JPS6225877B2 - - Google Patents

Info

Publication number
JPS6225877B2
JPS6225877B2 JP56013801A JP1380181A JPS6225877B2 JP S6225877 B2 JPS6225877 B2 JP S6225877B2 JP 56013801 A JP56013801 A JP 56013801A JP 1380181 A JP1380181 A JP 1380181A JP S6225877 B2 JPS6225877 B2 JP S6225877B2
Authority
JP
Japan
Prior art keywords
pressure stage
suction pipe
stage
water
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56013801A
Other languages
Japanese (ja)
Other versions
JPS57129270A (en
Inventor
Shinsaku Sato
Sachio Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56013801A priority Critical patent/JPS57129270A/en
Priority to US06/343,325 priority patent/US4537558A/en
Priority to CH593/82A priority patent/CH656923A5/en
Priority to DE3203354A priority patent/DE3203354C2/en
Publication of JPS57129270A publication Critical patent/JPS57129270A/en
Publication of JPS6225877B2 publication Critical patent/JPS6225877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/005Starting, also of pump-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、多段水力機械の空転運転方法に係
り、特に最高圧段部から最低圧段部までの各段部
が返り通路によつて連絡され、最高圧段部のみに
可動ガイドベーンを備えた多段水力機械におい
て、発電運転あるいは揚水運転からそれぞれ発電
方向あるいは、揚水方向への空転運転に切換える
場合の多段水力機械の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for idling a multistage hydraulic machine, and in particular, each stage from the highest pressure stage to the lowest pressure stage is connected by a return passage, and only the highest pressure stage The present invention relates to a method of operating a multistage hydraulic machine equipped with movable guide vanes when switching from power generation operation or pumping operation to idling operation in the power generation direction or pumping direction, respectively.

一般に水力機械では、水車発電運転あるいは、
ポンプ揚水運転から、それぞれ水車調相運転ある
いはポンプ揚水待機運転に切換える場合、水車調
相運転時、あるいはポンプ揚水待機運転時、ラン
ナ駆動トルクの軽減をはかるため、高圧空気の給
気により、流路の水を押し下げてランナを空中で
運転している。
In general, in hydraulic machinery, water turbine power generation operation or
When switching from pump pumping operation to turbine control phase operation or pump pumping standby operation, in order to reduce the runner drive torque, the flow path is is driving the runner in the air by pushing down the water.

水力機械のうち、各段部のランナ室が返り通路
によつて連絡され、複雑な流路形状を有する多段
水力機械にあつては、発電運転あるいは、揚水運
転からそれぞれの空転運転に切換える際の給気、
排水に種々の問題を伴いやすい。
Among hydraulic machines, runner chambers of each stage are connected by return passages, and in the case of multi-stage hydraulic machines with complicated flow path shapes, when switching from power generation operation or pumping operation to respective idling operation, air supply,
Drainage tends to be accompanied by various problems.

特に過渡時の運転状態を安全に制御するため最
高圧段部だけに可動ガイドベーンを設けた多段水
力機械においては、最高圧段部から最低圧段部ま
での各段部の流路が常時連通しているので、流路
部に高圧空気を給気する際、各段部の相互干渉を
伴いやすく、円滑に給気排水を行なうことが難し
く、給気方法が問題となつている。
In particular, in multi-stage hydraulic machines in which a movable guide vane is installed only in the highest pressure stage to safely control operating conditions during transient times, the flow paths of each stage from the highest pressure stage to the lowest pressure stage are constantly connected. Therefore, when high-pressure air is supplied to the flow path section, each step section tends to interfere with each other, making it difficult to smoothly supply and drain the air, and the air supply method has become a problem.

しかるに、このように最高圧段部だけに可動ガ
イドベーンを有する多段水力機械自体が技術的に
未開な分野が多いこともあつて、発電運転あるい
は揚水運転から所要の空転運転に切換える場合に
おける、簡便にして的確な空転方法が未だ提案さ
れていないのが実情である。
However, since there are many technologically unexplored fields in the multistage hydraulic machine itself, which has a movable guide vane only in the highest pressure stage, it is easy to use when switching from power generation operation or pumping operation to the required idling operation. The reality is that no accurate method for idling has yet been proposed.

そこで本発明の目的は、発電運転あるいは揚水
運転から空転運転に切換える際、安全にして確実
に給気排水を行なうことが可能で、かつ短時間の
うちに円滑に空転運転に移行できるようにした多
段水力機械の運転方法を提供することにある。
Therefore, an object of the present invention is to make it possible to safely and reliably drain air supply and drain when switching from power generation operation or pumping operation to idling operation, and to enable a smooth transition to idling operation in a short time. The object of the present invention is to provide a method for operating a multi-stage hydraulic machine.

