JPH06330883A - Shaft power reducer of pump - Google Patents

Shaft power reducer of pump

Info

Publication number
JPH06330883A
JPH06330883A JP11978393A JP11978393A JPH06330883A JP H06330883 A JPH06330883 A JP H06330883A JP 11978393 A JP11978393 A JP 11978393A JP 11978393 A JP11978393 A JP 11978393A JP H06330883 A JPH06330883 A JP H06330883A
Authority
JP
Japan
Prior art keywords
pump
shaft power
pressure
discharge port
bypass pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11978393A
Other languages
Japanese (ja)
Inventor
Isao Yamada
績 山田
Kozo Mutaguchi
弘造 牟田口
Sakuichirou Uehara
作一郎 上原
Koji Oya
浩司 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11978393A priority Critical patent/JPH06330883A/en
Publication of JPH06330883A publication Critical patent/JPH06330883A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To abate the extent of shaft power in time of starting by reducing this shaft power in taking such a step as bypassing a fluid to the side of suction port from the discharge port in use of fluid pressure in a pump, whereas this shaft power becomes higher than the rated value shaft power at the time of pump starting. CONSTITUTION:When shaft power grows larger at the shutoff of a pump, two pressure detecting pipes 6A and 6B detects a pressure differential by means of a swirling flow to be produced at the side of a suction pipe. This pressure differential rotates a valve stem of a rotary switch 7, opening or closing the flow passage. A fluid flowing into a cylinder 11 is opened or closed by operation of this rotary switch 7 and thereby a piston is operated, opening a bypass valve, and a bypass pipe 13 is interconnected to it, and then the fluid in the pump is made to flow into a suction pipe 5 from a discharge pipe 4, whereby shaft power is thus reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポンプの起動時に締切軸
動力を軽減させるようにしたポンプ軸動力低減装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump shaft power reduction device for reducing the dead shaft power when starting a pump.

【0002】[0002]

【従来の技術】従来、比重度の大きい、斜流,軸流ポン
プでは、図16に示すようにポンプの締切運転時(流量
Q=0)の軸動力Pshが定格点の動力Pn より大きくな
るのが普通である。又ポンプを起動する場合は、通常吐
出弁を閉じた締切状態から起動するため、定格点の軸動
力Pn ではなく締切点での軸動力Pshをまかなうに足る
駆動機を必要としていた。又、図17に示すようにポン
プ主要部は羽根車1と案内羽根2およびベルマウス3で
構成されている。高比速度ポンプは前述のように締切軸
動力が仕様点の軸動力より高いため、締切軸動力よりも
高い出力を持ったモータが必要である。これは通常、ポ
ンプの起動が締切運転で行われるためであるが、高い出
力のモータはコスト高となるため締切軸動力の小さいポ
ンプが望まれる。従来この対策として用いられているの
が、図17に示すような吸込リング4を入口直前に設け
るものである。これは羽根車入口直前部分に吸込リング
4によって締り部分を設け、羽根入口に生じる逆流域4
0(点線で図示)をおさえて、41で示す流れ(実線で
図示)により締切軸動力を小さくしようとするものであ
る。
2. Description of the Related Art Conventionally, in a mixed flow, axial flow pump having a large specific gravity, as shown in FIG. 16, the axial power Psh during the shutoff operation of the pump (flow rate Q = 0) becomes larger than the rated point power Pn. Is normal. Further, when the pump is started, since the discharge valve is normally started from the closed state in which the discharge valve is closed, it is necessary to have a driving machine sufficient to cover the shaft power Psh at the cut-off point rather than the shaft power Pn at the rated point. Further, as shown in FIG. 17, the main part of the pump is composed of an impeller 1, guide vanes 2 and a bell mouth 3. As described above, the high specific speed pump requires a motor having a higher output than the dead shaft power because the dead shaft power is higher than the specification shaft power. This is because the start of the pump is normally performed in the deadline operation, but a motor with a high output has a high cost, so a pump with a small deadline shaft power is desired. Conventionally, as a countermeasure against this, a suction ring 4 as shown in FIG. 17 is provided immediately before the inlet. This is because the suction ring 4 provides a tightening portion in front of the impeller inlet, and the backflow region 4 generated at the blade inlet is
It is intended to suppress the shutoff shaft power by the flow indicated by 41 (illustrated by the solid line) while suppressing 0 (illustrated by the dotted line).

