JPS6056915B2 - Operation control method for multi-stage hydraulic machinery - Google Patents

Operation control method for multi-stage hydraulic machinery

Info

Publication number
JPS6056915B2
JPS6056915B2 JP55094834A JP9483480A JPS6056915B2 JP S6056915 B2 JPS6056915 B2 JP S6056915B2 JP 55094834 A JP55094834 A JP 55094834A JP 9483480 A JP9483480 A JP 9483480A JP S6056915 B2 JPS6056915 B2 JP S6056915B2
Authority
JP
Japan
Prior art keywords
pressure stage
water
stage
runner chamber
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55094834A
Other languages
Japanese (ja)
Other versions
JPS5720566A (en
Inventor
佐智雄 角田
一郎 山形
晋作 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55094834A priority Critical patent/JPS6056915B2/en
Publication of JPS5720566A publication Critical patent/JPS5720566A/en
Publication of JPS6056915B2 publication Critical patent/JPS6056915B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Description

【発明の詳細な説明】 本発明は多段水力機械の運転制御方法に係り、特に最
低圧段部から最高圧段部まての各段部の流路が返り通路
によつて連絡され、最高圧段部のみに可動ガイドベーン
を備えた多段水力機械において、水車方向あるいはポン
プ方向への空転運転からそれぞれ発電運転あるいは揚水
運転へ切換える運転制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the operation of a multi-stage hydraulic machine, and in particular, the flow paths of each stage from the lowest pressure stage to the highest pressure stage are connected by return passages, and the highest pressure The present invention relates to an operation control method for switching from idling operation in the direction of a water turbine or pump to power generation operation or pumping operation, respectively, in a multi-stage hydraulic machine having movable guide vanes only in the stepped portions.

一般に水力機械では、水車調和運転時あるいはポンプ
起動運転時、ランナ駆動トルクの軽減をはかるため、高
圧空気の給気により流路の水を押し下げてランナを空中
で運転し、しかる後、流路の”残留空気を排出して流路
を充水せしめてから、所要の水車発電運転あるいはポン
プ揚水運転などへ移行させている。
In general, in hydraulic machinery, in order to reduce the runner drive torque during water turbine harmonized operation or pump start-up operation, the runners are operated in the air by pushing down the water in the flow path using high-pressure air supply, and then the flow path is ``After exhausting the residual air and filling the channel with water, we shift to the required water turbine power generation operation or pump pumping operation.

水力機械のうち、各段部のランナ室が返り通路によつ
て連絡され、複雑な流路形状を有する多段水力機械にあ
つては、空転運転から発電運転あるいは揚水運転に切換
える際の排気に種々の問題を伴ないやすい。
Among hydraulic machines, runner chambers of each stage are connected by return passages, and in the case of multi-stage hydraulic machines with complicated flow path shapes, various exhaust gases are used when switching from idling operation to power generation operation or pumping operation. tend to cause problems.

最高圧段部のみに可動ガイドベーンを有している多段水
力機械は最高圧段のランナ室から最低圧段部のランナ室
までの流路の途中に可動ガイドベーンなどの流路をしや
断することのできる構造物を具備tていないのて流路は
常時連通しており、流体現象は即座に各ランナ室間に伝
わる構成となつている。
Multi-stage hydraulic machines that have a movable guide vane only in the highest pressure stage are equipped with a movable guide vane or the like in the middle of the flow path from the runner chamber of the highest pressure stage to the runner chamber of the lowest pressure stage. Since there is no structure that can control the flow, the flow path is always in communication, and fluid phenomena are immediately transmitted between the runner chambers.

このように各段部のランナ室が返り通路によつて常時連
通しているような多段水力機械において、ランナ室内の
水を圧縮空気を使つて押し下げるには最高圧段のランナ
室の上カバーより給気して返り通路内の水を吸出し管ま
で押し下げて空転運転し、発電運転または揚水運転に移
行する際、最高圧段のランナ室の上カバーより排気する
運転方法が考えられる。しかしながら、上述したように
各段のランナ室の流路部に給気された圧縮空気を最高圧
段のランナ室より排気して充水させようとした場合、最
低圧段のランナ室内に圧縮空気が残存しやすく、最低圧
段のランナ外周部の流路て高圧の流動する水と圧縮空気
とが衝突するために、水と空気の混相状態になつたかた
まりが各段部間を往復し、すなわち各段部のランナの加
圧源によつて流路内の水と空気の混相状態がはげしく干
渉して排気渋滞を起し振動、騒音、異常水圧変動などが
発生し、円滑に排気充水することが難しい。しかるにこ
のように最高圧段部だけに可動カイ.ドベーンを有する
多段水力機械自体が技術的に未開な分野が多いこともあ
つて、空転運転から所要の発電運転あるいは揚水運転に
切換える場合における、簡便にして的確な運転制御方法
が未だ提案されていないのが実情である。
In a multi-stage hydraulic machine where the runner chambers of each stage are always in communication via return passages, compressed air can be used to push down the water in the runner chambers by opening the upper cover of the runner chamber of the highest pressure stage. A conceivable operating method is to supply air and push the water in the return passage down to the suction pipe for idling operation, and then, when transitioning to power generation operation or pumping operation, to exhaust air from the upper cover of the runner chamber at the highest pressure stage. However, as mentioned above, when trying to fill the water by exhausting the compressed air supplied to the flow path of the runner chamber of each stage from the runner chamber of the highest pressure stage, the compressed air enters the runner chamber of the lowest pressure stage. Because high-pressure flowing water and compressed air collide in the flow path around the outer periphery of the runner in the lowest pressure stage, a mass of mixed phase water and air reciprocates between each stage. In other words, the multiphase state of water and air in the flow path due to the pressure sources of the runners in each stage interferes violently, causing exhaust congestion, resulting in vibrations, noise, abnormal water pressure fluctuations, etc., and smooth exhaust water filling. difficult to do. However, in this way, only the highest pressure stage is movable. Multi-stage hydraulic machines with devanes themselves are technically unexplored in many fields, and a simple and accurate operation control method has not yet been proposed when switching from idling operation to required power generation operation or pumping operation. That is the reality.

そこで、本発明の目的は、空転運転から発電運転あるい
は揚水運転へ移行する際に低圧段から高圧段に向つて段
階的に確実に流路内の空気を排出てきるようにした多段
水力機械の運転制御方法を提供することである。
Therefore, an object of the present invention is to provide a multi-stage hydraulic machine that is capable of reliably discharging air in a flow path step by step from a low-pressure stage to a high-pressure stage when transitioning from idling operation to power generation operation or pumping operation. An object of the present invention is to provide an operation control method.

しかして、本発明によれば、上記目的は、最低圧段部か
ら最高圧段部までの各段部のランナ室が返り通路によつ
て連絡され、最高圧段部にのみ可動ガイドベーンを備え
た多段水力機械の運転制御方法において:可動ガイドベ
ーンを全閉し、給気によりランナ室内の水を最低圧段の
ランナ室の下方に押し下げ、各段部のランナを水車方向
またはポンプ方向へ空転運転させた状態から発電運転ま
たは揚水運転に移行させる際、先ず最低圧段部のランナ
室内の圧縮空気のみを排気しながら吸出し管内の水を最
低圧段ランナ室に充水せしめ、高圧段側の空気相と低圧
段側からの充水相との境界が返り通路の折り返し部のほ
ぼ中央付近となつたところで、隣接する高圧段ランナ室
内の圧縮空気の排気を開始し、それによつて低圧段ラン
ナ室の加圧水を返り通路を介して次段のランナ室内に導
き、最低圧段部から最高圧段部に至るまでの各段毎に順
次排気および充水を行ない、最高圧段部ランナ室が水中
締切状態の規定圧力もしくは水位に達したところで各段
のランナ室からの排気を停止し、次いで可動ガイドベー
ンを所定の開度まで開口させて発電運転または揚水運転
に移行するようにしたことによつて達成される。
According to the present invention, the above object is achieved by connecting the runner chambers of each step from the lowest pressure step to the highest pressure step by a return passage, and providing a movable guide vane only in the highest pressure step. In the operation control method of a multi-stage hydraulic machine, the movable guide vane is fully closed, the water in the runner chamber is pushed down to the bottom of the runner chamber at the lowest pressure stage by air supply, and the runners at each stage are idled toward the water wheel or pump. When transitioning from an operating state to power generation operation or pumping operation, first, while exhausting only the compressed air in the runner chamber of the lowest pressure stage, the water in the suction pipe is charged into the lowest pressure stage runner chamber, and then the water in the lowest pressure stage runner chamber is filled with water. When the boundary between the air phase and the water-filled phase from the low-pressure stage side reaches approximately the center of the turning section of the return passage, exhausting of the compressed air in the adjacent high-pressure stage runner chamber begins, thereby causing the low-pressure stage runner to The pressurized water in the chamber is guided into the runner chamber of the next stage through the return passage, and each stage from the lowest pressure stage to the highest pressure stage is sequentially evacuated and filled with water, until the highest pressure stage runner chamber is underwater. When the specified pressure or water level in the cut-off state is reached, the exhaust from the runner chambers of each stage is stopped, and the movable guide vanes are then opened to a predetermined opening degree to shift to power generation or pumping operation. will be achieved.

しかして、本発明によれは、先す最低圧段部のランナ室
の排気を行ない低圧段ランナ室内の充水が返り通路内の
空気を圧縮しながら返り通路内に導入され、低圧段側か
らの充水相と高圧段側の空気相との境界が返り通路の折
り返し部の中央付近に達したときに高圧段ランナ室側の
排気を開始するようにしたから、各段部のランナ室内の
加圧源であるランナの間を空気相で分離することになり
、水と空気の混相による急激な流動状態を避けて円滑か
つ確実に流路内の空気を排出することができる。
According to the present invention, the runner chamber of the lowest pressure stage section is first evacuated, and the filled water in the low pressure stage runner chamber is introduced into the return passage while compressing the air in the return passage, and is introduced from the low pressure stage side. Since the exhaust from the high-pressure stage runner chamber side is started when the boundary between the water-filled phase of The air phase separates the runner, which is a pressurization source, so that the air in the flow path can be smoothly and reliably discharged while avoiding a rapid flow state due to a mixed phase of water and air.

以下本発明による多段水力機械の運転制御方法の実施例
を図面を参照して説明する。
Embodiments of the method for controlling the operation of a multi-stage hydraulic machine according to the present invention will be described below with reference to the drawings.

本発明の理解を容易にするために、第1図は多段水力機
械の一例としてフランシス形の2段ポンプ水車を示して
おり、単一の水車主軸1の軸上には、高圧段ランナ2と
低圧段ランナ3とが軸方向の距離をおいて固着されてい
る。
To facilitate understanding of the present invention, FIG. 1 shows a Francis-type two-stage pump-turbine as an example of a multi-stage hydraulic machine, in which a single main shaft 1 has a high-pressure stage runner 2 and A low pressure stage runner 3 is fixed at a distance in the axial direction.

上記高圧段ランナ2は上カバー4および下カバー5て包
囲される一方、低圧段ランナ3は上カバー6および下カ
バー7で包囲され、高圧段ランナ室8および低圧段ラン
ナ室9を構成している。上記高圧段ランナ室8と低圧段
ランナ室9とは返り通路10で連絡され通路上には返り
羽根11およびステーベーン12が設けられている。ま
た、高圧段ランナ室8の外側にはうず巻ケーシング13
が配置され、そのうず室14と上記高圧段ランナ室8と
は連通され、うす室の入口は入口弁を介して水圧鉄管に
接続されている。
The high pressure stage runner 2 is surrounded by an upper cover 4 and a lower cover 5, while the low pressure stage runner 3 is surrounded by an upper cover 6 and a lower cover 7, forming a high pressure stage runner chamber 8 and a low pressure stage runner chamber 9. There is. The high pressure stage runner chamber 8 and the low pressure stage runner chamber 9 are connected by a return passage 10, and a return vane 11 and a stay vane 12 are provided on the passage. Further, a spiral casing 13 is provided outside the high pressure stage runner chamber 8.
The whirlpool chamber 14 and the high-pressure stage runner chamber 8 are communicated with each other, and the inlet of the hollow chamber is connected to a penstock via an inlet valve.

さらにまた、高圧段ランナ2の外側には、水口開度を変
えられる可動ガイドベーン15が設けられ図示を省略し
たガイドベーン操作機構によつてガイドベーン開度を調
整できるようになつている。
Furthermore, a movable guide vane 15 is provided on the outside of the high-pressure stage runner 2, and the opening degree of the guide vane can be adjusted by a guide vane operating mechanism (not shown).

なお、上記低圧段ランナ室9にはエルボ形の吸出し管1
6が接続され、その下流側は放水路と連通している。
Note that an elbow-shaped suction pipe 1 is provided in the low-pressure stage runner chamber 9.
6 is connected, and its downstream side communicates with the drainage channel.

上記高圧段ランナ室8の上カバー4には排気管17が接
続され、一方、低圧段ランナ室9の上カバー6には排気
管18が接続され、それぞれの管路上には排気弁19お
よび20が組込まれている。
An exhaust pipe 17 is connected to the upper cover 4 of the high pressure stage runner chamber 8, while an exhaust pipe 18 is connected to the upper cover 6 of the low pressure stage runner chamber 9, and exhaust valves 19 and 20 are installed on each pipe. is incorporated.

上記のように構成された2段ポンプ水車を水車運転させ
る場合、水圧鉄管からの圧力水はうず巻ケーシング13
のうず室14内に流入し、この水流は高圧段部の可動ガ
イドベーン15を通過し、返り通路10を経て低圧段ラ
ンナ3を流通したのち、吸出し管16内へ流れる。
When operating the two-stage pump turbine configured as described above, pressure water from the penstock is transferred to the spiral casing 13.
The water flow flows into the swirl chamber 14, passes through the movable guide vane 15 of the high pressure stage section, passes through the return passage 10, flows through the low pressure stage runner 3, and then flows into the suction pipe 16.

一方、水車と同じ回転速度で反対の方向にランナを回転
するポンプ運転時には低圧段ランナ3によつて揚水され
た水流は前記した水車運転時の場合と逆の順路を経て吸
出し管16から水圧鉄管へと流通して行く。
On the other hand, during pump operation in which the runner rotates in the opposite direction at the same rotational speed as the water turbine, the water flow pumped up by the low-pressure stage runner 3 passes from the suction pipe 16 to the penstock through the reverse route of the water turbine operation described above. It will be distributed to.

次に上述した2段ポンプ水車に本発明を適用して水車方
向あるいはポンプ方向の空転運転をさせ、その状態から
発電運転あるいは揚水運転へ移行する場合の運転制御方
法について述べる。
Next, a description will be given of an operation control method when the present invention is applied to the above-mentioned two-stage pump water turbine to cause it to idle in the direction of the water wheel or pump, and then to shift from that state to power generation operation or pumping operation.

運転に先だつて可動ガイドベーン15を全閉したのち、
うず室14内を加圧水で満水状態にして高圧段ランナ室
8内に圧縮空気を吹き込み、高圧段ランナ室8以下の水
を返り通路10およびび低圧段ランナ室9を通して吸出
し管16の下方へ押し下げておき、ランナを発電方向あ
るいは揚水方向に空転運転させておくものとする(第1
図参照)。このような空転運転状態から発電運転あるい
は揚水運転に移行するには、先す低圧段ランナ室9に接
続された排気管18上の排気弁20のみを開き、低圧段
ランナ室9内の圧縮空気を外部へ排出する。
After fully closing the movable guide vane 15 prior to operation,
The whirlpool chamber 14 is filled with pressurized water and compressed air is blown into the high pressure stage runner chamber 8 to push the water below the high pressure stage runner chamber 8 down through the return passage 10 and the low pressure stage runner chamber 9 to the lower part of the suction pipe 16. The runner shall be idle in the power generation direction or pumping direction (first
(see figure). In order to shift from such an idling operation state to power generation operation or pumping operation, first open only the exhaust valve 20 on the exhaust pipe 18 connected to the low pressure stage runner chamber 9 to release the compressed air in the low pressure stage runner chamber 9. is discharged to the outside.

すると、吸出し管16内の水は、徐々に上昇して低圧段
ランナ室9内に充水され、この充水は低圧段ランナ室の
ランナ3の回転によつて加圧され、この加圧された水は
返り流路10内の空気を圧縮しながら返り通路10に向
つて流れて行く。第2図に示されるように、水がステー
ベーン12の間を通つて返り通路10の中ほどに達した
ころには、水は低圧段ランナ3の遠心作用を受けて加圧
される。このそして高圧段側の空気相と低圧段側からの
充水相との境界が返り通路10の折返し部の中央付近に
達した水位状態になつたところで、高圧段ランナ室8側
の排気管17上の排気弁19を開き、高圧段ランナ室8
内の圧縮空気の排出を開始する。なお、低圧段ランナ室
9内の水圧および水位の状態は、低圧段ランナ室9の外
周部に圧力検出器もしくは水位検出器を設けておき、こ
れらによつて検出すればよく、この検出器からの検出信
号を高圧段側の排気弁19に伝えて弁開すればよい。高
圧段側の排気と同時に、低圧段ランナ3によつて加圧さ
れた水は返り通路10を介して高圧段ランナ室8内に徐
々に侵入し、高圧段ランナ室8を下方から充水する。
Then, the water in the suction pipe 16 gradually rises and fills the low pressure stage runner chamber 9, and this filled water is pressurized by the rotation of the runner 3 in the low pressure stage runner chamber, and this pressurized water is The water flows toward the return passage 10 while compressing the air within the return passage 10. As shown in FIG. 2, when the water passes between the stay vanes 12 and reaches the middle of the return passage 10, the water is pressurized by the centrifugal action of the low-pressure stage runner 3. When the boundary between the air phase on the high-pressure stage side and the water-filled phase from the low-pressure stage reaches the water level near the center of the turning part of the return passage 10, the exhaust pipe 17 on the high-pressure stage runner chamber 8 side Open the upper exhaust valve 19 and remove the high pressure stage runner chamber 8.
Start discharging the compressed air inside. Note that the state of the water pressure and water level in the low pressure stage runner chamber 9 can be detected by a pressure detector or a water level detector provided on the outer periphery of the low pressure stage runner chamber 9. The detection signal may be transmitted to the exhaust valve 19 on the high pressure stage side to open the valve. At the same time as the high-pressure stage side is exhausted, the water pressurized by the low-pressure stage runner 3 gradually enters the high-pressure stage runner chamber 8 via the return passage 10 and fills the high-pressure stage runner chamber 8 from below. .

そして高圧段ランナ室8内が完全に充水されて水中締切
状態に達し、規定の締切圧力もしくは水位に達したとこ
ろで、排気弁19および20を閉じて排気を終了させる
と共にガイドベーン15を所定の開度まて開口させれば
所要の発電運転あるいは揚水運転に移行させることがで
きる。低圧段ランナ室9内の充水状態を検出するには上
述したように圧力検出器もしくは水位検出器を使用して
もよいし、あるいは低圧段ランナ室9内を所定の充水状
態に達するまでの充水所要時間を予測設定し時限タイマ
装置を使つて排気弁20の弁開時点から所定の時間経過
後に排気弁19を開くようにしても良い。
When the high pressure stage runner chamber 8 is completely filled with water and reaches the underwater cut-off state, and reaches the specified cut-off pressure or water level, the exhaust valves 19 and 20 are closed to end the exhaust, and the guide vane 15 is moved to a predetermined position. If the opening is increased, it is possible to shift to the required power generation operation or pumping operation. To detect the water-filled state in the low-pressure stage runner chamber 9, a pressure detector or a water level detector may be used as described above, or alternatively, the water-filled state in the low-pressure stage runner chamber 9 may be detected until a predetermined water-filled state is reached. The exhaust valve 19 may be opened after a predetermined period of time has elapsed from the opening of the exhaust valve 20 using a timer device by predicting the time required for filling the exhaust valve 20 with water.

なお、上述した実施例は、本発明を2段ポンプ水車に対
して適用した例を説明したが、本発明は3段以上の多段
水力機械に対して適用てきることはもちろんである。
Although the above-mentioned embodiment describes an example in which the present invention is applied to a two-stage pump water turbine, the present invention can of course be applied to a multi-stage hydraulic machine having three or more stages.

以上の説明から明らかなように、本発明によれば低圧段
のランナ室の排気を隣接する高圧段のランナ室よりも先
行させ、低圧段側からの充水相と高圧段側の空気相との
境界が返り通路の折り返し部の中央付近に達したところ
で隣接する高圧段のランナ室の排気を開始するようにし
たから、低圧段のランナ室に停滞しやすい空気を完全に
排気し、下方に空気をそのま)滞留させるような排気渋
滞現象を避けることができ、全段のランナ室内の充水を
円滑に遂行できると共に最高圧段部のランナ室を締切状
態に至らしめ各段部からの排気を終了させると同時にカ
ーfドベーンを開口させて発電運転または揚水運転に円
滑に移行することができる。
As is clear from the above description, according to the present invention, the runner chamber of the low pressure stage is evacuated before the runner chamber of the adjacent high pressure stage, and the water-filled phase from the low pressure stage side and the air phase from the high pressure stage side are separated. Since the runner chamber of the adjacent high pressure stage starts to be exhausted when the boundary of It is possible to avoid exhaust congestion phenomena that would cause air to stagnate, and it is possible to smoothly fill the runner chambers of all stages with water, as well as to bring the runner chamber of the highest pressure stage into a closed state and prevent air from each stage. At the same time as the exhaust is finished, the card f vane is opened, allowing a smooth transition to power generation operation or pumping operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用するフランシス形の2段ポンプ水
車の空転状態を示した縦断面図、第2図は同ポンプ水車
の排気充水運転の途中の状態を示した縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a Francis-type two-stage pump-turbine to which the present invention is applied in an idling state, and FIG. 2 is a vertical cross-sectional view showing the pump-turbine in a state in the middle of exhaust and water filling operation. .

Claims (1)

【特許請求の範囲】 1 最低圧段部から最高圧段部までの各段部のランナ室
が返り通路によつて連絡され、最高圧段部にのみ可動ガ
イドベーンを備えた多段水力機械の運転制御方法におい
て;可動ガイドベーンを全閉し、給気によりランナ室内
の水を最低圧段のランナ室の下方に押し下げ、各段部の
ランナを水車方向またはポンプ方向へ空転運転させた状
態から発電運転または揚水運転に移行させる際、先ず最
低圧段部のランナ室内の圧縮空気のみを排気しながら吸
出し管内の水を最低圧段ランナ室に充水せしめ、同ラン
ナ室内からの充水相と高圧段側の空気相との境界が返り
通路の折り返し部の中央付近に達したところで隣接する
高圧段ランナ室内の圧縮空気の排気を開始し、それによ
つて、低圧段ランナ室の加圧水を返り通路を介して次段
のランナ室内に導き、最低圧段部から最高圧段部に至る
までの各段毎に順次排気および充水を行ない、最高圧段
部ランナ室が水中締切状態の規定圧力もしくは水位に達
したところで各段のランナ室からの排気を停止し、次い
で可動ガイドベーンを所定の開度まで開口させて発電運
転または揚水運転に移行するようにしたことを特徴とす
る多段水力機械の運転制御方法。 2 低圧段側のランナ室からの充水相と高圧段側の空気
相との境界が返り通路の折り返し部の中央付近に達した
ことを検出し、この検出信号によつて隣接した高圧段側
の排気管の排気弁を開くようにしたことを特徴とする特
許請求の範囲第1項に記載の運転制御方法。
[Claims] 1. Operation of a multistage hydraulic machine in which the runner chambers of each stage from the lowest pressure stage to the highest pressure stage are connected by a return passage, and only the highest pressure stage is provided with a movable guide vane. In the control method: the movable guide vane is fully closed, the water in the runner chamber is pushed down to the bottom of the runner chamber at the lowest pressure stage by air supply, and the runners in each stage are idled in the direction of the water turbine or pump, and power generation is started. When shifting to operation or pumping operation, first, while exhausting only the compressed air in the runner chamber of the lowest pressure stage, the water in the suction pipe is charged into the lowest pressure stage runner chamber, and the water filling phase and high pressure from the same runner chamber are discharged. When the boundary with the air phase on the stage side reaches near the center of the folded part of the return passage, the compressed air in the adjacent high-pressure stage runner chamber begins to be exhausted, thereby causing the pressurized water in the low-pressure stage runner chamber to flow through the return passage. water is introduced into the runner chamber of the next stage through the runner chamber, and the water is sequentially evacuated and filled at each stage from the lowest pressure stage to the highest pressure stage, until the highest pressure stage runner chamber reaches the specified pressure or water level at which the water is closed under water. Operation of a multi-stage hydraulic machine characterized by stopping the exhaust from the runner chambers of each stage when reaching the maximum, and then opening the movable guide vanes to a predetermined opening degree to shift to power generation operation or pumping operation. Control method. 2. It is detected that the boundary between the water-filled phase from the runner chamber on the low-pressure stage side and the air phase on the high-pressure stage side has reached near the center of the turning part of the return passage, and this detection signal is used to 2. The operation control method according to claim 1, wherein an exhaust valve of an exhaust pipe is opened.
JP55094834A 1980-07-11 1980-07-11 Operation control method for multi-stage hydraulic machinery Expired JPS6056915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55094834A JPS6056915B2 (en) 1980-07-11 1980-07-11 Operation control method for multi-stage hydraulic machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55094834A JPS6056915B2 (en) 1980-07-11 1980-07-11 Operation control method for multi-stage hydraulic machinery

Publications (2)

Publication Number Publication Date
JPS5720566A JPS5720566A (en) 1982-02-03
JPS6056915B2 true JPS6056915B2 (en) 1985-12-12

Family

ID=14121065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55094834A Expired JPS6056915B2 (en) 1980-07-11 1980-07-11 Operation control method for multi-stage hydraulic machinery

Country Status (1)

Country Link
JP (1) JPS6056915B2 (en)

Also Published As

Publication number Publication date
JPS5720566A (en) 1982-02-03

Similar Documents

Publication Publication Date Title
US4014624A (en) Method and device for starting pump
US4158525A (en) Method of and apparatus for operating pump turbine
US4537558A (en) Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
JPS624554B2 (en)
US4538957A (en) Multi-stage hydraulic machine and control method for multi-stage hydraulic machine
JPS6316583B2 (en)
US4073594A (en) Pump starting method for hydraulic machinery
JPS6056915B2 (en) Operation control method for multi-stage hydraulic machinery
US4547123A (en) Multi-stage hydraulic machine and method of operating same
JPS6230304B2 (en)
JPS6224633B2 (en)
US4629393A (en) Method of operating multistage hydraulic machinery
KR890000643B1 (en) Rotary type pumping machine
JP3344490B2 (en) Multi-stage pump turbine
JPS6053675A (en) Operation of multistage hydraulic machinery
JPS6225877B2 (en)
JPS6225876B2 (en)
JP3387941B2 (en) Multi-stage hydraulic machine
JPS6035552B2 (en) How to operate a multi-stage pump turbine
JPH0115709B2 (en)
JPS634024B2 (en)
JPH0712042A (en) Two-stage reversible pump turbine and its exhaust operation method
JPH09158824A (en) Horizontal shaft hydraulic machinery
JPS59190481A (en) Multistage hydraulic machine
JPS5958163A (en) Driving control method for multi-stage hydraulic machinery