JPS6138169A - Operation of multi-stage hydraulic machine - Google Patents

Operation of multi-stage hydraulic machine

Info

Publication number
JPS6138169A
JPS6138169A JP15825584A JP15825584A JPS6138169A JP S6138169 A JPS6138169 A JP S6138169A JP 15825584 A JP15825584 A JP 15825584A JP 15825584 A JP15825584 A JP 15825584A JP S6138169 A JPS6138169 A JP S6138169A
Authority
JP
Japan
Prior art keywords
stage
runner
guide vane
water level
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15825584A
Other languages
Japanese (ja)
Inventor
Hisao Kuwabara
尚夫 桑原
Akihiro Sakayori
酒寄 彰廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15825584A priority Critical patent/JPS6138169A/en
Priority to US06/735,752 priority patent/US4629393A/en
Publication of JPS6138169A publication Critical patent/JPS6138169A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PURPOSE:To facilitate pushing down of water level by controlling such that when pushing down the water level, the movable guide vane at the highest pressure stage is fully closed while the movable guide vane at other stage is opened to feed the compressed air thereafter the movable guide vane at other stage is also fully closed. CONSTITUTION:When starting under generation mode, the upstage guide vane 7 is fully closed while the downstage guide vane 8 is set to predetermined opening thereafter starts to open air supply valves 9, 11 and guide vane leaked water discharge valves 19, 21. Then the compressed air is returned and fed into the vane flow path 5 and a draft tube 6 thus to lower the draft tube water level. Upon lowering to predetermined level, it is detected through a water level detector 18 to full open a switch 14 while to full close air supply valves 9, 11 then to full close the downstage guide vane 8. Thereafter, runner band discharge valves 22, 20 and an exhaust valve 13 are opened thus to control the water level in return vane flow path 5 through open/close operation of air supply valves 9, 11 which will respond to the outputs from the water level detectors 16, 17.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、多段水力機械に係シ、特に可動ガイドベーン
付多段水力機械をポンプ起動あるいは調相運転する際に
、ランナーの起動トルクを低減するために行う水面押し
下げの運転方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multi-stage hydraulic machine, and in particular, to reducing the starting torque of a runner when starting a pump or operating a multi-stage hydraulic machine with a movable guide vane. This paper relates to an operation method for pushing down the water surface.

〔発明の背景〕[Background of the invention]

一般に大容量のポング水車等を起動あるいは調相運転を
するには、主軸に直結されている電動発電機あるiは起
動用電動機を用いて起動するわけであるが、この際にモ
ータの起動トルクを低減させる目的でいわゆる空転起動
を行う。
Generally, in order to start or phase-adjust a large-capacity pump water turbine, etc., a motor-generator directly connected to the main shaft is started using a starting motor, but at this time the starting torque of the motor is In order to reduce this, so-called idling startup is performed.

この空転起動を実現するためランナー室の水を抜く必要
がある。このランナー室の水抜きとして最高圧段ガイド
ベーンを全開にし、その他の段部のガイドベーンを開状
態のまま水面押下げすることは特公昭36−48553
号において公知となっている。これはケーシング入口に
備えられた大口弁又は第1段目ガイドベーンを全閉し、
水圧鉄管からの圧力水を阻止した上で、ポンプランナー
の周シの水面を圧縮空気によって押し下げ、ランナーを
空気中に露出して運転する空転起動を行うものである。
In order to achieve this idle start, it is necessary to drain the water from the runner room. To drain water from this runner chamber, the highest pressure stage guide vane is fully opened, and the guide vanes of the other stages are kept open and the water surface is pushed down.
It is publicly known in No. This fully closes the large mouth valve or first stage guide vane provided at the casing inlet,
After blocking the pressure water from the penstock, the water surface around the pump runner is pushed down by compressed air, and the runner is exposed to the air to start the pump.

従来の可動ガイドベーン付の多段水力機械、例えば二段
ポンプ水車の構造は第4図に示す如き構成を有している
。すなわち、1は主軸、2は上段ランナー、3は下段ラ
ンナー、4は渦巻ケーシング、5は上下段を連通する返
し羽根流路、6はドラフトチューブ、7および8はそれ
ぞれ第1段および第2段に備えられた可動ガイドベーン
である。
A conventional multi-stage hydraulic machine with movable guide vanes, such as a two-stage pump turbine, has a structure as shown in FIG. That is, 1 is the main shaft, 2 is the upper stage runner, 3 is the lower stage runner, 4 is the spiral casing, 5 is the return vane channel that communicates the upper and lower stages, 6 is the draft tube, 7 and 8 are the first stage and the second stage, respectively. This is a movable guide vane equipped with a

このような二段ポンプ水車において、ポンプ起動あるい
は調相運転する際に、上述したような従来の単段ポンプ
水車の水面押し下げ装置をそのまま適用しても、起動時
の抵抗トルクを十分低減できるような所望の水面押し下
げ状態を得ることが出来ない。これを第5図に示す二段
ポンプ水車について説明する。
In such a two-stage pump-turbine, when starting the pump or performing phase-adjusted operation, even if the water surface pressing device of the conventional single-stage pump-turbine described above is applied as is, the resistance torque at startup can be sufficiently reduced. It is not possible to obtain the desired water surface depression state. This will be explained for the two-stage pump turbine shown in FIG.

即ち、水面押し下げ時には、上段のガイドベーン7を全
閉し、下段のガイドベーン8を全開して    −上段
のランナー2の背圧室よシ圧縮空気を強制供給する。す
ると、ランナー2の周辺の水は、圧縮空気によって返し
羽根流路5を通シ、最終段のガイドベーン8からランナ
ー室へ順次押し込まれ、第2図に示されるような水面押
し下げ状態になるわけである。
That is, when pushing down the water surface, the upper guide vane 7 is fully closed, the lower guide vane 8 is fully opened, and compressed air is forcibly supplied to the back pressure chamber of the upper runner 2. Then, the water around the runner 2 is pushed through the return vane channel 5 by the compressed air, and is successively pushed into the runner chamber from the final stage guide vane 8, resulting in a state where the water surface is pushed down as shown in Fig. 2. It is.

ポンプ水車の場合、ポンプ回転の下で水面押下状態を保
持できなければならないが、前記公知例には下記の如き
問題がある。すなわち、ポンプモードでは水面押下中に
ランナーに給水する冷却水や上段シンナー室から落ちて
くる水をランナーが遠心力で吹き飛ばし、これら水を高
圧段へと運ぶi用が働く。これら水は最終的にはドラフ
トチューブ側へ排出させねばならない水であるが、上記
現象は正に逆流現象で誠に不都合であシ、本質的な欠陥
がある。
In the case of a pump-turbine, it is necessary to maintain the water surface in a depressed state under the rotation of the pump, but the above-mentioned known examples have the following problems. That is, in the pump mode, the runner uses centrifugal force to blow away the cooling water supplied to the runner and the water falling from the upper stage thinner chamber while the water surface is being pressed down, and the i function works to carry this water to the high pressure stage. This water must ultimately be discharged to the draft tube side, but the above phenomenon is exactly a backflow phenomenon, which is truly inconvenient and has an essential defect.

しかしながら、水面押し下げの目的が本来ランナーの起
動トルクの低減にあることを考慮すれば、各段のランナ
ーの周辺の水を排除すれば足シ、返し羽根流路内の水金
体を排除する必要はないわけである。
However, considering that the purpose of pushing down the water surface is to reduce the starting torque of the runners, it is necessary to remove the water around the runners at each stage and eliminate the water bodies in the return vane flow path. That's not true.

そこで、特公昭47−38336号に示す如き返シ通路
部からドラフトチューブへ連通するバイパス管を置いた
多段水力機械が発明されている。
Therefore, a multi-stage hydraulic machine was invented, as shown in Japanese Patent Publication No. 47-38336, in which a bypass pipe was provided which communicated from the return passage to the draft tube.

この発明では、かなシ大径のバイパス管が必要なことと
この管上に自動弁が必要なこと、および返シ通路部分は
元来狭い所であるが、ことに上記バイパス管及び自動弁
を設けることがスペース的にも苦しいこと、さらにもし
バイパス管路弁が故障した場合(例えば通常の水車又は
ポンプ運転中に開いた場合)には漏水によシ水車又はポ
ンプ効率が失われるばかシでなく、水面押下時とは違つ
て返シ通路部分の圧力が高くなるので該バイパス管路弁
が振動を伴う可能性があるという欠点を有している。
This invention requires a bypass pipe with a large diameter and an automatic valve on this pipe, and although the return passage is originally a narrow place, the above-mentioned bypass pipe and automatic valve are required. In addition, if the bypass line valve were to malfunction (for example, if it opened during normal turbine or pump operation), water leakage would cause a loss of turbine or pump efficiency. However, unlike when the water surface is pressed down, the pressure in the return passage becomes high, which has the disadvantage that the bypass pipe valve may be accompanied by vibration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、簡単な構造で確実に水面を押下けるこ
とのできる多段水力機械の運転方法を提供することにあ
る。
An object of the present invention is to provide a method of operating a multi-stage hydraulic machine that can reliably push down the water surface with a simple structure.

〔発明の概要〕[Summary of the invention]

本発明は水面押下時に上段ガイドベーンを全閉し、下段
ガイドベーンを小開の状態でまず所定の水面押下を達成
し、その上で下段ガイドベーンを閉じて、返し羽根流路
水位制御を生かし、その後は上段ランナー室(即ち返し
羽根流路)の水位制御と、下段ランナー室(即ちドラフ
トチューブ)の水位制御を別個に行い、上段ランナー室
の押下空気圧力を下段ランナーの外周水圧よシ高く保持
し乍ら、上段ランナー室から落ちてくる水及び下段ラン
ナーに供給する冷却水が返し羽根流路に溜ることなくス
ムースに下段ランナー室を経てドラフトチューブに排出
されるようにすることによシ罹災に水面を押下げること
ができるようにしようというものである。
The present invention fully closes the upper guide vane when pressing down on the water surface, opens the lower guide vane slightly to achieve a predetermined water surface pressing, and then closes the lower guide vane to take advantage of return vane flow channel water level control. After that, the water level control in the upper runner room (i.e., the return vane flow path) and the water level in the lower runner room (i.e., the draft tube) are performed separately, and the downward air pressure in the upper runner room is made higher than the outer peripheral water pressure in the lower runner. The system is designed so that water falling from the upper runner chamber and cooling water supplied to the lower runner are smoothly discharged into the draft tube through the lower runner chamber without accumulating in the return vane flow path. The idea is to be able to lower the water level in the event of a disaster.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図には、本発明の一実施例が示されている。FIG. 1 shows an embodiment of the invention.

図中第4図図示実施例と同一の符号の付されているもの
は同一の部品、同一の機能を有するものである。図にお
いて、上段ランナー2には、チェック弁10を介して給
気弁9から圧縮空気が供給されるように構成されている
。また、下段ランナー3には、チェック弁12を介して
給気弁11から圧縮空気が供給されるように構成されて
いる。
In the figure, the same reference numerals as in the embodiment shown in FIG. 4 indicate the same parts and the same functions. In the figure, compressed air is supplied to the upper stage runner 2 from an air supply valve 9 via a check valve 10. Further, compressed air is supplied to the lower runner 3 from an air supply valve 11 via a check valve 12.

また、渦巻ケーシング4には排気弁13が設けられてい
る。
Further, the spiral casing 4 is provided with an exhaust valve 13.

一方、返し羽根流路5には3つの異なる水位を検出する
ため、返し羽根流路水位第1段検出器15と、返し羽根
流路水位第2段検出器16と返し羽根流路水位第3段検
出器17が設けられており、この各検出器は、ドラフト
チューブ6に接続される開閉器14が接続されている。
On the other hand, in order to detect three different water levels in the return blade flow path 5, a return blade flow path water level first stage detector 15, a return blade flow path water level second stage detector 16, and a return blade flow path water level third stage detector 15 are installed. Stage detectors 17 are provided, each of which is connected to a switch 14 that is connected to the draft tube 6.

ま九、ドラフトチューブ6には、ドラフトチューブ6内
の水位を検出するためのドラフトチューブ水面検出器1
8が設けられている。
Nine, the draft tube 6 is equipped with a draft tube water level detector 1 for detecting the water level inside the draft tube 6.
8 is provided.

また、可動ガイドベーン7の近傍には、可動ガイドベー
ン7のすき間よシ漏れる水をドラフトチューブ6に排水
するため、カトドベーン漏水排水弁19が設けられてい
る。まだ上段ランナー2の近傍に、ランナーバンドより
漏れる水をドラフトチューブ6に排出するためのランナ
ーバンド排水弁20が設けられている。また、下段の可
動ぺ−78と、下段ランナー3にもそれぞれガイドベー
ン漏水排水弁21とランナーバンド排水弁22が設けら
れている。
Further, a cut vane water leakage drain valve 19 is provided near the movable guide vane 7 in order to drain water leaking through the gap between the movable guide vanes 7 into the draft tube 6. A runner band drain valve 20 is provided near the upper runner 2 to drain water leaking from the runner band to the draft tube 6. Further, the lower movable page 78 and the lower runner 3 are also provided with a guide vane water leakage drain valve 21 and a runner band drain valve 22, respectively.

このように構成されるものであるから、まず、発電モー
ドの場合の動作を第2図のタイムチャートを用いて説明
する。すなわち第2図(4)に示す妬く発電運転中10
時に第2図(6)に示す如く上段の可動ガイドベーン7
を閉方向に作動すると共に、第2図0に示す如く下段の
可動ガイドベーン8を閉方向に作動させる。下段の可動
ガイドベーン8が所定開度まで(ts時)くると第2図
(2)に示す如く作動を停止する。上段の可動ガイドベ
ーン7が全閉(t2時)となると、第2図■に示す如く
図示されていない漏水補給弁と、第2図(ト)[F]に
示す如く給気弁9,11と、第2図■に示す如く図示さ
れていないランナーシール給水弁と第2図Q(へ)に示
す如くガイドベーン漏水排水弁19.2’1が開き始め
る。給水弁9.11の全開によって圧縮空気が返し羽根
流路5とドラフトチューブ6内に供給され、上段の可動
ガイドベーン7のところまでつまっていた水の水位が圧
縮空気によって押し下げられていき、第2図■に示す如
く返し羽根流路水位が下がってその後第2図0に示す如
くドラフトチューブ水位が下がっていく。第2図0に示
す如くドラフトチューブ水位がL3まで下る(ts時に
なる)と、第2図0に示す如く開閉器14が開き始める
。これと同時に第2図(ト)(ト)に示す如く、給気弁
9.11が閉じ始める。この開閉器14が全開し、給気
弁9,11が全閉となる(t4時)と、第2面切に示す
如く下段の可動ガイドベーン8が所定−変位置より全閉
方向に作動開始する。これと同時に第2図(ロ)に示す
如く、ランナーバンド排水弁22と第2図■に示す如く
ランナーバンド排水弁20が開き始め第2図り)に示す
如く排気弁13が開く。可動ガイドベーン8全閉後は第
2面切に示される返し羽根流路水位第2段検出器16と
、第2図(I)に示される返し羽根流路水位第3段検出
器17の検出値によって制御される。すなわち、第2図
G)に示される如く、ドラフトチューブ水位が、ドラフ
トチューブ水面検出器18によってL】を検出すると、
第2図Gに示す如ぐ給気弁11を開き、第2図頓に示す
如く返し羽根流路水位が変動し、第2面切に示す如く、
返し羽根流路水位第3段検出器17が水位を検知すると
、第2図■に示す如く給気弁9を開くという動作をくり
返す。
Since the device is constructed in this way, the operation in the power generation mode will first be explained using the time chart of FIG. 2. In other words, during the power generation operation shown in Fig. 2 (4), 10
Sometimes, as shown in Fig. 2 (6), the upper movable guide vane 7
At the same time, as shown in FIG. 2, the lower movable guide vane 8 is operated in the closing direction. When the lower movable guide vane 8 reaches a predetermined opening degree (time ts), it stops operating as shown in FIG. 2 (2). When the upper movable guide vane 7 is fully closed (time t2), the water leakage replenishment valve (not shown) as shown in FIG. Then, the runner seal water supply valve (not shown) begins to open as shown in FIG. When the water supply valve 9.11 is fully opened, compressed air is supplied into the return vane flow path 5 and draft tube 6, and the water level that has been clogged up to the upper movable guide vane 7 is pushed down by the compressed air. As shown in Fig. 2 (■), the water level in the return vane flow path decreases, and thereafter, as shown in Fig. 2 0, the draft tube water level decreases. When the draft tube water level falls to L3 (at time ts) as shown in FIG. 20, the switch 14 begins to open as shown in FIG. 20. At the same time, the air supply valve 9.11 begins to close, as shown in FIGS. When this switch 14 is fully opened and the air supply valves 9 and 11 are fully closed (time t4), the lower movable guide vane 8 starts to operate from a predetermined -displacement position in the fully closed direction as shown in the second side cut. do. At the same time, the runner band drain valve 22 as shown in FIG. 2(B) and the runner band drain valve 20 as shown in FIG. After the movable guide vane 8 is fully closed, detection is performed by the return vane flow path water level second stage detector 16 shown in the second face cut and the return vane flow path water level third stage detector 17 shown in FIG. 2(I). Controlled by value. That is, as shown in FIG. 2G), when the draft tube water level is detected as L by the draft tube water level detector 18,
When the air supply valve 11 is opened as shown in FIG. 2G, the water level of the return vane flow path fluctuates as shown in the second diagram, and as shown in the second section,
When the third stage water level detector 17 of the return vane flow path detects the water level, the operation of opening the air supply valve 9 is repeated as shown in FIG.

次に、ポンプモードの場合の動作を第3図のタイムチャ
ートを用いて説明する。すなわち、第3図(4)に示す
如く、主軸1が全く回転していない状態で、to時に第
3図りに示す如く下段の可動ガイドベーン8を所定開度
まで作動させる。これと同時に第3図0に示す如く、図
示されていない漏水補給弁と、第3図(ト)に示す如く
給気弁9と、第3図(ト)に示す如くランナーシール給
水弁と、第3図Q[F]代(財)に示される如くガイド
ベーン漏水排水弁19、ランナーバンド排水弁20、ガ
イドベーン漏水排水弁21、ランナーバンド排水弁22
を開く。その後第3図0に示す如くドラフトチューブ水
位がドラフトチューブ水面検出器18によってLlが検
出される位置よシ第3図(4)に示す如く、主軸1が回
転はじめる。また、第3回向に示す如く、ドラフトチュ
ーブ水位がLsの位置になると、第3図(Qに示す如く
下段の可動ガイドベーン8を閉じると同時に、第3図0
に示す如く開閉器14を全開にする。これによって第3
図α)Gl)に示す如く返し羽根流路水位第3段検出器
17、返し羽根流路水位第2段検出器16がON、OF
F作動する。第3図0に示されるドラフトチューブ水位
のLaの検出によって第3図[F]に示す如く給水弁1
1が制御され、第3図頓に示す如き返し羽根流路水位の
検出によって第3図(ト)に示す如く給水弁9が制御さ
れる。なお、排気弁13は第3回向に示す如く全閉を保
持している。
Next, the operation in the pump mode will be explained using the time chart of FIG. That is, as shown in FIG. 3 (4), when the main shaft 1 is not rotating at all, the lower movable guide vane 8 is operated to a predetermined opening degree as shown in the third figure at the time of to. At the same time, as shown in FIG. 30, a water leakage replenishment valve (not shown), an air supply valve 9 as shown in FIG. 3(G), and a runner seal water supply valve as shown in FIG. 3(G), As shown in Figure 3 Q[F], the guide vane water leakage drain valve 19, the runner band drain valve 20, the guide vane water leakage drain valve 21, the runner band drain valve 22
open. Thereafter, as shown in FIG. 30, the draft tube water level reaches the position where Ll is detected by the draft tube water level detector 18, and the main shaft 1 begins to rotate as shown in FIG. 3(4). Further, as shown in the third direction, when the draft tube water level reaches the position Ls, the lower movable guide vane 8 is closed as shown in FIG.
Fully open the switch 14 as shown in . This allows the third
As shown in Figure α) Gl), the return blade flow path water level third stage detector 17 and the return blade flow path water level second stage detector 16 are ON and OFF.
F works. By detecting the draft tube water level La shown in FIG. 3 0, the water supply valve 1 as shown in FIG.
1 is controlled, and the water supply valve 9 is controlled as shown in FIG. 3 (G) by detecting the water level of the return vane flow path as shown in FIG. Note that the exhaust valve 13 is kept fully closed as shown in the third direction.

したがって、本実施例によれば、返し羽根流路からドラ
フトチューブへ連通するバイパス管を設ける必要がない
ため構造がきわめて簡単である。
Therefore, according to this embodiment, there is no need to provide a bypass pipe communicating from the return vane flow path to the draft tube, so the structure is extremely simple.

また、本実施例によれば、水車又はポンプの効率が失わ
れることがない。
Furthermore, according to this embodiment, the efficiency of the water turbine or pump is not lost.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、簡単な構造で確
実に水面を押下げることができる。
As explained above, according to the present invention, the water surface can be reliably pushed down with a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略構造図、第2図は本
発明による水車モードから調相運転への移動方法を示す
タイムチャート、第3図は本発明によるポンプ起動時の
タイムチャート、第4図は2段ポンプ水車の概略構造を
示す縦断面図、第5図は従来装置によるポンプ起動時の
水面押下状態を示す概略構造図である。 l・・・主軸、2・・・上段ランナー、3・・・下段ラ
ンナー、拓2図 千3胃
Fig. 1 is a schematic structural diagram showing an embodiment of the present invention, Fig. 2 is a time chart showing a method of moving from water turbine mode to phase adjustment operation according to the present invention, and Fig. 3 is a time chart when starting the pump according to the present invention. , FIG. 4 is a vertical cross-sectional view showing a schematic structure of a two-stage pump turbine, and FIG. 5 is a schematic structural view showing a state in which the water surface is pressed down when the pump is started by a conventional device. l...Main shaft, 2...Upper runner, 3...Lower runner, Taku 2 figure 13 stomach

Claims (1)

【特許請求の範囲】 1、各段に可動ガイドベーンを有し各段部のランナー室
に圧縮空気を個別に供給できるように構成し、かつ各段
部のランナー室の水面を個々に検出できるように構成し
た多段水力機械において、水面押下げ時最高圧段可動ガ
イドベーンを全閉に他の段の可動ガイドベーンを開にし
て圧縮空気を供給し、一度少なくとも最低圧段(最低圧
段のみ又は最低圧段を含む複数段)のランナー室の水が
排除されたことを検出した後に、今まで開いていた最高
圧段以外の可動ガイドベーンも全閉し、その後は、各ラ
ンナー室の水面を個別に検出しながら、これに応じて個
別に圧縮空気を補充して個別水面制御をする多段水力機
械の運転方法。 2、各段に可動ガイドベーンを有し各段部のランナー室
に圧縮空気を個別に供給できるように構成しかつ各段部
のランナー室の水面を個々に検出できるように構成した
多段水力機械において、水面押下げ時は最高圧段ガイド
ベーンを全閉にし、他の段のガイドベーンを小閉にして
、最高圧段ランナー室から小低圧段ランナー室迄、順次
押下を完了させるようにし最高圧段ランナー室の押下が
完了したら2段目のガイドベーンを全閉にし最高圧段ラ
ンナー室の個別水面制御を生かし、以下同様に各ランナ
ー室の押下が完了したら次段ガイドベーンを全閉にし該
ランナー室の個別水面制御を生かすようにする多段水力
機械の運転方法。
[Claims] 1. A movable guide vane is provided at each stage so that compressed air can be individually supplied to the runner chamber of each stage, and the water surface of the runner chamber of each stage can be individually detected. In a multi-stage hydraulic machine configured as shown in FIG. After detecting that water has been removed from the runner chambers of multiple stages (including the lowest pressure stage), the movable guide vanes of all stages other than the highest pressure stage, which had been open until now, are also fully closed, and after that, the water level of each runner room is A method of operating a multi-stage hydraulic machine that individually detects water levels and replenishes compressed air accordingly to control individual water levels. 2. A multi-stage hydraulic machine that has movable guide vanes at each stage and is configured so that compressed air can be supplied individually to the runner chambers of each stage, and the water surface of the runner chambers of each stage can be individually detected. When pressing down the water surface, the highest pressure stage guide vanes are fully closed, and the guide vanes of the other stages are slightly closed, and the pressing is completed sequentially from the highest pressure stage runner chamber to the small low pressure stage runner chamber. When the pressing of the high pressure stage runner chamber is completed, the second stage guide vane is fully closed, taking advantage of the individual water level control of the highest pressure stage runner chamber, and in the same manner, when the pressing of each runner chamber is completed, the next stage guide vane is fully closed. A method of operating a multi-stage hydraulic machine that takes advantage of individual water level control in the runner room.
JP15825584A 1984-05-21 1984-07-27 Operation of multi-stage hydraulic machine Pending JPS6138169A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15825584A JPS6138169A (en) 1984-07-27 1984-07-27 Operation of multi-stage hydraulic machine
US06/735,752 US4629393A (en) 1984-05-21 1985-05-20 Method of operating multistage hydraulic machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15825584A JPS6138169A (en) 1984-07-27 1984-07-27 Operation of multi-stage hydraulic machine

Publications (1)

Publication Number Publication Date
JPS6138169A true JPS6138169A (en) 1986-02-24

Family

ID=15667626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15825584A Pending JPS6138169A (en) 1984-05-21 1984-07-27 Operation of multi-stage hydraulic machine

Country Status (1)

Country Link
JP (1) JPS6138169A (en)

Similar Documents

Publication Publication Date Title
US4537558A (en) Multi-stage hydraulic machine and control method for a multi-stage hydraulic machine
US4073594A (en) Pump starting method for hydraulic machinery
US4431370A (en) Multistage hydraulic machines having air exhausting devices
JPS6138169A (en) Operation of multi-stage hydraulic machine
US4412779A (en) Control method for multi-stage hydraulic machine
US4538957A (en) Multi-stage hydraulic machine and control method for multi-stage hydraulic machine
US4629393A (en) Method of operating multistage hydraulic machinery
JP3344490B2 (en) Multi-stage pump turbine
JPS58148277A (en) Rotary hydraulic machinery carrying exhaust valve
JPS59183081A (en) Phase modifying operation of water turbine and pump water wheel
JPS59211771A (en) Water level depressor of water turbine
JPS61190124A (en) Supercharger of engine
JPS6032976A (en) Hydraulic machine
JPH06264769A (en) Thrust load regulation mechanism of gas turbine engine
JPS6225877B2 (en)
JPS6065282A (en) Guide vane for hydraulic machinery
JPS6230304B2 (en)
JPS6053675A (en) Operation of multistage hydraulic machinery
JPS6056915B2 (en) Operation control method for multi-stage hydraulic machinery
JPH06330883A (en) Shaft power reducer of pump
JPS60216071A (en) Multi-stage hydraulic machine
JPS62150082A (en) Method of lowering level of water in draft pipe
JPH08159076A (en) Phase modifying operation method for hydraulic machinery
JPS55128673A (en) Method for operation of multi-stage hydraulic machine
JPH0599184A (en) Multistage pump