【0003】又羽根車入口に常時羽根車の回転方向と同
じ旋回を与えれば羽根車の仕事量が多少減り、締切時の
軸動力が低減されることも良く知られている。
It is also well known that if the entrance of the impeller is always swung in the same direction as the direction of rotation of the impeller, the work of the impeller is somewhat reduced, and the axial power at the deadline is reduced.

【0004】[0004]

【発明が解決しようとする課題】前述のように従来はポ
ンプの起動時には、定格点の軸動力より大きな動力が必
要であり、このために定格運転時の性能を犠牲にした
り、又、図16に示すようなP>Pn の領域を回避する
ためには複雑な制御機構を設ける必要があった。
As described above, conventionally, at the time of starting the pump, a power larger than the shaft power at the rated point is required. Therefore, the performance at the rated operation is sacrificed, and FIG. In order to avoid the region of P> Pn as shown in (1), it is necessary to provide a complicated control mechanism.

【0005】又、図17に示す従来の締切軸動力低減機
構では、流量が増加して仕様点付近になるとこの絞り部
分の吸込リング4のために、羽根車内に流水がスムーズ
に流入しなくなり、効率および吸込性能が低下するとい
う欠点を有している。
Further, in the conventional shut-off shaft power reduction mechanism shown in FIG. 17, when the flow rate increases and becomes close to the specification point, the suction ring 4 in this throttle portion prevents running water from smoothly flowing into the impeller. It has the drawback of reduced efficiency and suction performance.

【0006】本発明は、流水部にはできるだけ障害物を
設けることなく、吸込側と吐出側の圧力差を利用するこ
とにより締切軸動力の低減を図ることをねらいとするも
のである。
An object of the present invention is to reduce the shutoff shaft power by utilizing the pressure difference between the suction side and the discharge side without providing an obstacle in the flowing water portion as much as possible.

【0007】[0007]

【課題を解決するための手段】本発明は前述の課題を解
決するために、ポンプの吸込口と吐出口との間に圧力の
上昇時に流体をバイパスさせるバイパス管を設けて流体
の圧力を検出して弁の開閉を制御し、ポンプの起動時の
ように軸動力が定格値よりも大きくなると流体を吐出口
から吸込口へバイパスさせて軸動力を低減させ、又、こ
のバイパスを行うと共にポンプ締切時に吸込口側に発生
する逆流を抑えるようにバイパスした流体を噴射させて
軸動力を軽減させるようにしたものである。
In order to solve the above problems, the present invention detects the pressure of a fluid by providing a bypass pipe between the suction port and the discharge port of a pump for bypassing the fluid when the pressure rises. Control the opening and closing of the valve to reduce the shaft power by bypassing the fluid from the discharge port to the suction port when the shaft power becomes larger than the rated value as when starting the pump. This is to reduce the axial power by injecting the bypassed fluid so as to suppress the backflow generated on the suction port side at the deadline.

【0008】即ち、請求項1の発明においては、ポンプ
の吐出口と吸込口とをバイパス管で連通して吐出口側よ
り吸込口側へ流体を流入しポンプの軸動力を低減せしめ
る軸動力低減装置であって、前記バイパス管を開閉する
バイパス弁と、前記ポンプの吸込口周辺で検出穴が互い
に円周方向に順方向,逆方向となるように配設した一対
の圧力検出管と、該一対の圧力検出管の検出した差圧に
よって駆動され、弁軸の回動によって流路が開閉される
ロータリスイッチと、該ロータリスイッチの開閉動作に
よりポンプの吐出口の圧力が所定の圧力より高くなり軸
動力が大きくなると前記バイパス管を連通せしめるよう
に前記バイパス弁を開くバイパス弁開閉機構とを具備し
てなることを特徴とするポンプの軸動力低減装置を提供
するものである。
That is, according to the first aspect of the invention, the shaft power is reduced by connecting the discharge port and the suction port of the pump with a bypass pipe to allow the fluid to flow from the discharge port side to the suction port side to reduce the shaft power of the pump. A device, comprising: a bypass valve for opening and closing the bypass pipe; a pair of pressure detection pipes arranged so that detection holes around the suction port of the pump are circumferentially forward and backward. The rotary switch is driven by the differential pressure detected by the pair of pressure detection tubes, and the flow path is opened / closed by the rotation of the valve shaft, and the opening / closing operation of the rotary switch causes the pressure at the discharge port of the pump to become higher than a predetermined pressure. A shaft power reduction device for a pump, comprising: a bypass valve opening / closing mechanism for opening the bypass valve so that the bypass pipe can communicate with each other when the shaft power increases.