以下本発明の多段水力機械の運転方法の第1の
発明の実施例について図面を参照して説明する。
第1図は多段水力機械の一例としてフランシス形
2段ポンプ水車を示す。単一のポンプ水車主軸1
の軸上には、高圧段ランナ2と低圧段ランナ3と
が軸方向の距離をおいて固着されている。この高
圧段ランナ2は、上カバー4および下カバー5で
包囲される一方、低圧段ランナ3は、上カバー6
および下カバー7で包囲され、高圧段ランナ室8
および低圧段ランナ室9とを構成している。上記
高圧段ランナ室8と低圧段ランナ9とは返り通路
10で連絡され、通路上には返し羽根11および
ステーベーン12が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the first invention of the method for operating a multistage hydraulic machine of the present invention will be described with reference to the drawings.
Figure 1 shows a Francis type two-stage pump turbine as an example of a multi-stage hydraulic machine. Single pump turbine main shaft 1
A high-pressure stage runner 2 and a low-pressure stage runner 3 are fixedly spaced apart from each other on the axis. The high pressure stage runner 2 is surrounded by an upper cover 4 and a lower cover 5, while the low pressure stage runner 3 is surrounded by an upper cover 6.
and a lower cover 7, and a high pressure stage runner chamber 8
and a low pressure stage runner chamber 9. The high-pressure stage runner chamber 8 and the low-pressure stage runner 9 are connected by a return passage 10, and a return vane 11 and a stay vane 12 are provided on the passage.

また、高圧段ランナ室8の外側には、うず巻ケ
ーシング13が配置され、そのうず室14の入口
には、入口弁16を介して水圧鉄管17に接続さ
れている。高圧段ランナ2の外側は、水口開度を
変えられる可動ガイドベーン15が設けられ、ガ
イドベーン操作機構(図示せず)によつてガイド
ベーン開度を調整できるようになつている。なお
低圧段ランナ室9にはエルボ形の吸出し管18が
接続され、その下流側は吸出し管出口弁19を介
して放水路20と連通している。
Further, a spiral casing 13 is disposed outside the high-pressure stage runner chamber 8, and the inlet of the spiral chamber 14 is connected to a penstock 17 via an inlet valve 16. A movable guide vane 15 is provided on the outside of the high-pressure stage runner 2, and the opening degree of the guide vane can be adjusted by a guide vane operating mechanism (not shown). An elbow-shaped suction pipe 18 is connected to the low-pressure stage runner chamber 9, and its downstream side communicates with a discharge channel 20 via a suction pipe outlet valve 19.

上記高圧段ランナ室8の外周部には排水管21
が接続され、一方低圧段ランナ室9の外周部には
排水管22が接続され、それぞれの管路上には排
水弁23および24が組込まれており、それぞれ
の排水管は吸出し管18と連通している。また上
記吸出し管18の上部には給気管25が接続さ
れ、管路上には給気弁26が組込まれており、高
圧段ランナ2の出口近傍の返り通路部には給気管
27が接続され、管路上に給気弁28が組込まれ
ている。さらに吸出し管18の上方には吸出し管
内の水位を検出する水位検出器29が、さらに高
圧段ランナ室8には、ランナ室内圧力を検出する
圧力検出器30がそれぞれ取り付けられている。
A drain pipe 21 is provided on the outer periphery of the high pressure stage runner chamber 8.
On the other hand, a drain pipe 22 is connected to the outer periphery of the low pressure stage runner chamber 9, and drain valves 23 and 24 are installed on each pipe, and each drain pipe communicates with the suction pipe 18. ing. Further, an air supply pipe 25 is connected to the upper part of the suction pipe 18, an air supply valve 26 is installed on the pipe, and an air supply pipe 27 is connected to the return passage near the outlet of the high pressure stage runner 2. An air supply valve 28 is installed on the pipe. Furthermore, a water level detector 29 is installed above the suction pipe 18 to detect the water level in the suction pipe, and a pressure detector 30 is installed in the high pressure stage runner chamber 8 to detect the pressure inside the runner.

上記のように構成された2段ポンプ水車を水車
運転させる場合、開口させた入口弁16を介して
水圧鉄管17から送入される圧力がうず巻ケーシ
ング13のうず室14内に流入しこの水流は高圧
段部の可動ガイドベーン15を通過し、高圧段ラ
ンナ2、返り通路10を経て低圧段ランナ3を流
通したのち吸出し管18内を通り、放水路20へ
流れる。
When operating the two-stage pump turbine configured as described above, the pressure sent from the penstock 17 through the opened inlet valve 16 flows into the spiral chamber 14 of the spiral casing 13, and this water flow The water passes through the movable guide vane 15 of the high-pressure stage section, flows through the high-pressure stage runner 2, the return passage 10, the low-pressure stage runner 3, passes through the suction pipe 18, and flows into the discharge channel 20.

一方水車と同じ回転速度で反対の方向にランナ
を回転するポンプ運転時には低圧段ランナ3によ
つて揚水された水流は、前記した水車運転時の場
合と逆の順路を経て放水路20から水圧鉄管17
へと流通して行く。
On the other hand, during pump operation in which the runner rotates in the opposite direction at the same rotational speed as the water turbine, the water flow pumped up by the low-pressure stage runner 3 flows from the penstock through the penstock through the reverse route of the water turbine operation described above. 17
It will be distributed to.

