JPS61101679A - Vertical shaft multistage hydraulic machine and operation thereof - Google Patents

Vertical shaft multistage hydraulic machine and operation thereof

Info

Publication number
JPS61101679A
JPS61101679A JP59223251A JP22325184A JPS61101679A JP S61101679 A JPS61101679 A JP S61101679A JP 59223251 A JP59223251 A JP 59223251A JP 22325184 A JP22325184 A JP 22325184A JP S61101679 A JPS61101679 A JP S61101679A
Authority
JP
Japan
Prior art keywords
pressure stage
stage
return passage
lowest pressure
runner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59223251A
Other languages
Japanese (ja)
Inventor
Shinsaku Sato
晋作 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59223251A priority Critical patent/JPS61101679A/en
Publication of JPS61101679A publication Critical patent/JPS61101679A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To restrict temperature rise in a returning path upon idling of a runner by a method wherein a water discharging pipe and a cooling water pipe are connected to the returning path communicating a lowest pressure stage with a neighboring low- pressure stage thereabove in the vertical shaft multistage hydraulic machine. CONSTITUTION:In the water wheel of Francis type two-stage pump, high and low- pressure stages runner chambers 2, 3, accommodating high and low-pressure stages runners 21, 22, are communicated through the returning path 23 while a vane 24 and a low-pressure stage movable guide vane 25 are provided in the return path 23. The water discharging pipes 5-7, 29, equipped with the water discharging valves 8-10, 28, are connected between a scroll 1, the high and low-pressure stages runner chambers 2, 3 as well as the return path 23 and a suction pipe 4, connecting the low-pressure stage runner chamber 3 to a water discharging path, respectively. On the other hand, one end of the cooling water pipe 30 interposing a water feeding valve 31 is connected to the return path 23 at the outer periphery of the low-pressure stage movable guide vane 25 while the other end thereof is connected to a penstock 27 at the upstream side of an inlet valve 26.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は最高圧段部から最低圧段部までの各段部間が返
し通路によって連絡され、かつ最高圧段部および最低圧
段部にそれぞれえ可動ガイドベーンを備え、各ランナを
空転運転できるようにした立軸多段水力機械とその運転
方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a method in which each stage from the highest pressure stage to the lowest pressure stage is connected by a return passage, and the highest pressure stage and the lowest pressure stage are connected to each other by a return passage. The present invention relates to a vertical shaft multi-stage hydraulic machine equipped with movable guide vanes and capable of idling each runner, and a method of operating the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、大型の水力機械ではポンプ水車の調相運転時、
ポンプ起動時あるいは揚水待期運転時に、ランナの駆動
トルクを低減させるため、ランナ室に高圧空気を給気し
て流路内の水を押し下げ、ランナを空転さぼるようにし
ている。
Generally, in large hydraulic machines, during phase adjustment operation of pump turbines,
In order to reduce the driving torque of the runner when the pump is started or during pumping standby operation, high-pressure air is supplied to the runner chamber to push down the water in the flow path and cause the runner to idle.

この空転運転時には、通常、可動ガイドベーンは全開と
されるが、その場合、ガイドベーンの微小間隙部からの
漏水がランナの遠心力によってランナ室の外周部にはり
つき、その撹拌作用のためランナの駆動力が増大すると
共に、撹拌に伴なう発生熱のため、ランナおよびその周
辺が加熱され、膨張変形する等の問題があった。
During this idling operation, the movable guide vane is normally fully opened, but in that case, water leaking from the minute gap in the guide vane sticks to the outer periphery of the runner chamber due to the centrifugal force of the runner, and its stirring action causes the runner to As the driving force increases, the runner and its surroundings are heated due to the heat generated due to stirring, causing problems such as expansion and deformation.

このような問題点を解決するための対策として、   
□単一ランナ室を備えた水力機械において、ケーシング
と吸出し管とを排水管で連絡すると共に、冷却水管の一
端をランナ室内へ開口させ、ケーシング内の水を排水し
、前記冷却水管に設けた弁および可動ガイドベーンを制
御する運転方法が提案されている(特開昭56−118
573)。
As a measure to solve these problems,
□In a hydraulic machine equipped with a single runner chamber, the casing and the suction pipe are connected by a drain pipe, and one end of the cooling water pipe is opened into the runner chamber to drain water in the casing, and the water pipe is provided in the cooling water pipe. An operating method for controlling valves and movable guide vanes has been proposed (Japanese Patent Application Laid-Open No. 118-1989).
573).

また、最高圧段部のみに可動ガイドベーンを備えた立軸
多段水力機械においては、第2図に示寸ように、うず巻
ケーシング1、最高圧段部ランナ室2、および最低圧段
部ランプ室3ど、吸出し管4との間をそれぞれ排水管5
.6.7によって連絡し、これらの排水管に介挿した排
水弁8,9゜10、おJ:び給気管11.12に介挿し
た給気弁13.14と、可動ガイドベーン15とを制御
’1l−2することによって、水車方向発電運転または
ポンプ揚水運転から水車調相運転またはポンプ揚水待期
の空転運転へ移行させる運転方法が提案されている(特
開昭57−129269、同129270)なお、16
は固定がイドベーンを示し、その伯の符号は後述する第
1図における符号ど同一の意味で用いられている。
In addition, in a vertical shaft multistage hydraulic machine equipped with movable guide vanes only in the highest pressure stage, the spiral casing 1, the highest pressure stage runner chamber 2, and the lowest pressure stage ramp chamber are arranged as shown in Fig. 2. 3, a drain pipe 5 is connected between the suction pipe 4 and
.. 6.7, and the drain valves 8 and 9°10 inserted in these drain pipes, the air supply valves 13 and 14 inserted in the air supply pipes 11 and 12, and the movable guide vane 15. An operating method has been proposed in which the water turbine direction generation operation or pump pumping operation is shifted to the water turbine phase adjustment operation or the idling operation during the pump pumping standby period by controlling '1l-2 (JP-A-57-129269, JP-A-129270). ) Furthermore, 16
indicates a fixed vane, and the numeral numeral is used in the same meaning as the numeral in FIG. 1, which will be described later.

しかしながら、上記したように最高圧段部のみに可動ガ
イドベーン15を備えた立軸多段水力機械においては、
最高圧段部から最低圧段部までの流路が常時連通してい
るため、各段部間で相互干渉が生じ、運転制御がむずか
しい。
However, as mentioned above, in the vertical shaft multistage hydraulic machine equipped with the movable guide vane 15 only in the highest pressure stage,
Since the flow path from the highest pressure stage to the lowest pressure stage is always in communication, mutual interference occurs between the stages, making operation control difficult.

多段水力機械においては、最高圧段部と最低圧段部にそ
れぞれ可動ガイドベーンを採用すれば、最高圧段部から
最低圧段部までの流路を最低圧段部可動ガイドベーンを
全閉することにより分離できるので、各流路部の相互干
渉をなくし、別個に安定した制御を行なうことができる
In a multi-stage hydraulic machine, if a movable guide vane is adopted for each of the highest pressure stage and the lowest pressure stage, the flow path from the highest pressure stage to the lowest pressure stage can be completely closed by the lowest pressure stage movable guide vane. Since the flow path sections can be separated from each other, mutual interference between the flow path sections can be eliminated and stable control can be performed separately.

このように最高圧段部と最低圧段部にそれぞれ可動ガイ
ドベーンを備えた9軸多段水力ぼ緘において、各可動ガ
イドベーンを全開して空転運転を実施する場合、最高圧
段部については、最高圧段部のみに可動ガイドベーンを
備えた従来の立軸多段水力機械と同様の方法で運転制御
を行なえばよいが、最低圧段部可動ガイドベーンによっ
て区分された返し通路部に滞留する水はランナの空転A
I)上段部側から落下する温水によって加熱され、返し
通路部に変形を発生さけるという問題があった。
In this 9-shaft multi-stage hydraulic bridge with movable guide vanes in the highest pressure stage and the lowest pressure stage, when idling operation is carried out with each movable guide vane fully open, for the highest pressure stage, The operation can be controlled in the same way as a conventional vertical shaft multi-stage hydraulic machine that is equipped with a movable guide vane only in the highest pressure stage, but the water that stays in the return passage section divided by the movable guide vane in the lowest pressure stage is Runner's idle A
I) There was a problem in that the return passage section was heated by the hot water falling from the upper stage side and deformed.

しかしながら、Ft?’−’i圧段部と最低圧段部に可
動ガイドベーンを備えた立軸多段水カt1緘自体が技術
的に未開な分野が多いことbあり、立軸多段水力機械の
空転運転を行なう場合の的確イヱB4渭および運転方法
は今だ提案されていないのが現状である。
However, Ft? '-' Vertical shaft multi-stage hydraulic machines equipped with movable guide vanes in the pressure stage section and the lowest pressure stage section themselves are technically unexplored in many fields. The current situation is that no accurate B4 system or operating method has been proposed yet.

(発明の目的) 本発明は上述の事情に鑑みてなされたもので、最高圧段
部ど最低圧段部に可動ガイドベーンを備えた立軸多段水
力機械において、各ランナ室を排水しくフン±を空転運
転させる場合、返し通路の温度上昇を抑制し、長時間安
定した空転運転を実施できる立軸多段水力機械とその運
転方法を捉供することを目的とするものである。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and is used in a vertical shaft multi-stage hydraulic machine equipped with movable guide vanes in the highest pressure stage and the lowest pressure stage. The object of the present invention is to provide a vertical shaft multi-stage hydraulic machine that can suppress the temperature rise in the return passage and perform stable idle operation for a long time when idling, and a method of operating the same.

〔発明の概要) 上記目的を達成するため、本発明の立軸多段水力機械は
最高圧段部から最低圧段部までの各段部に、ランナ空白
に収容されたランナを備え、各段部間が返し通路によっ
て連絡され、がっ、前記最高圧段部および最低圧段部の
入口側に可動ガイドベーンを備えた立軸多段水力機械に
おいて、前記G1低圧段部J′3よびその上1ノに隣接
する低圧段部の間を連絡する返し通路に、そこに滞留し
た温水を1ノ1出づる()1水弁を備えた排水管の一端
を開口ざU、かつ、前記最低圧段部J3よびその上方に
隣接する低圧段部の間を連絡する返し通路内に冷却水を
供給する給水弁を備えた冷却水管の一端を開口さけたこ
とを特徴とするものである。また、本発明の第2の発明
は最高圧段部から最低圧段部までの各段部に、ランナ室
内に収容されたランナを備え、各段部間が返し通路によ
って連絡され、かつ、前記最高圧段部J3よび最低圧段
部の入口側に可動ガイドベーンをtenえた立軸多段水
力機械において、前記最低圧段部およびその上方に隣接
する低圧段部の間を連絡する返し通路に、そこに滞留し
た温水を排出する排水弁を備えた排水管の一端を開口さ
せ、かつ、前記最低圧段部およびその上方に隣接する低
圧段部の間を連絡する返し通路内に冷却水を供給する給
水弁を備えた冷却水管の一端を開口させた立軸多段水力
機械において、各段部ランナ室内を排水して各段部ラン
ナを空転運転する場合、最低圧段部およびその上方に隣
接する低圧段部の間を連絡する返し通路部の温度を検出
し、この検出温度が予め設定した規定値を超えたときに
は、前記返し通路と吸出し管の間を連絡する排水管に介
挿した排水弁と、前記返し通路と水圧鉄管との間を連絡
する冷月1水管に介挿した給水弁を開口させて、前記返
し通路部の冷却を行ない、上記検出温度が予め設定した
規定値以1;のときは上記排水弁および給水弁を閉路す
ることを特徴とするものである。
[Summary of the Invention] In order to achieve the above object, the vertical shaft multi-stage hydraulic machine of the present invention includes a runner housed in a runner blank in each stage from the highest pressure stage to the lowest pressure stage, and In a vertical shaft multi-stage hydraulic machine having movable guide vanes on the inlet sides of the highest pressure stage section and the lowest pressure stage section, the G1 low pressure stage section J'3 and the above one no. One end of a drain pipe equipped with a water valve is opened to discharge the hot water stagnant therein to a return passage communicating between adjacent low pressure stage parts, and the lowest pressure stage part J3 is opened. The cooling water pipe is characterized in that one end of the cooling water pipe provided with a water supply valve for supplying cooling water into the return passage communicating between the lower pressure stage and the adjacent low pressure stage above the lower pressure stage is left open. Moreover, the second aspect of the present invention is provided with a runner housed in a runner chamber in each step from the highest pressure step to the lowest pressure step, and each step is connected by a return passage, and In a vertical shaft multi-stage hydraulic machine having ten movable guide vanes on the inlet sides of the highest pressure stage J3 and the lowest pressure stage, a return passage communicating between the lowest pressure stage and the adjacent low pressure stage above the lowest pressure stage is provided therein. one end of a drain pipe equipped with a drain valve for discharging hot water accumulated in the drain pipe is opened, and cooling water is supplied into a return passage communicating between the lowest pressure stage and the adjacent low pressure stage above the lowest pressure stage. In a vertical shaft multistage hydraulic machine with one end of the cooling water pipe equipped with a water supply valve open, when draining the inside of each stage runner chamber and running each stage runner idly, the lowest pressure stage and the adjacent low pressure stage above it. a drain valve inserted in a drain pipe communicating between the return passage and the suction pipe; When the water supply valve inserted in the Reigetsu 1 water pipe communicating between the return passage and the penstock is opened to cool the return passage, and the detected temperature is 1 or more than a preset specified value; is characterized in that the drain valve and water supply valve are closed.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図に示すフランシス形2段ポンプ水車を例に
とって本発明の詳細な説明する。
Hereinafter, the present invention will be explained in detail by taking the Francis type two-stage pump turbine shown in FIG. 1 as an example.

第1図において、単一の水車主軸20の軸上には高圧段
ランナ21と低圧段ランプ22が上下方向に所定の距離
をおいて固着されている。これらのランナ21.224
よそれぞれ1−カバー2a。
In FIG. 1, a high-pressure stage runner 21 and a low-pressure stage lamp 22 are fixed on the shaft of a single water turbine main shaft 20 at a predetermined distance in the vertical direction. These runners 21.224
1-cover 2a respectively.

3aと、下カバー2b、3bから成る高圧段ランナ室2
、低圧段ランナ°デ3内に収容されている。
3a, and a high-pressure stage runner chamber 2 consisting of lower covers 2b and 3b.
, housed in the low pressure stage runner 3.

高圧段ランナ21の外側には開度を自在に変えられる高
圧段可動ガイドベーン15が設けられている。
A high-pressure stage movable guide vane 15 whose opening degree can be freely changed is provided on the outside of the high-pressure stage runner 21.

高圧段ランナ室2と低圧段ランナ室3の間は返し通路2
3で連絡され、この返し通路内には返し羽根24および
低圧段可動ガイドベーン25が設りられている。
A return passage 2 is located between the high pressure stage runner chamber 2 and the low pressure stage runner chamber 3.
3, and a return vane 24 and a low pressure stage movable guide vane 25 are provided in this return passage.

高圧段ランナ室2の外mすにはうず巻ケーシング1が配
胃され、そのうずViaの入口には大口弁26を介して
水圧鉄管27が接続されている。この水圧鉄管の、ヒ流
側は上?t!!(図示(士ず)に連絡している。
A spiral casing 1 is disposed outside the high-pressure stage runner chamber 2, and a penstock 27 is connected to the entrance of the spiral via via a large mouth valve 26. Is the flow side of this penstock up? T! ! (I have contacted Shizuzu).

低圧段ランナ室3には吸出し管4が接続され、その下流
側は放水路を介して下池(図示せず)に連絡している。
A suction pipe 4 is connected to the low pressure stage runner chamber 3, and its downstream side communicates with a lower pond (not shown) via a discharge channel.

うず巻ケーシング1、高圧段ランナ室21、低圧段ラン
ナ室3および返し通路23と、吸出し管4との間には、
そ杭ぞれ排水弁8.9.10゜28を備えた排水管5,
6,7.29が接続されており、また、低圧段可動ガイ
ドベーン25の外周部に位1t1りる返し通路23には
’t’+’+ 7Jl水管30の一端が開口している。
Between the spiral casing 1, the high pressure stage runner chamber 21, the low pressure stage runner chamber 3 and the return passage 23, and the suction pipe 4,
Drain pipe 5 with drain valve 8, 9, 10° 28 for each pile,
6, 7, and 29 are connected to the lower pressure stage movable guide vane 25, and one end of a 't'+'+7Jl water pipe 30 is opened to the return passage 23 located at the outer circumference of the low-pressure stage movable guide vane 25.

この冷2J]水管・は途中に給水弁31を備えており、
また、その他端側は人口弁26の上流側において水圧鉄
管27に接続されている。
This cold 2J] water pipe is equipped with a water supply valve 31 in the middle,
The other end is connected to a penstock 27 on the upstream side of the artificial valve 26 .

吸出し管4の上端近傍および高圧段ランナ21の出口近
傍の返し通路23には夫々給気弁13゜1/Iを備えた
給気管11.’+2の一端か接続さ゛れている。
The air supply pipe 11 is provided with an air supply valve 13°1/I in the vicinity of the upper end of the suction pipe 4 and in the return passage 23 near the outlet of the high-pressure stage runner 21, respectively. One end of '+2 is not connected.

また、返し通路23には通路内の温度を検出する温度検
出器32が取付けられており、この温度検出器からの検
出信号は制御装置(図示Uず)に人力され、排水弁28
および給水弁31を間開制御する。
Further, a temperature detector 32 is attached to the return passage 23 to detect the temperature inside the passage, and a detection signal from this temperature detector is manually inputted to a control device (not shown), and the drain valve 28 is
and controls the water supply valve 31 to open.

次にtiホのように構成した本発明の2段ポンプ水車の
運転方法を説明する。
Next, a method of operating a two-stage pump turbine according to the present invention configured as a TIHO will be explained.

まず、水車発電運転あるいはポンプ揚水運転状態から水
車方向あるいはポンプ方向の空転運転へ移行させる場合
、低圧段部可動ガイドベーン25、高圧段部iJ動ガイ
ドベーン15および入口弁26を同時あるいは順次に全
開させ、給気管12の給気弁14を聞いて返し通路23
内に給気を行なうど同時に、排水管29の排水弁28を
開いて高圧段ランナ室2の排水を行ない、水面が返し通
路23内の所定のレベルに達した段階で排水弁28を全
開にし、また、給気弁14を止じて給気を停止する。
First, when transitioning from water turbine power generation operation or pump pumping operation state to idling operation in the water turbine direction or pump direction, the low pressure step movable guide vane 25, the high pressure step iJ movable guide vane 15 and the inlet valve 26 are fully opened simultaneously or sequentially. and listen to the air supply valve 14 of the air supply pipe 12 and return the air passage 23.
At the same time, the drain valve 28 of the drain pipe 29 is opened to drain the high pressure stage runner chamber 2, and when the water level reaches a predetermined level in the return passage 23, the drain valve 28 is fully opened. Also, the air supply valve 14 is stopped to stop the air supply.

一方、上記した給気管12からの給気と同時に、吸出し
管4上部の給気管11から給気を6■始し、低圧段ラン
ナ室3の排水を行ない、水面が吸出し管4内の所定のレ
ベルに達した段階で給気弁13を閉じ、給気管11から
の給気を停止する。
Meanwhile, at the same time as the air supply from the air supply pipe 12 described above, air supply is started from the air supply pipe 11 above the suction pipe 4, and the low pressure stage runner chamber 3 is drained, so that the water surface reaches a predetermined level in the suction pipe 4. When the level is reached, the air supply valve 13 is closed and the air supply from the air supply pipe 11 is stopped.

上述のように、返し通路23および吸出し管4内の水位
を規定値に保ちながら各ランナの空転運転を続ける場合
、特に返し通路23に滞留している水は空転するランナ
の遠心力によってエネルギーを供給され、その温度は次
第に上テ♀する。
As mentioned above, when each runner continues to idle while maintaining the water level in the return passage 23 and the suction pipe 4 at a specified value, the water stagnant in the return passage 23 in particular loses energy due to the centrifugal force of the idling runner. is supplied, and its temperature gradually rises.

本発明においては、返し通路23内に滞留している水の
温度を温度検出器32によって検出し、この温度が予め
設定した規定値よりも高くなった場合にはその検出信号
に基ヂいC制60装貿から制御1Δ号が出力され、排水
弁28と給水弁31が聞弁じ、返し通路内に滞留してい
る渇水をta出すると共に、水圧鉄管27内の゛品温の
冷JJ1水を供給しで返し通路23を冷fJlりる。ま
た、温度検出器32による検出信号が規定値以下とな−
)た場合には、制御装置からの出力により排水弁28と
給水弁31は閉弁り−る。
In the present invention, the temperature of the water staying in the return passage 23 is detected by the temperature detector 32, and when this temperature becomes higher than a preset specified value, the Control No. 1Δ is output from the control unit 60, and the drain valve 28 and water supply valve 31 are activated to discharge the dry water accumulated in the return passage, and at the same time discharge the cold JJ1 water at the product temperature in the penstock 27. The cold fJl is supplied and returned through the passage 23. Also, if the detection signal from the temperature detector 32 is below the specified value,
), the drain valve 28 and the water supply valve 31 are closed by the output from the control device.

ト述のJ:うに、本発明によれば、ランナの空転エネル
ギーによって加熱された返し通路内の滞留水を耕水菅を
通して排水すると共に、水圧鉄管からの冷1.J]水を
冷2J]水管を通して返し通路内に供給リ−るJ:うに
したので、返し通路部を適温に保つことか(゛き、返し
通路部の加熱による回転部との1と触事故舌をII/J
+l°ザることがでさる。
According to the present invention, the accumulated water in the return passage heated by the idling energy of the runner is drained through the cultivation pipe, and the cooled water from the penstock is drained. J] Cool the water and supply it into the return passage through the water pipe. Tongue II/J
+l°It's possible to do something.

’、; Jj、以」二の説明l(,1,2段式フランシ
ス形ポンプ水車に本発明を適用しIζ例につさ゛述べた
が、本発明がこれに限定されるもので”はなく、3段以
上の室軸多段水力(幾械にも適用し1qるbのであるこ
とは勿論である。
', ; Jj, hereafter, the second explanation has been given as an example of applying the present invention to a one- and two-stage Francis type pump-turbine, but the present invention is not limited to this. Of course, it can be applied to any number of machines with three or more chamber-axis multi-stage hydraulics.

また、上述の2段式ポンプ水車の場合には、特許請求の
範囲における「最高圧段部」と「最低圧段部」は第1図
にあける「高圧段部」と「低圧段部」を意味し、また「
最低圧段部の上方に隣接する低圧段部」は「最高圧段部
」を意味するものとり−る。
In addition, in the case of the above-mentioned two-stage pump-turbine, the "highest pressure stage" and "lowest pressure stage" in the claims refer to the "high pressure stage" and "low pressure stage" shown in FIG. means, and also “
The term "low pressure stage adjacent above the lowest pressure stage" is taken to mean the "highest pressure stage".

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明の真情多段水力機械によれば、長時
間に亘ろ水車調相運転およびポンプ揚水持朋運転が可能
となり、水車運転やポンプ運転への移行を円泄かつ安全
に実行できる。
As described above, according to the Shinjo multi-stage hydraulic machine of the present invention, it is possible to operate the water turbine in phase adjustment and pump up water for a long period of time, and it is possible to smoothly and safely shift to the operation of the water turbine or the pump. .

また、返し通路部の温度を検出し、この検出信号に基い
て返し通路内に8n留している温水の排出と、冷却水の
供給を制御する場合には、返し通路部の適切な冷lJl
が可能どなり、しかち冷1il水を無駄にすることがな
く合理的である。
In addition, when detecting the temperature of the return passage and controlling the discharge of hot water stored in the return passage and the supply of cooling water based on this detection signal, it is necessary to
It is possible and reasonable to do so without wasting cold water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す2段式7ランシス形ポン
プ水車の概略構成図、第2図は従来の2段式フランシス
形ポンプ水中のIt’! KI構成図である。 1・・・うf巻ケーシング、2.3・・・ラン太字、4
・・・吸出し管、b、6,7.29・・・排水管、8゜
9.10.28・・・排水弁、11.12・・・給気管
、13.14・・・給気弁、15.25・・・可動ガイ
ドベーン、16・・・固定カイトベーン、20・・・水
車主軸、21・・・高圧段ランナ、22・・・低圧段ラ
ン去、23・・・返し通路、24・・・返し羽根、26
・・・入口弁、27・・・水圧yN管、30・・・冷却
水管、31・・・給水弁、32・・・温度検出器。 出願人代理人  猪  股    消 第1図
Fig. 1 is a schematic diagram of a two-stage 7-Rancis type pump-turbine showing an embodiment of the present invention, and Fig. 2 shows a conventional two-stage Francis type pump in water. It is a KI configuration diagram. 1...F-roll casing, 2.3...Run bold, 4
... Suction pipe, b, 6, 7.29... Drain pipe, 8゜9.10.28... Drain valve, 11.12... Air supply pipe, 13.14... Air supply valve , 15.25... Movable guide vane, 16... Fixed kite vane, 20... Water turbine main shaft, 21... High pressure stage runner, 22... Low pressure stage run exit, 23... Return passage, 24 ... Return feather, 26
... Inlet valve, 27 ... Water pressure yN pipe, 30 ... Cooling water pipe, 31 ... Water supply valve, 32 ... Temperature detector. Applicant's Representative Ino Mata Figure 1

Claims (1)

【特許請求の範囲】 1、最高圧段部から最低圧段部までの各段部に、ランプ
室内に収容されたランナを備え、各段部間が返し通路に
よって連絡され、かつ、前記最高圧段部および最低圧段
部の入口側に可動ガイドベーンを備えた立軸多段水力機
械において、前記最低圧段部およびその上方に隣接する
低圧段部の間を連絡する返し通路に、そこに滞留した温
水を排出する排水弁を備えた排水管の一端を開口させ、
かつ、前記最低圧段部およびその上方に隣接する低圧段
部の間を連絡する返し通路内に、冷却水を供給する給水
弁を備えた冷却水管の一端を開口させたことを特徴とす
る立軸多段水力機械。 2、排水管の他端が吸出し管に連絡され、かつ、冷却水
管の他端がうず巻ケーシングの給水弁よりも上流側にお
いて水圧鉄管に連絡されていることを特徴とする特許請
求の範囲第1項記載の室軸多段水力機械。 3、最低圧段部およびその上方に隣接する低圧段部の間
を連絡する返し通路には、そこに滞留する水の温度を検
出する温度検出器が設けられ、その検出信号により、制
御装置から、最低圧段部およびその上方に隣接する低圧
段部の間を連絡する返し通路と吸出し管の間を連絡する
排水管に介挿した排水弁、および冷却水管に介挿した給
水弁に開閉信号を出力するよう構成したことを特徴とす
る特許請求の範囲第1項記載または第2項に記載の立軸
多段水力機械。 4、最高圧段部から最低圧段部までの各段部に、ランナ
室内に収容されたランナを備え、各段部間が返し通路に
よって連絡され、かつ、前記最高圧段部および最低圧段
部の入口側に可動ガイドベーンを備えた立軸多段水力機
械において、前記最低圧段部およびその上方に隣接する
低圧段部の間を連絡する返し通路に、そこに滞留した温
水を排出する排水弁を備えた排水管の一端を開口させ、
かつ、前記最低圧段部およびその上方に隣接する低圧段
部の間を連絡する返し通路内に冷却水を供給する給水弁
を備えた冷却水管の一端を開口させたことを特徴とする
立軸多段水力機械において、各段部ランナ室内を排水し
て各段部ランナを空転運転する場合、最低圧段部および
その上方に隣接する低圧段部の間を連絡する返し通路部
の温度を検出し、この検出温度が予め設定した規定値を
超えたときには、前記返し通路と吸出し管の間を連絡す
る排水管に介挿した排水弁と、前記返し通路と水圧鉄管
との間を連絡する冷却水管に介挿した給水弁を開口させ
て、前記返し通路部の冷却を行ない、上記検出温度が予
め設定した規定値以下のときは上記排水弁および給水弁
を閉路することを特徴とする室軸多段水力機械の運転方
法。
[Claims] 1. Each stage from the highest pressure stage to the lowest pressure stage is provided with a runner housed in a lamp chamber, each stage is connected by a return passage, and the highest pressure In a vertical shaft multi-stage hydraulic machine equipped with a movable guide vane on the inlet side of a step and a lowest pressure step, a return passage communicating between the lowest pressure step and an adjacent low pressure step above the lowest pressure step has a Open one end of the drain pipe equipped with a drain valve to discharge hot water,
and a vertical shaft, characterized in that one end of a cooling water pipe provided with a water supply valve for supplying cooling water is opened in a return passage communicating between the lowest pressure stage and the low pressure stage adjacent above the lowest pressure stage. Multi-stage hydraulic machine. 2. The other end of the drain pipe is connected to the suction pipe, and the other end of the cooling water pipe is connected to the penstock on the upstream side of the water supply valve of the spiral casing. The chamber-shaft multi-stage hydraulic machine described in item 1. 3. The return passage connecting the lowest pressure stage and the adjacent low pressure stage above it is equipped with a temperature detector that detects the temperature of the water staying there, and the detection signal is used to send signals from the control device. , an open/close signal is sent to the drain valve inserted in the drain pipe that communicates between the return passage and the suction pipe that communicate between the lowest pressure stage and the low pressure stage adjacent above it, and the water supply valve inserted in the cooling water pipe. A vertical shaft multistage hydraulic machine according to claim 1 or 2, characterized in that the vertical shaft multistage hydraulic machine is configured to output. 4. Each stage from the highest pressure stage to the lowest pressure stage is provided with a runner housed in a runner chamber, each stage is connected by a return passage, and the highest pressure stage and the lowest pressure stage are connected to each other by a return passage. In a vertical shaft multi-stage hydraulic machine equipped with a movable guide vane on the inlet side of a section, a drain valve for discharging hot water stagnant therein to a return passage communicating between the lowest pressure stage section and a low pressure stage adjacent above the lowest pressure stage section. Open one end of the drain pipe equipped with
and a vertical shaft multistage, characterized in that one end of a cooling water pipe equipped with a water supply valve that supplies cooling water into a return passage communicating between the lowest pressure stage and the low pressure stage adjacent above the lowest pressure stage is opened. In a hydraulic machine, when draining the inside of each stage runner chamber and idling each stage runner, the temperature of the return passage connecting between the lowest pressure stage and the adjacent low pressure stage above it is detected, When this detected temperature exceeds a preset specified value, a drain valve inserted in a drain pipe communicating between the return passage and the suction pipe and a cooling water pipe communicating between the return passage and the penstock are activated. A chamber shaft multistage hydraulic power plant characterized in that the inserted water supply valve is opened to cool the return passage section, and when the detected temperature is below a preset specified value, the drain valve and the water supply valve are closed. How to operate the machine.
JP59223251A 1984-10-24 1984-10-24 Vertical shaft multistage hydraulic machine and operation thereof Pending JPS61101679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59223251A JPS61101679A (en) 1984-10-24 1984-10-24 Vertical shaft multistage hydraulic machine and operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223251A JPS61101679A (en) 1984-10-24 1984-10-24 Vertical shaft multistage hydraulic machine and operation thereof

Publications (1)

Publication Number Publication Date
JPS61101679A true JPS61101679A (en) 1986-05-20

Family

ID=16795164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223251A Pending JPS61101679A (en) 1984-10-24 1984-10-24 Vertical shaft multistage hydraulic machine and operation thereof

Country Status (1)

Country Link
JP (1) JPS61101679A (en)

Similar Documents

Publication Publication Date Title
US4537558A (en) Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
US4431370A (en) Multistage hydraulic machines having air exhausting devices
JP2523518B2 (en) How to start a steam turbine plant by starting a high pressure turbine
JPS61101679A (en) Vertical shaft multistage hydraulic machine and operation thereof
JPS624554B2 (en)
JPS5958164A (en) Driving control method for multi-stage hydraulic machinery
US4344735A (en) Method of controlling two-stage hydraulic pump-turbines
JPS6238803A (en) Cooling device for last stage of steam turbine
JPS59183081A (en) Phase modifying operation of water turbine and pump water wheel
JPS6225877B2 (en)
JP3495089B2 (en) Hydraulic machinery
JPS57105595A (en) Centrifugal type fluid machinery for turbo refrigerator
SU1108224A1 (en) Steam turbine casing
JPH034749B2 (en)
JPS6225876B2 (en)
JP3959201B2 (en) Power plant cooling water system
JPS6230304B2 (en)
JPS55128673A (en) Method for operation of multi-stage hydraulic machine
JPS6053675A (en) Operation of multistage hydraulic machinery
JPS628636B2 (en)
JPH08144708A (en) Water supplying device in steam turbine plant
JPH09158824A (en) Horizontal shaft hydraulic machinery
JPS63124870A (en) Power system input control method for pumped storage power plant
JPS58211576A (en) Multi-stage hydraulic machine
JPH044470B2 (en)