【0009】又、請求項2の発明においては、ポンプの
吐出口と吸込口とをバイパス管で連通して吐出口側より
吸込口側へ流体を流入しポンプの軸動力を低減せしめる
軸動力低減装置であって、一端を前記ポンプの吐出口壁
面に開放して他端にバネを設けて密閉し、前記バイパス
管に連通するケーシングと、一端が該ケーシングの開放
端に接して前記バイパス管の流路を閉じ、他端が前記バ
ネに取付けられて同ケーシング内を摺動可能で、前記吐
出口の圧力が所定の圧力以上になると前記バネ力に抗し
て摺動して前期バイパス管の流路を連通せしめる揺動部
とを具備してなることを特徴とするポンプ軸動力低減装
置を提供するものである。
According to the second aspect of the invention, the pump power is reduced by connecting the discharge port and the suction port of the pump with a bypass pipe to allow the fluid to flow from the discharge port side to the suction port side and reduce the pump shaft power. In the device, one end is opened to the outlet wall surface of the pump and the other end is provided with a spring to seal the casing, and the casing communicates with the bypass pipe, and one end of the bypass pipe is in contact with the open end of the casing. The flow passage is closed, the other end is attached to the spring and slidable inside the casing, and when the pressure at the discharge port exceeds a predetermined pressure, it slides against the spring force and the The present invention provides a pump shaft power reduction device, characterized in that the pump shaft power reduction device is provided with an oscillating portion that allows the passages to communicate with each other.

【0010】更に、請求項3の発明においてはポンプの
吐出口と吸込口とをバイパス管で連通して吐出口側より
吸込口側へ流体を流入しポンプの軸動力を低減せしめる
軸動力低減装置であって、前記ポンプの吐出口の圧力を
検出して同吐出口の圧力が所定の圧力以上になると前記
バイパス管の流路を連通せしめる圧力感知弁と、前記ポ
ンプ吸込口の羽根車入口側周辺に設けられ、同周辺部よ
り同羽根車回転方向に向けて前記圧力感知弁の作動によ
り連通した前記バイパス管より流体を導き、噴射して同
羽根車入口に発生する旋回流を抑制するための複数のノ
ズルとを具備してなることを特徴とするポンプの軸動力
低減装置を提供するものである。
Further, according to the invention of claim 3, a shaft power reducing device for reducing the shaft power of the pump by connecting the discharge port and the suction port of the pump with a bypass pipe to allow the fluid to flow from the discharge port side to the suction port side. And a pressure sensing valve that detects the pressure at the discharge port of the pump and connects the flow path of the bypass pipe when the pressure at the discharge port exceeds a predetermined pressure, and the impeller inlet side of the pump suction port. In order to suppress the swirling flow generated at the inlet of the same impeller by guiding the fluid from the bypass pipe which is provided in the periphery and is in communication with the impeller rotation direction from the peripheral portion and which is communicated by the operation of the pressure sensing valve. The present invention provides a shaft power reducing device for a pump, comprising:

【0011】[0011]

【作用】本発明は前述のような手段であり、請求項1の
発明においては、ポンプの軸動力が大きくなると、吸込
口側に旋回流が発生し、一対の圧力検出管がこの旋回流
に対しその検出穴が互いに逆向きに配置しているので差
圧を検出する。この差圧はロータリスイッチの弁軸を回
動させてバイパス弁開閉機構を作動させ、バイパス管の
途中に設けられたバイパス弁を開き、バイパス管でポン
プの吐出口と吸込口の間を連通し、軸動力を軽減させる
ことになる。
The present invention is the above-mentioned means. In the invention of claim 1, when the axial power of the pump increases, a swirl flow is generated on the suction port side, and the pair of pressure detection pipes generate a swirl flow. On the other hand, since the detection holes are arranged in opposite directions, the differential pressure is detected. This differential pressure rotates the valve shaft of the rotary switch to operate the bypass valve opening / closing mechanism, open the bypass valve provided in the middle of the bypass pipe, and connect the discharge port and suction port of the pump with the bypass pipe. , Will reduce the axial power.

