) * 1981-05-29 1982-12-02 Tohoku Metal Ind Ltd Material for permanent magnet
JPS5848650A (en) * 1981-09-16 1983-03-22 Namiki Precision Jewel Co Ltd Permanent magnet alloy
JPS59165402A (en) * 1983-03-10 1984-09-18 Seiko Epson Corp Thermal resistance-improved composite permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087631B2 (en) 2008-11-19 2015-07-21 Kabushiki Kaisha Toshiba Permanent magnet and method of manufacturing the same, and motor and power generator using the same
US9774219B2 (en) 2009-08-06 2017-09-26 Kabushiki Kaisha Toshiba Permanent magnet, motor and electric generator

Similar Documents

Publication Publication Date Title
JPS5814865B2 (en) permanent magnet material
JPS60243247A (en) Permanent magnet alloy
JPS62260034A (en) Permanent magnet
JP3296507B2 (en) Rare earth permanent magnet
JPS60197843A (en) Permanent magnet alloy
JPH0252412B2 (en)
JPS61147503A (en) Rare earth magnet
JPS62116756A (en) Permanent magnet alloy
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPH05171323A (en) Permanent magnet material
JPS62158852A (en) Permanent magnet material
JPS62158854A (en) Permanaent magnet material
JPH0869907A (en) Material for permanent magnet and material for bonded magnet using the same
JPH01179302A (en) Permanent magnet
JPH0621307B2 (en) Resin-bonded rare earth cobalt magnet
JPH063763B2 (en) Rare earth permanent magnet manufacturing method
JPS61246347A (en) Anisoptopic sintered permanent magnet alloy
JPS62291902A (en) Manufacture of permanent magnet
JPS596350A (en) Rare earth element cobalt material for magnet and preparation thereof
JPS62103346A (en) Permanent magnet alloy
JPS58157938A (en) Permanent magnet alloy
JPS62149828A (en) Manufacture of rare earth magnet
JPH0441652A (en) Rare earth magnetic alloy
JPH04107243A (en) Permanent magnet alloy and its manufacture
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine