JPS6225876B2 - - Google Patents

Info

Publication number
JPS6225876B2
JPS6225876B2 JP56013800A JP1380081A JPS6225876B2 JP S6225876 B2 JPS6225876 B2 JP S6225876B2 JP 56013800 A JP56013800 A JP 56013800A JP 1380081 A JP1380081 A JP 1380081A JP S6225876 B2 JPS6225876 B2 JP S6225876B2
Authority
JP
Japan
Prior art keywords
pressure stage
suction pipe
stage
water
highest pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56013800A
Other languages
Japanese (ja)
Other versions
JPS57129269A (en
Inventor
Fusaku Sato
Sachio Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56013800A priority Critical patent/JPS57129269A/en
Priority to US06/343,325 priority patent/US4537558A/en
Priority to CH593/82A priority patent/CH656923A5/en
Priority to DE3203354A priority patent/DE3203354C2/en
Publication of JPS57129269A publication Critical patent/JPS57129269A/en
Publication of JPS6225876B2 publication Critical patent/JPS6225876B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/005Starting, also of pump-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Description

【発明の詳細な説明】 本発明は多段水力機械の運転方法に係り、特に
最高圧段部から、最低圧段部までの各段部が返り
通路によつて連絡され、かつ最高圧段部にのみ可
動ガイドベーンを備えた多段水力機械において、
発電運転あるいは揚水運転からそれぞれ発電方向
あるいは揚水方向への空転運転に切換える場合の
多段水力機械の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a multi-stage hydraulic machine, and in particular, the present invention relates to a method for operating a multi-stage hydraulic machine, in particular, in which each stage from the highest pressure stage to the lowest pressure stage is connected by a return passage, and the highest pressure stage is connected to the lowest pressure stage by a return passage. In multistage hydraulic machines with only movable guide vanes,
The present invention relates to a method of operating a multistage hydraulic machine when switching from power generation operation or pumping operation to idling operation in the direction of generation or pumping, respectively.

一般に水力機械では、水車発電運転あるいは、
ポンプ揚水運転から、それぞれ水車調相運転ある
いはポンプ揚水待機運転に切換える場合、水車調
相運転時、あるいはポンプ揚水待機運転時、ラン
ナ駆動トルクの軽減をはかるため、高圧空気の給
気により、流路の水を押し下げてランナを空中で
運転している。水力機械のうち、各段部のランナ
室が返り通路によつて連絡され、複雑な流路形状
を有する多段水力機械にあつては、発電運転ある
いは、揚水運転からそれぞれの空転運転に切換え
る際の給気、排水に種々の問題を伴いやすい。特
に過渡時の運転状態を安全に制御するため最高圧
段部だけに可動ガイドベーンを設けた多段水力機
械においては、最高圧段部から最低圧段部までの
各段部の流路が常時連通しているので、流路部に
高圧空気を給気する際、各段部の相互干渉を伴い
やすく、また円滑に給気排水を行なうことが難し
く、給気方法が問題となつている。
In general, in hydraulic machinery, water turbine power generation operation or
When switching from pump pumping operation to turbine control phase operation or pump pumping standby operation, in order to reduce the runner drive torque, the flow path is is driving the runner in the air by pushing down the water. Among hydraulic machines, runner chambers of each stage are connected by return passages, and in the case of multi-stage hydraulic machines with complicated flow path shapes, when switching from power generation operation or pumping operation to respective idling operation, Various problems tend to occur with air supply and drainage. In particular, in multi-stage hydraulic machines in which a movable guide vane is installed only in the highest pressure stage to safely control operating conditions during transient times, the flow paths of each stage from the highest pressure stage to the lowest pressure stage are constantly connected. Therefore, when high-pressure air is supplied to the flow passage section, mutual interference between the various stages is likely to occur, and it is difficult to smoothly discharge the supplied air, which poses a problem in the air supply method.

しかるに、このように最高圧段部だけに可動ガ
イドベーンを有する多段水力機械自体が技術的に
未開な分野が多いこともあつて、発電運転あるい
は揚水運転から所要の空転運転に切換える場合に
おける、円滑にして的確な運転方法が未だ確立さ
れていないのが実情である。
However, there are many technologically unexplored fields in the multistage hydraulic machine itself, which has movable guide vanes only in the highest pressure stage, and it is difficult to smoothly switch from power generation operation or pumping operation to the required idling operation. The reality is that an accurate driving method has not yet been established.

そこで本発明の目的は、発電運転あるいは揚水
運転から空転運転に切換える際、安全にして確実
に給気排水を行なうことが可能で、かつ短時間の
うちに円滑に空転運転に移行できるようにした多
段水力機械の空転運転方法を提供することにあ
る。
Therefore, an object of the present invention is to make it possible to safely and reliably drain air supply and drain when switching from power generation operation or pumping operation to idling operation, and to enable a smooth transition to idling operation in a short time. An object of the present invention is to provide a method for idling a multi-stage hydraulic machine.

以下本発明の多段水力機械の運転方法の第1の
発明の実施例について、図面を参照して説明す
る。第1図は多段水力機械の一例としてフランシ
ス形2段ポンプ水車を示す。単一のポンプ水車主
軸1の軸上には、高圧段ランナ2と低圧段ランナ
3とが軸方向の距離をおいて固着されている。こ
の高圧段ランナ2は、上カバー4および下カバー
5で包囲される一方、低圧段ランナ3は、上カバ
ー6および下カバー7で包囲され、高圧段ランナ
室8および低圧段ランナ室9を構成している。さ
らに上記高圧段ランナ室8と低圧段ランナ室9と
は返り通路10で連絡され、通路上には返し羽根
11およびステーベーン12が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the first invention of the method for operating a multistage hydraulic machine of the present invention will be described with reference to the drawings. Figure 1 shows a Francis type two-stage pump turbine as an example of a multi-stage hydraulic machine. A high-pressure stage runner 2 and a low-pressure stage runner 3 are fixed on the shaft of a single pump-turbine main shaft 1 at a distance in the axial direction. The high pressure stage runner 2 is surrounded by an upper cover 4 and a lower cover 5, while the low pressure stage runner 3 is surrounded by an upper cover 6 and a lower cover 7, forming a high pressure stage runner chamber 8 and a low pressure stage runner chamber 9. are doing. Furthermore, the high-pressure stage runner chamber 8 and the low-pressure stage runner chamber 9 are connected by a return passage 10, and a return vane 11 and a stay vane 12 are provided on the passage.

また高圧段ランナ室8の外側には、うず巻ケー
シング13が配置され、そのうず室14の入口
は、入口弁16を介して水圧鉄管17に接続され
ている。高圧段ランナ2の外側には、水口開度を
変えられる可動ガイドベーン15が設けられ、ガ
イドベーン操作機構(図示せず)によつてガイド
ベーン開度を調整できるようになつている。なお
低圧段ランナ室9にはエルボ形の吸出し管18が
接続され、その下流側には吸出し管出口弁19を
介して放水路20と連通している。上記高圧段ラ
ンナ室8の外周部には排水管21が接続され、一
方低圧段ランナ室9の外周部には排水管22が接
続され、それぞれの管路上には排水弁23および
24が組込まれており、それぞれの排水管は吸出
し管18と連通している。
Further, a spiral casing 13 is disposed outside the high-pressure stage runner chamber 8 , and the inlet of the spiral chamber 14 is connected to a penstock 17 via an inlet valve 16 . A movable guide vane 15 is provided on the outside of the high-pressure stage runner 2, and the opening degree of the guide vane can be adjusted by a guide vane operating mechanism (not shown). An elbow-shaped suction pipe 18 is connected to the low-pressure stage runner chamber 9, and the downstream side thereof communicates with a discharge channel 20 via a suction pipe outlet valve 19. A drain pipe 21 is connected to the outer periphery of the high-pressure stage runner chamber 8, while a drain pipe 22 is connected to the outer periphery of the low-pressure stage runner chamber 9, and drain valves 23 and 24 are installed on each pipe. Each drain pipe communicates with a suction pipe 18.

また上記吸出し管部18の上部には給気管25
が接続され、管路上には給気弁26が組込まれて
いる。さらに吸出し管18の上方には吸出し管内
の水位を検出する水位検出器27が、さらに高圧
段ランナ室にはランナ室内圧力を検出する圧力検
出器28がそれぞれ取り付けられている。
Further, an air supply pipe 25 is provided at the upper part of the suction pipe section 18.
is connected, and an air supply valve 26 is installed on the pipe. Further, a water level detector 27 for detecting the water level in the suction pipe is installed above the suction pipe 18, and a pressure detector 28 for detecting the pressure in the runner chamber is installed in the high pressure stage runner chamber.

上記のように構成された2段ポンプ水車を水車
運転させる場合、開口させた入口弁16を介して
水圧鉄管17から送入される圧力がうず巻ケーシ
ング13のうず室14内に流入しこの水流は高圧
段部の可動ガイドベーン15を通過し、高圧段ラ
ンナ2、返り通路10を経て低圧段ランナ3を流
通したのち吸出し管18内を通り、放水路20へ
流れる。
When operating the two-stage pump turbine configured as described above, the pressure sent from the penstock 17 through the opened inlet valve 16 flows into the spiral chamber 14 of the spiral casing 13, and this water flow The water passes through the movable guide vane 15 of the high-pressure stage section, flows through the high-pressure stage runner 2, the return passage 10, the low-pressure stage runner 3, passes through the suction pipe 18, and flows into the discharge channel 20.

一方、水車と同じ回転速度で反対の方向にラン
ナを回転するポンプ運転時には低圧段ランナ3に
よつて揚水された水流は、前記した水車運転時の
場合と逆の順路を経て放水路20から水圧鉄管1
7へと流通して行く。
On the other hand, during pump operation in which the runner rotates in the opposite direction at the same rotational speed as the water turbine, the water flow pumped up by the low-pressure stage runner 3 flows from the water discharge channel 20 through the reverse route to the water turbine operation described above. Iron pipe 1
It will be distributed to 7.

次に上述した2段ポンプ水車に本願の第1の発
明の実施例を適用して、水車発電運転あるいはポ
ンプ揚水運転の状態から水車方向あるいはポンプ
方向の空転運転へ移行する場合の運転方法につい
て述べる。水車発電運転あるいはポンプ揚水運転
から、発電方向あるいは揚水方向の空転に移行さ
せるには、まず最高圧段部可動ガイドベーン1
5、および入口弁16を同時あるいは順次に全閉
にし、最高圧段部可動ガイドベーン15を全閉も
しくはその近傍小開度に至らしめたら、低圧段部
下方に連通する吸出し管18の上部に接続する給
気管25の給気弁26を開き、吸出し管部上方に
給気を開始し、吸出し管部の規定位置まで水位を
押し下げる(第1図参照)。
Next, we will describe an operating method when applying the embodiment of the first invention of the present application to the above-mentioned two-stage pump turbine and transitioning from the turbine power generation operation or pump pumping operation to idle operation in the direction of the turbine or pump. . To shift from water turbine power generation operation or pump pumping operation to idling in the power generation direction or pumping direction, first move the highest pressure stage movable guide vane 1.
5, and the inlet valve 16 are fully closed simultaneously or sequentially, and when the highest pressure stage movable guide vane 15 is fully closed or close to a small opening, the upper part of the suction pipe 18 communicating with the lower part of the low pressure stage is Open the air supply valve 26 of the connected air supply pipe 25, start supplying air above the suction pipe, and push the water level down to the prescribed position of the suction pipe (see Figure 1).

次いで排水弁24を開け低圧段ランナ室9の外
周部及び返り通路10に滞留する水を低圧段部排
水管22を介して吸出し管18に排出させる(第
2図参照)。
Next, the drain valve 24 is opened to drain the water remaining in the outer periphery of the low-pressure stage runner chamber 9 and the return passage 10 to the suction pipe 18 via the low-pressure stage drain pipe 22 (see FIG. 2).

なお吸出し管部の水位が規定位置まで達したこ
とは吸出し管18が接続する低圧段ランナ室9内
に設けられる圧力検出器(図示せず)もしくは吸
出し管18に設けられる水位検出器27を介して
検出しこの検出信号によつて排水弁24を開口す
れば良い。しかる後、高圧段部ランナ室8内の圧
力が規定値以下になつたところで、排水弁23を
開き高圧段部ランナ室8の外周部に滞留する水を
高圧段部排水管21を介して吸出し管18に排出
させる。また吸出し管18内の水面を前記した規
定位置に安定せしめたら、給気管25の給気弁2
6を閉め吸出し管18内への給気を終止させて各
ランナを空転運転へ移行させる(第3図参照)。
It should be noted that whether the water level in the suction pipe section has reached the specified position is determined by a pressure detector (not shown) provided in the low-pressure stage runner chamber 9 to which the suction pipe 18 is connected or a water level detector 27 provided in the suction pipe 18. The drain valve 24 may be opened based on this detection signal. After that, when the pressure inside the high-pressure stage runner chamber 8 becomes lower than the specified value, the drain valve 23 is opened and the water remaining in the outer periphery of the high-pressure stage runner chamber 8 is sucked out through the high-pressure stage drain pipe 21. It is discharged into pipe 18. Furthermore, after the water surface in the suction pipe 18 is stabilized at the specified position described above, the air supply valve 2 of the air supply pipe 25
6 is closed to terminate the supply of air into the suction pipe 18, and each runner is put into idling operation (see FIG. 3).

なお、高圧段ランナ室8の圧力が規定状態に達
したことは同ランナ室内に設けられる圧力検出器
28によつて検出すればよくこの圧力検出器から
の検出信号を前記排水弁23に伝えて弁開すれば
よい。また吸出し管18部の水が規定水位に安定
したことは吸出し管上部に設けられる水位検出器
27を介して検出し、この検出信号によつて給気
弁26を閉める。
Incidentally, it is sufficient to detect that the pressure in the high-pressure stage runner chamber 8 has reached a specified state by a pressure detector 28 provided in the runner chamber, and a detection signal from this pressure detector is transmitted to the drain valve 23. All you have to do is open your mouth. Further, whether the water in the suction pipe 18 has stabilized at a specified water level is detected via a water level detector 27 provided at the upper part of the suction pipe, and the air supply valve 26 is closed based on this detection signal.

以上の説明から明らかなように、本願の第1の
発明の実施例によれば、先づ高圧段部可動ガイド
ベーンの内側流路部の水面押し下げを行なう場
合、高圧段部ガイドベーンを全閉し2段ポンプ水
車の流路のうち最低圧状態にある吸出し管部にの
み給気するから、コンプレツサーなどの給気装置
は圧力容量の小さい経済的なもので十分対応でき
るとともに給気制御を極めて簡素化でき、さらに
加えて給気圧力を直接ランナに作用させないから
回転部を軸方向に推すような軸スラストを誘発す
ることがなく安全である。
As is clear from the above description, according to the embodiment of the first invention of the present application, when first pushing down the water surface of the inner flow path of the high-pressure stage movable guide vane, the high-pressure stage guide vane is fully closed. Since air is supplied only to the suction pipe section that has the lowest pressure in the flow path of a two-stage pump-turbine, an economical air supply device such as a compressor with a small pressure capacity can be used, and air supply control can be achieved. It can be simplified, and in addition, since the supply air pressure is not applied directly to the runner, it is safe because it does not induce axial thrust that pushes the rotating part in the axial direction.

上記圧縮空気の供給により、先づ低圧側段部の
ランナ室の水を押し下げたら、高圧段部を除くラ
ンナ室の外周部を排水管を介して吸出し管部と連
通せしめるから、低圧側段部ランナ室の外周部に
滞留する水は同部ランナの遠心作用力を利用して
同部ランナ室排水管から短時間のうちに的確に排
水できる。
By supplying the compressed air, the water in the runner chamber of the low-pressure side stage is first pushed down, and the outer periphery of the runner chamber, excluding the high-pressure stage, is communicated with the suction pipe section via the drain pipe. Water accumulated on the outer periphery of the runner chamber can be accurately drained from the runner chamber drain pipe in a short time by using the centrifugal force of the runner.

このようにして圧縮空気による排水領域を低圧
段部から順次高圧段部へ拡大させていくから排水
に伴なう各段部の水の相互干渉による不安定現象
が避けられ、円滑な排水を行なえる。
In this way, the drainage area by compressed air is expanded sequentially from the low-pressure stage to the high-pressure stage, thereby avoiding instability due to mutual interference of water in each stage during drainage, and ensuring smooth drainage. Ru.

このように給気排水を行ない、各流路のうち最
高圧力状態下にある高圧段部ランナ室について
は、同部ランナ室の圧力を安全な規定圧力まで減
圧させてから同部ランナ室の外周部に滞留する水
を同部ランナ室排水管から吸出し管部に排出させ
るから、安全な圧力に調制された同部ランナの遠
心作用力により円滑にして的確に排水できる。
After supplying and draining air in this way, for the high-pressure stage runner chamber that is under the highest pressure among each flow path, the pressure in the high-pressure stage runner chamber is reduced to a safe specified pressure, and then the outer periphery of the runner chamber is Since the water stagnant in the runner chamber is discharged from the runner chamber drain pipe to the suction pipe section, water can be drained smoothly and accurately by the centrifugal force of the runner that is regulated to a safe pressure.

つぎに本発明の多段水力機械の運転方法の第2
の発明の実施例について図面を参照して説明す
る。本願の第1の発明の実施例と同じ第1図にお
いて、うず巻ケーシング13のうず室14の上方
には、大気中と連通する通気管29が取付けられ
ており、管路上には通気弁30が組み込まれてい
る。さらにケーシングうず室14と吸出し管18
を連絡するケーシング排水管31が、管路上に排
水弁32を組み込んで取り付けられている。ま
た、吸出し管18には、吸出し管18の外側下方
に配置され大気に連通した排水ピツト(図示せ
ず)と連絡する外部排水管33が、管路上に排水
弁34を組み込んで設けられており、他の構成は
本願の第1の発明の実施例と同一である。
Next, the second method of operating a multi-stage hydraulic machine of the present invention will be described.
Examples of the invention will be described with reference to the drawings. In FIG. 1, which is the same as the embodiment of the first invention of the present application, a vent pipe 29 communicating with the atmosphere is installed above the swirl chamber 14 of the spiral casing 13, and a vent valve 30 is installed on the pipe. is included. Furthermore, the casing swirl chamber 14 and the suction pipe 18
A casing drain pipe 31 is installed with a drain valve 32 installed on the pipe. Further, the suction pipe 18 is provided with an external drain pipe 33 that communicates with a drainage pit (not shown) disposed outside and below the suction pipe 18 and communicating with the atmosphere, and a drain valve 34 is installed on the pipe. , the other configurations are the same as the embodiment of the first invention of the present application.

このように構成された2段ポンプ水車の水車、
ポンプ運転の水流の動きは前記した本願の第1の
発明の実施例の場合と同じである。
The water turbine of the two-stage pump turbine configured in this way,
The movement of the water flow during pump operation is the same as in the above-described embodiment of the first invention of the present application.

つぎにこの2段ポンプ水車に本願の第2の発明
の実施例を適用して、水車発電運転、あるいはポ
ンプ揚水運転から水車方向あるいはポンプ方向の
空転運転へ移行する場合の方法について述べる。
はじめの高圧段可動ガイドベーン15、入口弁1
6の閉動作から、第3図に相当する状態までの方
法は本願の第1の発明の実施例と同じである。す
なわち、全閉した可動ガイドベーン15の内側流
路部については、本願の第1の発明の実施例の給
気排水制御により水面押し下げを行ない、しかる
後可動ガイドベーン15の外側流路部であるうず
巻ケーシング13については次のようにして水面
押し下げを行なう。
Next, a method will be described in which the embodiment of the second invention of the present application is applied to this two-stage pump water turbine to shift from water turbine power generation operation or pump pumping operation to idling operation in the water wheel direction or pump direction.
First high pressure stage movable guide vane 15, inlet valve 1
The method from the closing operation of 6 to the state corresponding to FIG. 3 is the same as the embodiment of the first invention of the present application. That is, for the inner flow path portion of the fully closed movable guide vane 15, the water surface is pushed down by the air supply/drainage control according to the embodiment of the first invention of the present application, and then the outer flow path portion of the movable guide vane 15 is pressed down. The water surface of the spiral casing 13 is pushed down as follows.

すなわち、第3図に示す空転運転状態におい
て、先づ吸出し管出口弁19を全閉し、しかる後
吸出し管18の外部排水弁34を開口させて吸出
し管18内の水を外部排水管33を介して外部の
排水ピツトに排出させるとともに、ケーシング排
水弁32とケーシング通気弁30とを開口し、通
気管29を介してうず巻ケーシング13内を大気
に連通せしめながらうず巻ケーシング13内の水
をケーシング排水管31を介して吸出し管18内
に自然流下させることにより排出させ、しかして
うず巻ケーシング13内の水面押し下げを行なう
(第4図参照)。
That is, in the idle running state shown in FIG. 3, first, the suction pipe outlet valve 19 is fully closed, and then the external drain valve 34 of the suction pipe 18 is opened to drain the water in the suction pipe 18 to the external drain pipe 33. At the same time, the casing drain valve 32 and the casing vent valve 30 are opened to allow the inside of the spiral casing 13 to communicate with the atmosphere through the ventilation pipe 29, while draining the water inside the spiral casing 13 into an external drainage pit. The water is discharged by gravity flowing down into the suction pipe 18 through the casing drain pipe 31, thereby lowering the water level in the spiral casing 13 (see FIG. 4).

このように一つの密閉された空間部に残留する
水は、まず外部排水弁34を開口することで端部
を下部の大気圧部と連通され、さらにもう1つの
端部としてケーシング通気弁30の開口により、
これら残留する水の上位の大気圧部と連通され、
この下部の外部排水管33の端部の大気圧部水位
と、残留する水のある位置の高低差によつて大気
圧により残留する水は排出される。
The water remaining in one sealed space is first communicated with the lower atmospheric pressure section by opening the external drain valve 34, and then communicated with the lower atmospheric pressure section as the other end of the casing vent valve 30. Due to the opening,
These remaining waters are communicated with the upper atmospheric pressure area,
Due to the height difference between the atmospheric pressure water level at the end of the lower external drain pipe 33 and the position where the remaining water is located, the remaining water is discharged under atmospheric pressure.

なお、ケーシング排水弁32、ケーシング通気
弁30ならびに外部排水弁34の各制御弁は、吸
出し管出口弁19を全閉したことをリミツトスイ
ツチ(図示せず)を介して検出するか、もしくは
吸出し管出口弁19を全閉してから動作するよう
に予め設定した時限タイマー装置(図示せず)を
介して検出し、この検出信号によつて上記各制御
弁を同時にあるいは順次に開口させれば良い。
The control valves of the casing drain valve 32, the casing ventilation valve 30, and the external drain valve 34 either detect that the suction pipe outlet valve 19 is fully closed via a limit switch (not shown), or detect that the suction pipe outlet valve 19 is fully closed. The control valves may be detected via a timer device (not shown) which is set in advance to operate after the valve 19 is fully closed, and the above-mentioned control valves may be opened simultaneously or sequentially based on this detection signal.

このように、本願の第2の発明の実施例によれ
ば、高圧段部可動ガイドベーンの外側流路部であ
るうず巻ケーシングの水面押し下げを行なう場合
は、うず巻ケーシングを大気と通気せしめ吸出し
管部に放水路圧力が作用しないようにした状態で
うず巻ケーシングの水をケーシング排水管を介し
て吸出し管部に自然流下させるから、うず巻ケー
シング内に圧縮空気を作用せしめるような危険を
伴なうことなく、安全に水面を押し下げられ、し
かして高圧段部可動ガイドベーンのすき間を通つ
てうず巻ケーシングの水が同部ランナに漏水する
ような現象が防止できしたがつて空転損失を極め
て低減せしめた経済的な空転運転が行なえる。
As described above, according to the embodiment of the second invention of the present application, when pushing down the water surface of the spiral casing, which is the outer flow path section of the high-pressure stage movable guide vane, the spiral casing is ventilated with the atmosphere and sucked out. Since the water in the spiral casing is allowed to naturally flow down to the suction pipe section through the casing drain pipe while no waterway pressure is applied to the pipe section, there is a risk of compressed air acting inside the spiral casing. The water surface can be safely pushed down without causing any damage, and this prevents the water in the spiral casing from leaking into the runners through the gaps in the movable guide vanes of the high-pressure stepped section, thereby minimizing idling losses. Economical idling operation can be performed with reduced idling.

なお、上記した本願の第1および第2発明の実
施例は、2段ポンプ水車に対して適用した例を述
べたが、本発明は3段以上の多段水力機械に適用
できることは勿論である。
Although the above-described embodiments of the first and second inventions of the present application are applied to a two-stage pump turbine, the present invention can of course be applied to a multi-stage hydraulic machine having three or more stages.

以上述べたように、最高圧段部から最低圧段部
までの各段部にランナを備えて各段部のランナ室
が返り通路によつて連絡され、最高圧段部のみに
可動ガイドベーンを備えた多段水力機械におい
て、発電運転あるいは揚水運転からそれぞれ発電
方向あるいは揚水方向への空転運転に移行させる
場合、本発明によれば、簡便にして、迅速、的確
かつ円滑に行なえる運転方法を提供するものであ
り、極めて合理的なものと言える。
As described above, a runner is provided in each stage from the highest pressure stage to the lowest pressure stage, the runner chambers of each stage are connected by a return passage, and a movable guide vane is installed only in the highest pressure stage. According to the present invention, there is provided an operation method that can be performed simply, quickly, accurately, and smoothly when shifting from power generation operation or pumping operation to idling operation in the power generation direction or pumping direction, respectively, in a multistage hydraulic machine equipped with the above. This can be said to be extremely reasonable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の一実施例を適用
するフランシス形2段ポンプ水車の給気排水運転
の夫々途中の状態を示した縦断面図、第3図及び
第4図は同ポンプ水車の空転運転状態を夫々示し
た断面図である。 2…高圧段ランナ、3…低圧段ランナ、8…高
圧段ランナ室、9…低圧段ランナ室、10…返り
通路、13…うず巻ケーシング、15…可動ガイ
ドベーン、16…入口弁、18…吸出し管、19
…吸出し管出口弁、21,22,31…排水管、
23,24,32,34…排水弁、25…給気
管、26…給気弁、29…通気管、30…通気
弁。
1 and 2 are longitudinal cross-sectional views showing states in the middle of air supply and drainage operation of a Francis type two-stage pump turbine to which an embodiment of the present invention is applied, and FIGS. 3 and 4 are the same. FIG. 3 is a cross-sectional view showing the idling operation state of the pump-turbine. 2... High pressure stage runner, 3... Low pressure stage runner, 8... High pressure stage runner chamber, 9... Low pressure stage runner chamber, 10... Return passage, 13... Spiral casing, 15... Movable guide vane, 16... Inlet valve, 18... Suction pipe, 19
... Suction pipe outlet valve, 21, 22, 31... Drain pipe,
23, 24, 32, 34...drain valve, 25...air supply pipe, 26...air supply valve, 29...ventilation pipe, 30...ventilation valve.

Claims (1)

【特許請求の範囲】 1 最高圧段部から最低圧段部までの各段部にラ
ンナを備えて各段部のランナ室が返り通路によつ
て連絡され、最高圧段にのみ可動ガイドベーンを
備えた多段水力機械の運転方法において、水車発
電運転あるいはポンプ揚水運転から発電調相ある
いは揚水待機の空転運転に移行させる際、最高圧
段部から最低圧段部まで連通させた状態で最高圧
段部ガイドベーンと入口弁を全閉にし、最高圧段
部ガイドベーンを全閉もしくはその近傍小開度に
至らしめたところで最低圧段部下方に接続する吸
出し管部上方に給気し、吸出し管部の規定位置ま
で水位を押し下げたところで最高圧段部を除く低
圧段ランナ室外周部の水を低圧段部側から順次低
圧段ランナ室外周部排水管を介して吸出し管部へ
排出させる一方、最高圧段部ランナ室内圧力を規
定値以下に至らしめたら最高圧段ランナ室外周部
の水を最高圧段ランナ室外周部排水管を介して吸
出し管部へ排出させ、吸出し管部の水位を前記規
定位置に安定せしめたら前記した吸出し管部への
給気を終止させ最高圧段部から最低圧段部まで流
路の水を押し下げることにより空転運転を行なう
ことを特徴とする多段水力機械の運転方法。 2 最高圧段部から最低圧段部までの各段部にラ
ンナを備えて各段部のランナ室が返り通路によつ
て連絡され最高圧段部にのみ可動ガイドベーンを
備えた多段水力機械の運転方法において、水車発
電運転あるいはポンプ揚水運転から発電調相ある
いは揚水待機の空転運転に移行させる際、最高圧
段部から最低圧段部まで連通させた状態で最高圧
段部ガイドベーンと入口弁を全閉にし、最高圧段
部ガイドベーンを全閉もしくはその近傍小開度に
至らしめたところで最低圧段部下方に接続する吸
出し管部上方に給気し、吸出し管部の規定位置ま
で水位を押し下げたところで最高圧段部を除く低
圧段ランナ室外周部の水を低圧段部側から順次低
圧段ランナ室外周部排水管を介して吸出し管部へ
排出させる一方、最高圧段部ランナ室内圧力を規
定値以下に至らしめたら最高圧段ランナ室外周部
の水を最高圧段ランナ室外周部排水管を介して吸
出し管部へ排出させ吸出し管部の水位を前記規定
位置に安定せしめたら前記した吸出し管部への給
気を終止させ、吸出し管部もしくはその下流のド
ラフトトンネル部に設けた吸出し管出口弁を全閉
にし、しかる後吸出し管と吸出し管の外側下方に
配置され大気に連通した排水ピツトとを接続する
外部排水管の排水弁を開口させて吸出し管部の水
を排水ピツトへ排出するとともに、ケーシング上
部に開口する通気管の通気弁を開口して大気に連
通させながら全閉状態にある入口弁と最高圧段部
ガイドベーンとの間のケーシング部の水をケーシ
ング排水管を介して吸出し管部へ自然流下作用で
排出させることにより空転運転を行なうことを特
徴とする多段水力機械の運転方法。
[Claims] 1. A runner is provided in each stage from the highest pressure stage to the lowest pressure stage, the runner chambers of each stage are connected by a return passage, and a movable guide vane is provided only in the highest pressure stage. In the operating method of a multi-stage hydraulic machine equipped with a multi-stage hydraulic machine, when transitioning from water turbine power generation operation or pump pumping operation to power generation phase adjustment or pumping standby idle operation, the highest pressure stage is connected to the lowest pressure stage in a state where the highest pressure stage is connected to the lowest pressure stage. When the highest pressure stage guide vane is fully closed or close to a small opening, air is supplied to the upper part of the suction pipe connected to the lower part of the lowest pressure stage, and the suction pipe is closed. When the water level has been lowered to the specified position in the lower pressure stage, the water in the outer periphery of the low pressure stage runner chamber, excluding the highest pressure stage part, is sequentially discharged from the low pressure stage side through the outer peripheral drain pipe of the low pressure stage runner chamber to the suction pipe part, When the pressure in the highest pressure stage runner chamber reaches the specified value or less, the water in the outer periphery of the highest pressure stage runner chamber is discharged to the suction pipe section through the highest pressure stage runner chamber outer peripheral drain pipe, and the water level in the suction pipe section is lowered. The multi-stage hydraulic machine is characterized in that, when it is stabilized at the specified position, the air supply to the suction pipe section is stopped and the water in the flow path is pushed down from the highest pressure stage section to the lowest pressure stage section, thereby performing idling operation. how to drive. 2 A multistage hydraulic machine in which a runner is provided in each stage from the highest pressure stage to the lowest pressure stage, the runner chambers of each stage are connected by a return passage, and a movable guide vane is provided only in the highest pressure stage. In the operation method, when transitioning from water turbine power generation operation or pump pumping operation to generation phase adjustment or pumping standby idle operation, the highest pressure stage guide vane and inlet valve are connected to each other from the highest pressure stage to the lowest pressure stage. When the highest pressure stage guide vane is fully closed or close to a small opening, air is supplied above the suction pipe connected to the lower part of the lowest pressure stage, and the water level reaches the specified position of the suction pipe. When the water is pushed down, the water in the outer periphery of the low-pressure stage runner chamber, excluding the highest pressure stage part, is sequentially discharged from the low-pressure stage side to the suction pipe section through the drain pipe of the outer peripheral part of the low-pressure stage runner chamber. Once the pressure has reached the specified value or below, the water on the outer periphery of the highest pressure stage runner chamber is discharged to the suction pipe section via the highest pressure stage runner chamber outer peripheral drain pipe, and the water level in the suction pipe section is stabilized at the specified position. The supply of air to the above-mentioned suction pipe section is terminated, and the suction pipe outlet valve provided in the suction pipe section or the draft tunnel section downstream thereof is fully closed. The drain valve of the external drain pipe that connects to the drain pit is opened to drain the water in the suction pipe to the drain pit, and the vent valve of the vent pipe that opens at the top of the casing is opened to communicate with the atmosphere. The idling operation is performed by draining the water in the casing section between the fully closed inlet valve and the highest pressure stage guide vane through the casing drain pipe to the suction pipe section by gravity. How to operate a multi-stage hydraulic machine.
JP56013800A 1981-02-03 1981-02-03 Operating method for multi-stage hydraulic machine Granted JPS57129269A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56013800A JPS57129269A (en) 1981-02-03 1981-02-03 Operating method for multi-stage hydraulic machine
US06/343,325 US4537558A (en) 1981-02-03 1982-01-27 Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
CH593/82A CH656923A5 (en) 1981-02-03 1982-02-01 MULTI-STAGE HYDRAULIC MACHINE AND METHOD FOR OPERATING THE SAME.
DE3203354A DE3203354C2 (en) 1981-02-03 1982-02-02 Multi-stage hydraulic machine and control process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56013800A JPS57129269A (en) 1981-02-03 1981-02-03 Operating method for multi-stage hydraulic machine

Publications (2)

Publication Number Publication Date
JPS57129269A JPS57129269A (en) 1982-08-11
JPS6225876B2 true JPS6225876B2 (en) 1987-06-05

Family

ID=11843324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56013800A Granted JPS57129269A (en) 1981-02-03 1981-02-03 Operating method for multi-stage hydraulic machine

Country Status (1)

Country Link
JP (1) JPS57129269A (en)

Also Published As

Publication number Publication date
JPS57129269A (en) 1982-08-11

Similar Documents

Publication Publication Date Title
US4537558A (en) Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
CA1040057A (en) Hydraulic turbine spiral case drain
US4412779A (en) Control method for multi-stage hydraulic machine
US4431370A (en) Multistage hydraulic machines having air exhausting devices
US4538957A (en) Multi-stage hydraulic machine and control method for multi-stage hydraulic machine
JPS6225876B2 (en)
JPS6225877B2 (en)
US3985464A (en) Spinning reserve device for a water-wheel
JP3344490B2 (en) Multi-stage pump turbine
JPS6230304B2 (en)
US4629393A (en) Method of operating multistage hydraulic machinery
JPS58148277A (en) Rotary hydraulic machinery carrying exhaust valve
JPS6224633B2 (en)
JPS6056915B2 (en) Operation control method for multi-stage hydraulic machinery
JPS60216071A (en) Multi-stage hydraulic machine
JPS627392B2 (en)
JPH09158824A (en) Horizontal shaft hydraulic machinery
JP2010242660A (en) Method for operating lower cover drain valve, and method for operating water turbine, pump turbine and pump
JPH11324883A (en) Horizontal shaft hydraulic machine and operating method thereof
JP3495089B2 (en) Hydraulic machinery
JPS59211771A (en) Water level depressor of water turbine
JPS6138169A (en) Operation of multi-stage hydraulic machine
JPH10266941A (en) Kaplan turbine and shutdown method thereof
JPS61101679A (en) Vertical shaft multistage hydraulic machine and operation thereof
JPS634024B2 (en)