次に上述した2段ポンプ水車に本願の第1の発
明の実施例を適用して、水車発電運転あるいはポ
ンプ揚水運転の状態から水車方向あるいはポンプ
方向の空転運転へ移行する場合の運転制御方法に
ついて述べる。水車発電運転あるいはポンプ揚水
運転から、発電方向あるいは揚水方向の空転運転
に移行させるには、まず高圧段部可動ガイドベー
ン15、および入口弁16を同時あるいは順次に
全閉し、高圧段部可動ガイドベーン15を全閉も
しくはその近傍小開度に至らしめたら、低圧段部
下方に連通する吸出し管18の上部に接続する給
気管25上の給気弁26を開き、吸出し管部上方
に給気を開始し、吸出し管部の規定位置まで水位
を押し下げる(第1図参照)。
Next, we will discuss an operation control method when applying the embodiment of the first invention of the present application to the above-mentioned two-stage pump turbine to shift from the turbine power generation operation or pump pumping operation to idling operation in the direction of the turbine or in the direction of the pump. state To shift from water turbine power generation operation or pump pumping operation to idling operation in the power generation direction or pumping direction, first fully close the high pressure stage movable guide vane 15 and the inlet valve 16 simultaneously or sequentially, and then When the vane 15 is fully closed or close to a small opening degree, the air supply valve 26 on the air supply pipe 25 connected to the upper part of the suction pipe 18 communicating with the lower part of the low pressure stage is opened, and air is supplied above the suction pipe part. and push the water level down to the specified position in the suction pipe (see Figure 1).

次に吸出し管部の規定位置まで水位が下がつた
ところで前記給気弁26を閉じ吸出し管18上方
への給気を終止し、しかる後高圧段ランナ2の出
口近傍の返り通路10に接続する給気管27上の
給気弁28を開き、返り通路部に給気を開始する
とともに、排水弁24を開け低圧段ランナ室9の
外周部及び返り通路10に滞留する水を低圧段部
排水管22を介して吸出し管18に排出させる
(第2図参照)。
Next, when the water level has fallen to the specified position in the suction pipe section, the air supply valve 26 is closed to terminate the supply of air to the upper part of the suction pipe 18, and then it is connected to the return passage 10 near the outlet of the high-pressure stage runner 2. The air supply valve 28 on the air supply pipe 27 is opened to start supplying air to the return passage, and at the same time, the drain valve 24 is opened to drain the water remaining in the outer periphery of the low pressure stage runner chamber 9 and the return passage 10 to the low pressure stage drainage pipe. 22 into the suction pipe 18 (see FIG. 2).

なお吸出し管部の水位が規定位置まで達したこ
とは、吸出し管18が接続する低圧段ランナ室9
内に設けられる圧力検出器(図示せず)もしくは
吸出し管18に設けられる水位検出器29を介し
て検出し、この検出信号によつて給気弁26を閉
じ、さらに給気弁28、排水弁24をそれぞれ弁
開すればよい。
Note that when the water level in the suction pipe reaches the specified position, it means that the water level in the suction pipe 18 is connected to the low pressure stage runner chamber 9.
The air supply valve 26 is closed based on this detection signal, and the air supply valve 28 and the drain valve are also closed. It is sufficient to open the valves of 24 respectively.

しかる後、高圧段ランナ室8内の圧力が規定値
以下になつたところで、排水弁23を開き高圧段
部ランナ室8の外周部に滞留する水を高圧段部排
水管21を介して吸出し管18に排出させ、返り
通路10への高圧給気による水面押し下げ力によ
り吸出し管18内の水面を前記した規定位置に安
定せしめたら、給気管27の給気弁28を閉め、
返り通路10内への給気を終止させて各ランナを
空転運転へ移行させる(第3図参照)。
After that, when the pressure inside the high-pressure stage runner chamber 8 falls below the specified value, the drain valve 23 is opened and the water remaining in the outer periphery of the high-pressure stage runner chamber 8 is sucked out via the high-pressure stage drain pipe 21. 18, and the water surface in the suction pipe 18 is stabilized at the specified position by the force pushing down the water surface due to the high pressure air supplied to the return passage 10, and then the air supply valve 28 of the air supply pipe 27 is closed.
The supply of air into the return passage 10 is stopped and each runner is put into idle operation (see FIG. 3).

なお高圧段ランナ室8の圧力が規定状態に達し
たことは、同ランナ室内に設けられる圧力検出器
28によつて検出すればよく、この圧力検出器か
らの検出信号を前記排水弁23に伝えて弁開すれ
ばよい。また吸出し管18部の水が規定水位に安
定したことは、吸出し管上部に設けられる水位検
出器29を介して検出し、この検出信号によつて
給気弁26を閉める。
Note that the fact that the pressure in the high-pressure stage runner chamber 8 has reached a specified state can be detected by a pressure detector 28 provided in the runner chamber, and a detection signal from this pressure detector is transmitted to the drain valve 23. All you have to do is open the valve. Further, whether the water in the suction pipe 18 has stabilized at a specified water level is detected via a water level detector 29 provided at the upper part of the suction pipe, and the air supply valve 26 is closed based on this detection signal.

以上の説明から明らかなように、本願の第1の
発明の実施例によれば、まず高圧段部可動ガイド
ベーンの内側流路部の水面押し下げを行なう場
合、高圧段部可動ガイドベーンを全閉し、2段ポ
ンプ水車の流路のうち最低圧状態にある吸出し管
部に給気するから、コンプレツサーなどの給気装
置は圧力容量の小さく経済的なもので十分対応で
きるとともに給気制御を極めて簡素化でき、さら
に加えて給気圧力を直接ランナに作用させないか
ら回転部を軸方向に推すような軸スラストを誘発
することがなく安全である。
As is clear from the above description, according to the embodiment of the first invention of the present application, when first pushing down the water level in the inner flow path section of the high-pressure stepped movable guide vane, the high-pressure stepped movable guide vane is fully closed. Since air is supplied to the suction pipe section of the flow path of the two-stage pump-turbine, which is at the lowest pressure, an economical air supply device such as a compressor with a small pressure capacity can be used to cope with the problem, and air supply control is extremely efficient. It can be simplified, and in addition, since the supply air pressure is not applied directly to the runner, it is safe because it does not induce axial thrust that pushes the rotating part in the axial direction.

また上記圧縮空気の供給により、まず低圧側段
部のランナ室の水を押し下げたら、今度は水がま
だ滞留している上方の高圧側段部である返り通路
に給気するとともに、高圧段部を除くランナ室の
外周部を排水管を介して吸出し管部と連通せしめ
るから、低圧側段部ランナ室の外周部および上方
に連接した返り通路内に滞留する水は、同部ラン
ナの遠心作用力による排水効果に加えて、前記し
た上方から給気作用による水面押し下げ効果によ
り、同部ランナ室排水管から極めて短時間のうち
に的確に排出できる。
In addition, by supplying the compressed air, first, the water in the runner chamber of the low-pressure side stage is pushed down, and then air is supplied to the return passage, which is the high-pressure side stage above, where water still remains, and air is supplied to the high-pressure stage section. Since the outer periphery of the runner chamber, excluding the outer periphery of the runner chamber, is communicated with the suction pipe section via the drain pipe, the water remaining in the outer periphery of the low-pressure side step runner chamber and in the return passage connected upwards is absorbed by the centrifugal action of the runner. In addition to the drainage effect caused by force, the above-mentioned effect of pushing down the water surface by the air supply action from above allows water to be drained accurately from the runner room drain pipe in a very short period of time.

なお返り通路部への給気は、上記したように低
圧側段部のランナ室の水を押し下げ、低圧化して
から実施するため、前記の吸出し管部への給気の
場合と同じく小さい圧力容量の給気装置で済み、
さらに直接ランナに給気圧力を作用させないた
め、軸スラストを誘発することがないのは、吸出
し管部への給気の場合と同じである。
Note that the air supply to the return passage is carried out after the water in the runner chamber of the low-pressure side stage is pushed down to lower the pressure as described above, so the pressure capacity is small as in the case of air supply to the suction pipe section described above. Only one air supply device is needed,
Furthermore, since air supply pressure is not applied directly to the runner, no axial thrust is induced, as in the case of air supply to the suction pipe section.

このようにした圧縮空気による排水領域を低圧
段部から順次高圧側段部へ拡大させていくから、
排水に伴なう各段部の水の相互干渉による不安定
現象が避けられ円滑な排水を行なえる。
Since the drainage area by compressed air is expanded from the low-pressure stage to the high-pressure side stage,
Unstable phenomena caused by mutual interference of water in each step during drainage can be avoided, allowing smooth drainage.

このように給気排水を行ない、各流路のうち最
高圧力状態下にある高圧段部ランナ室について
は、同部ランナ室の圧力を安全な規定圧力まで減
圧させてから同部ランナ室の外周部に滞留する水
を同部ランナ室排水管から吸出し管部に排出させ
るから、安全な圧力に調制された同部ランナの遠
心作用力により円滑にして的確に排水できる。
After supplying and draining air in this way, for the high-pressure stage runner chamber that is under the highest pressure among each flow path, the pressure in the high-pressure stage runner chamber is reduced to a safe specified pressure, and then the outer periphery of the runner chamber is Since the water stagnant in the runner chamber is discharged from the runner chamber drain pipe to the suction pipe section, water can be drained smoothly and accurately by the centrifugal force of the runner that is regulated to a safe pressure.

つぎに本発明の多段水力機械の運転方法の第2
の発明の実施例について図面を参照して説明す
る。本願の第1の発明の実施例と同じ第1図にお
いて、うず巻ケーシング13のうず室14の上方
には、大気中と連通する通気管31が取付けられ
ており、管路上には通気弁32が組込まれてい
る。さらにケーシングうず室14と吸出し管18
を連絡するケーシング排水管33が、管路上に排
水弁34を組み込んで取り付けられている。吸出
し管18には、吸出し管18の外側下方に配置さ
れ大気に連通した排水ピツト(図示せず)と連絡
する外部排水管35が、管路上に排水弁36を組
み込まれて設けれており、他の構成は本願の第1
の発明の実施例と同一である。
Next, the second method of operating a multi-stage hydraulic machine of the present invention will be described.
Examples of the invention will be described with reference to the drawings. In FIG. 1, which is the same as the embodiment of the first invention of the present application, a vent pipe 31 communicating with the atmosphere is installed above the swirl chamber 14 of the spiral casing 13, and a vent valve 32 is installed on the pipe. is incorporated. Furthermore, the casing swirl chamber 14 and the suction pipe 18
A casing drain pipe 33 is installed with a drain valve 34 installed on the pipe. The suction pipe 18 is provided with an external drain pipe 35 that communicates with a drainage pit (not shown) disposed outside and below the suction pipe 18 and communicating with the atmosphere, and a drain valve 36 is installed on the pipe. Other configurations are in the first part of this application.
This is the same as the embodiment of the invention.

このように構成された2段ポンプ水車の水車、
ポンプ運転の水流の動きは前記した本願の第1の
発明の実施例の場合と同じである。
The water turbine of the two-stage pump turbine configured in this way,
The movement of the water flow during pump operation is the same as in the above-described embodiment of the first invention of the present application.

つぎにこの2段ポンプ水車に本願の第2の発明
の実施例を適用して、水車発電運転、あるいはポ
ンプ揚水運転から水車方向あるいはポンプ方向の
空転運転へ移行する場合の方法について述べる。
はじめの高圧段可動ガイドベーン15、入口弁1
6の閉動作から、第3図に相当する状態までの方
法は本願の第1の発明の実施例と同じである。す
なわち、全閉したガイドベーン15の内側流路部
については、本願の第1の発明の実施例の給気排
水制御により水面押し下げを行ない、しかる後に
可動ガイドベーン15の外側流路部であるうず巻
ケーシング13については次のようにして水面押
し下げを行なう。
Next, a method will be described in which the embodiment of the second invention of the present application is applied to this two-stage pump water turbine to shift from water turbine power generation operation or pump pumping operation to idling operation in the water wheel direction or pump direction.
First high pressure stage movable guide vane 15, inlet valve 1
The method from the closing operation of 6 to the state corresponding to FIG. 3 is the same as the embodiment of the first invention of the present application. That is, for the inner flow path portion of the fully closed guide vane 15, the water surface is pushed down by the air supply/drainage control according to the embodiment of the first invention of the present application, and then the vortex, which is the outer flow path portion of the movable guide vane 15, is pushed down. The water surface of the rolled casing 13 is pushed down as follows.

すなわち、第3図に示す空転運転状態におい
て、先づ吸出し管出口弁19を全閉し、しかる後
吸出し管の外部排水弁36を開口させて吸出し管
18内の水を外部排水管35を介して外部の排水
ピツトに排出させるとともに、ケーシング排水弁
34とケーシング通気弁32とを開口し、通気管
31を介してうず巻ケーシング13内を大気に連
通せしめながらうず巻ケーシング13内の水をケ
ーシング排水管33を介して吸出し管18内に自
然流下させることにより排出させ、しかしてうず
巻ケーシング13内の水面押し下げを行なう(第
4図参照)。
That is, in the idling operation state shown in FIG. At the same time, the casing drain valve 34 and the casing vent valve 32 are opened to allow the inside of the spiral casing 13 to communicate with the atmosphere through the ventilation pipe 31, and the water inside the spiral casing 13 is drained from the casing. The water is discharged by gravity flowing down into the suction pipe 18 through the drain pipe 33, thereby lowering the water level inside the spiral casing 13 (see FIG. 4).

このように一つの密閉された空間部に残留する
水は、まず外部排水弁36を開口することで端部
を下部の大気圧部と連通され、さらにもう1つの
端部としてケーシング通気弁32の開口により、
これら残留する水の上位の大気圧部と連通され、
この下部の外部排水管35の端部の大気圧部水位
と、残留する水のある位置の高低差によつて大気
圧により残留する水は排出される。
The water remaining in one sealed space is first communicated with the lower atmospheric pressure part by opening the external drain valve 36, and then communicated with the lower atmospheric pressure part as the other end of the casing vent valve 32. Due to the opening,
These remaining waters are communicated with the upper atmospheric pressure area,
Due to the height difference between the atmospheric pressure water level at the end of the lower external drain pipe 35 and the position where the remaining water is located, the remaining water is discharged under atmospheric pressure.

なお、ケーシング排水弁34は、ケーシング通
気弁32ならびに外部排水弁36の各制御弁は、
吸出し管出口弁19を全閉としたことをリミツト
スイツチ(図示せず)を介して検出するかもしく
は吸出し管出口弁19を全閉してから動作するよ
うに予め設定した時限タイマー装置(図示せず)
を介して検出し、この検出信号によつて上記各制
御弁を同時にあるいは順次に開口させれば良い。
The control valves of the casing drain valve 34, the casing vent valve 32, and the external drain valve 36 are as follows:
It is detected through a limit switch (not shown) that the suction pipe outlet valve 19 is fully closed, or a timer device (not shown) is preset to operate after the suction pipe outlet valve 19 is fully closed. )
The detection signal may be used to open each of the control valves simultaneously or sequentially.

このように、本願の第2の発明の実施例によれ
ば、高圧段部ガイドベーンの外側流路部であるう
ず巻ケーシングの水面押し下げを行なう場合は、
うず巻ケーシングを大気と通気せしめ吸出し管部
に放水路圧力が作用しないようにした状態でうず
巻ケーシングの水をケーシング排水管を介して吸
出し管部に自然流下させるから、うず巻ケーシン
グ内に圧縮空気を作用せしめうるような危険を伴
なうことなく、安全に水面を押し下げられ、しか
して高圧段部可動ガイドベーンのすき間を通つて
うず巻ケーシングの水が同部ランナに漏水するよ
うな現象が防止できしたがつて空転損失を極めて
低減せしめた経済的な空転運転が行なえる。
As described above, according to the embodiment of the second invention of the present application, when pushing down the water surface of the spiral casing, which is the outer flow path section of the high-pressure step guide vane,
With the spiral casing ventilated with the atmosphere and no discharge channel pressure acting on the suction pipe, the water in the spiral casing is allowed to naturally flow down to the suction pipe through the casing drain pipe, so it is compressed into the spiral casing. A phenomenon in which water in the spiral casing is safely pushed down without any risk of air action, and water in the spiral casing leaks into the runners through the gaps in the movable guide vanes of the high-pressure step. As a result, economical idling operation with significantly reduced idling loss can be performed.

なお、上記した本願の第1および第2の発明の
実施例は、2段ポンプ水車に対して適用した例を
述べたが、本発明は3段以上の多段水力機械に適
用できることは勿論である。
In addition, although the above-mentioned embodiments of the first and second inventions of the present application are applied to a two-stage pump turbine, the present invention can of course be applied to a multi-stage hydraulic machine with three or more stages. .

以上述べたように、最高圧段部から最低圧段部
までの各段部にランナを備えて各段部のランナ室
が返り通路によつて連絡され、最高圧段部のみに
可動ガイドベーンを備えた多段水力機械におい
て、発電運転あるいは揚水運転からそれぞれ発電
方向あるいは揚水方向への空転運転に移行させる
場合、本発明によれば、簡便にして、迅速、的確
かつ円滑に行える空転運転方法を提供するもので
あり、極めて合理的なものといえる。
As described above, a runner is provided in each stage from the highest pressure stage to the lowest pressure stage, the runner chambers of each stage are connected by a return passage, and a movable guide vane is installed only in the highest pressure stage. According to the present invention, there is provided a method of idling operation that can be performed simply, quickly, accurately, and smoothly when a multi-stage hydraulic machine equipped with the above-mentioned system is shifted from power generation operation or pumping operation to idling operation in the direction of generation or pumping, respectively. This can be said to be extremely reasonable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の一実施例を適用
するフランシス形2段ポンプ水車の給気、排水、
運転の途中の状態を示した縦断面図、第3図及び
第4図は同ポンプ水車の空転運転状態を示した縦
断面図である。 2…高圧段ランナ、3…低圧段ランナ、8…高
圧段ランナ室、9…低圧段ランナ室、10…返り
通路、13…うず巻ケーシング、15…可動ガイ
ドベーン、16…入口弁、18…吸出し管、19
…吸出し管出口弁、21,22,33,35…排
水管、23,24、34,36…排水弁、25,
27…給気管、26,28…給気弁、31…通気
管、32…通気弁。
Figures 1 and 2 show air supply, drainage, and
A vertical cross-sectional view showing a state in the middle of operation, and FIGS. 3 and 4 are vertical cross-sectional views showing the pump-turbine in an idling operating state. 2... High pressure stage runner, 3... Low pressure stage runner, 8... High pressure stage runner chamber, 9... Low pressure stage runner chamber, 10... Return passage, 13... Spiral casing, 15... Movable guide vane, 16... Inlet valve, 18... Suction pipe, 19
... Suction pipe outlet valve, 21, 22, 33, 35... Drain pipe, 23, 24, 34, 36... Drain valve, 25,
27... Air supply pipe, 26, 28... Air supply valve, 31... Ventilation pipe, 32... Ventilation valve.

Claims (1)

【特許請求の範囲】 1 最高圧段部から最低圧段部までの各段部にラ
ンナを備えて各段部のランナ室が返り通路によつ
て連絡され最高圧段部にのみ可動ガイドベーンを
備えた多段水力機械の運転方法において、水車発
電運転あるいはポンプ揚水運転から発電調相ある
いは揚水待機の空転運転に移行させる際、最高圧
段部から最低圧段部まで連通させた状態で最高圧
段部ガイドベーンと入口弁を全閉し、最高圧段部
ガイドベーンを全閉もしくはその近傍小開度に至
らしめたところで最低圧段部下方と接続する吸出
し管部上方に給気し、吸出し管部の規定位置まで
水位を押し下げたところで吸出し管部上方への給
気を終止させ、しかる後最低圧段部を除く高圧段
ランナの出口近傍の返り通路部に低圧段部側から
順次給気するとともに、最高圧段部を除く低圧段
ランナ室外周部の水を低圧段部側から順次低圧段
ランナ室外周部排水管を介して吸出し管部へ排出
させながら最高圧段部ランナ室内圧力を規定値以
下に至らしめ、最高圧段ランナ室外周部の水を最
高圧段ランナ室外周部排水管を介して吸出し管部
へ排出させて吸出し管部の水位を前記規定位置に
安定せしめたら前記した返り通路部への給気を終
止させ、最高圧段部から最低圧段部までの流路の
水を押し下げることにより空転運転を行なうこと
を特徴とする多段水力機械の運転方法。 2 最高圧段部から最低圧段部までの各段部にラ
ンナを備えて各段部のランナ室が返り通路によつ
て連絡され、最高圧段部にのみ可動ガイドベーン
を備えた多段水力機械の運転方法において、水車
発電運転あるいはポンプ揚水運転から発電調相あ
るいは揚水待機の空転運転に移行させる際、最高
圧段部から最低圧段部まで連通させた状態で最高
圧段部カイドベーンと入口弁を全閉し、最高圧段
部ガイドベーンを全閉もしくはその近傍小開度に
至らしめたところで最低圧段部下方と接続する吸
出し管部上方に給気し、吸出し管部の規定位置ま
で水位を押し下げたところで吸出し管部上方への
給気を終止させ、しかる後最低圧段部を除く高圧
段ランナの出口近傍の返り通路部に低圧段部側か
ら順次給気するとともに最高圧段部を除く低圧段
ランナ室外周部の水を低圧段部側から順次低圧段
ランナ室外周部排水管を介して吸出し管部へ排出
させながら最高圧段部ランナ室内圧力を規定値以
下に至らしめ、最高圧段ランナ室外周部の水を最
高圧段ランナ室外周部排水管を介して吸出し管部
へ排出させて吸出し管部の水位を前記規定位置に
安定せしめたら前記した返り通路部への給気を終
止させ、吸出し管部もしくはその下流のドラフト
トンネル部に設けた吸出し管出口弁を全閉にし、
しかる後吸出し管と吸出し管の外側下方に配置さ
れ大気に連通した排水ピツトとを接続する外部排
水管の排水弁を開口させて吸出し管の水を排水ピ
ツトへ排出するとともに、ケーシング上部に開口
する通気管の通気弁を開口して大気に連通させな
がら全閉状態にある入口弁と最高圧段部ガイドベ
ーンとの間のケーシング部の水をケーシング排水
管を介して吸出し管部へ自然流下作用で排出させ
ることにより空転運転を行なうことを特徴とする
多段水力機械の運転方法。
[Claims] 1. A runner is provided in each stage from the highest pressure stage to the lowest pressure stage, the runner chambers of each stage are connected by a return passage, and a movable guide vane is provided only in the highest pressure stage. In the operating method of a multi-stage hydraulic machine equipped with a multi-stage hydraulic machine, when transitioning from water turbine power generation operation or pump pumping operation to power generation phase adjustment or pumping standby idle operation, the highest pressure stage is connected to the lowest pressure stage in a state where the highest pressure stage is connected to the lowest pressure stage. When the highest pressure stage guide vane is fully closed or close to a small opening, air is supplied to the upper part of the suction pipe connected to the lower part of the lowest pressure stage, and the suction pipe is closed. When the water level is pushed down to the specified position in the section, air supply to the upper part of the suction pipe section is terminated, and then air is sequentially supplied from the low pressure section side to the return passage section near the outlet of the high pressure stage runner, excluding the lowest pressure section. At the same time, the pressure in the highest pressure stage runner chamber is regulated while draining the water in the outer circumference of the low pressure stage runner chamber, excluding the highest pressure stage, from the low pressure stage side to the suction pipe section via the low pressure stage runner chamber outer circumference drain pipe. When the water level in the suction pipe section is stabilized at the specified position by draining the water in the outer peripheral part of the highest pressure stage runner chamber to the suction pipe section through the highest pressure stage runner chamber outer peripheral drain pipe, the water level is stabilized at the specified position. A method of operating a multi-stage hydraulic machine characterized by idling operation by terminating air supply to a return passage and pushing down water in a flow path from a highest pressure stage to a lowest pressure stage. 2 A multi-stage hydraulic machine equipped with a runner in each stage from the highest pressure stage to the lowest pressure stage, with the runner chambers of each stage connected by a return passage, and with a movable guide vane only in the highest pressure stage. In this operating method, when transitioning from turbine power generation operation or pump pumping operation to generation phase adjustment or pumping standby idle operation, the highest pressure stage side guide vane and inlet valve are connected to each other from the highest pressure stage section to the lowest pressure stage section. When the highest pressure stage guide vane is fully closed or close to a small opening, air is supplied to the upper part of the suction pipe connected to the lower part of the lowest pressure stage, and the water level is increased to the specified position of the suction pipe. The air supply to the upper part of the suction pipe is stopped when the pump is pressed down, and then air is sequentially supplied from the low pressure stage side to the return passage near the outlet of the high pressure stage runner, excluding the lowest pressure stage part, and the highest pressure stage part is The water in the outer periphery of the low pressure stage runner chamber, excluding the water, is sequentially discharged from the low pressure stage side through the drain pipe of the outer peripheral part of the low pressure stage runner chamber to the suction pipe section, and the pressure in the highest pressure stage runner chamber is brought to below the specified value. After the water on the outer periphery of the high pressure stage runner chamber is discharged to the suction pipe section through the drain pipe on the outer periphery of the highest pressure stage runner chamber and the water level in the suction pipe section is stabilized at the specified position, air is supplied to the return passage section as described above. completely close the suction pipe outlet valve provided in the suction pipe section or the draft tunnel section downstream thereof,
After that, the drain valve of the external drain pipe that connects the suction pipe and the drain pit arranged below the outside of the suction pipe and communicating with the atmosphere is opened to discharge the water in the suction pipe to the drain pit, and the water is opened at the top of the casing. While the vent valve of the vent pipe is opened and communicated with the atmosphere, the water in the casing between the fully closed inlet valve and the guide vane of the highest pressure stage is sucked out through the casing drain pipe and released by gravity to the pipe. A method of operating a multi-stage hydraulic machine characterized by idling operation by discharging the machine.
JP56013801A 1981-02-03 1981-02-03 Operating method for multistage hydraulic machine Granted JPS57129270A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56013801A JPS57129270A (en) 1981-02-03 1981-02-03 Operating method for multistage hydraulic machine
US06/343,325 US4537558A (en) 1981-02-03 1982-01-27 Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
CH593/82A CH656923A5 (en) 1981-02-03 1982-02-01 MULTI-STAGE HYDRAULIC MACHINE AND METHOD FOR OPERATING THE SAME.
DE3203354A DE3203354C2 (en) 1981-02-03 1982-02-02 Multi-stage hydraulic machine and control process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56013801A JPS57129270A (en) 1981-02-03 1981-02-03 Operating method for multistage hydraulic machine

Publications (2)

Publication Number Publication Date
JPS57129270A JPS57129270A (en) 1982-08-11
JPS6225877B2 true JPS6225877B2 (en) 1987-06-05

Family

ID=11843353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56013801A Granted JPS57129270A (en) 1981-02-03 1981-02-03 Operating method for multistage hydraulic machine

Country Status (1)

Country Link
JP (1) JPS57129270A (en)

Also Published As

Publication number Publication date
JPS57129270A (en) 1982-08-11

Similar Documents

Publication Publication Date Title
US4537558A (en) Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
US4158525A (en) Method of and apparatus for operating pump turbine
CA1040057A (en) Hydraulic turbine spiral case drain
US4431370A (en) Multistage hydraulic machines having air exhausting devices
JPS624554B2 (en)
US4538957A (en) Multi-stage hydraulic machine and control method for multi-stage hydraulic machine
JPS6225877B2 (en)
JPS6225876B2 (en)
US3985464A (en) Spinning reserve device for a water-wheel
JP3344490B2 (en) Multi-stage pump turbine
JPS6230304B2 (en)
US4629393A (en) Method of operating multistage hydraulic machinery
JPS58148277A (en) Rotary hydraulic machinery carrying exhaust valve
JPS6056915B2 (en) Operation control method for multi-stage hydraulic machinery
JPS60216071A (en) Multi-stage hydraulic machine
JPH09158824A (en) Horizontal shaft hydraulic machinery
JPS6224633B2 (en)
JPS627392B2 (en)
JPS634024B2 (en)
JP3495089B2 (en) Hydraulic machinery
JPS61101679A (en) Vertical shaft multistage hydraulic machine and operation thereof
JPH11324883A (en) Horizontal shaft hydraulic machine and operating method thereof
JPS6138169A (en) Operation of multi-stage hydraulic machine
JPH10266941A (en) Kaplan turbine and shutdown method thereof
JPH11270453A (en) Hydraulic machinery and its operation method