【0012】又、請求項2の発明においては、ポンプの
軸動力が大きくなると、バイパス管に設けられたケーシ
ング内の揺動部がバネ力に抗してポンプの吐出口内の圧
力により押されて摺動し、バイパス管をポンプの吐出口
と吸込口との間で連通させて、軸動力を軽減させること
になる。
Further, in the invention of claim 2, when the axial power of the pump increases, the swinging portion in the casing provided in the bypass pipe is pushed by the pressure in the discharge port of the pump against the spring force. By sliding, the bypass pipe is brought into communication between the discharge port and the suction port of the pump to reduce the shaft power.

【0013】又、請求項3の発明においては、ポンプの
軸動力が大きくなると、圧力感知弁がポンプの吐出口の
圧力を検出してバイパス管を開き連通させて流体を吐出
口側から吸込口側へ導き、複数のノズルより噴射させ
る。ノズルは流体を噴射して軸動力を低減させると共に
軸動力の上昇に伴って発生する旋回流も防止して軸動力
を軽減させることになる。
According to the third aspect of the present invention, when the axial power of the pump increases, the pressure sensing valve detects the pressure at the discharge port of the pump and opens the bypass pipe for communication so that the fluid is sucked from the discharge port side. It is directed to the side and jetted from multiple nozzles. The nozzle injects a fluid to reduce the shaft power, and at the same time, prevents the swirling flow generated as the shaft power rises to reduce the shaft power.

【0014】[0014]

【実施例】以下、本発明を図面に示す実施例に基いて具
体的に説明する。図1は本発明の第一実施例に係る軸動
力低減装置の全体の概念図、図2が詳細な構成図であ
る。図3(a),(b)は第一実施例での流体の流れの
関係を示す説明図、図4は第一実施例での作用を示す系
統図、図5はロータリスイッチの構造を示す断面図、図
6(a),(b)は共に図5におけるA−A断面図で、
スイッチの作動による状態を示したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the embodiments shown in the drawings. FIG. 1 is an overall conceptual diagram of a shaft power reduction device according to a first embodiment of the present invention, and FIG. 2 is a detailed configuration diagram. 3 (a) and 3 (b) are explanatory views showing the fluid flow relationship in the first embodiment, FIG. 4 is a system diagram showing the operation in the first embodiment, and FIG. 5 shows the structure of the rotary switch. 6A and 6B are sectional views taken along the line AA in FIG.
It shows the state due to the operation of the switch.

【0015】図1において、全体構成は、ポンプの吸込
管5、吐出管4の間に圧力検出管6A,6B、ロータリ
スイッチ7、軸受部9、シリンダ11、バイパス管13
の主要部よりなっている。図2の詳細図において、ポン
プ本体は羽根車1、案内羽根2、主軸3、吐出管4、吸
込管5で構成され、流れは吸込管5から吐出管4の方向
に流れる。定格点近辺では吸込管5と吐出管4の流量は
いづれもQであるが、実施例での自己制御装置が働いた
時は13,18のバイパス管をQmin が流れるため吐出
管4の流量はQ−Qmin となる。13,18はバイパス
管でバイパス弁10により開閉される。バイパス弁10
の開放機構としては、シリンダ11、ピストン12、連
絡管14a,14b,14c、圧力バランス用回路17
よりなり、ロータリスイッチ7と連動してバイパス弁1
0を開閉するものである。7は前述のロータリスイッチ
で、フラップ弁8により軸受部9を圧力検出管6A,6
Bで検出した圧力で作動する機構である。圧力検出管6
A,6Bは吸込管5の羽根車1の入口部周辺に対向して
配置される。14a,15は連絡管でそれぞれシリンダ
11から軸受9へ、軸受9からバイパス管18へ連通し
ている。
In FIG. 1, the overall structure is such that the pressure detecting pipes 6A and 6B, the rotary switch 7, the bearing portion 9, the cylinder 11, the bypass pipe 13 are provided between the suction pipe 5 and the discharge pipe 4 of the pump.
It consists of the main parts of. In the detailed view of FIG. 2, the pump main body is composed of an impeller 1, guide vanes 2, a main shaft 3, a discharge pipe 4, and a suction pipe 5, and the flow flows from the suction pipe 5 to the discharge pipe 4. In the vicinity of the rated point, the flow rates of the suction pipe 5 and the discharge pipe 4 are both Q, but when the self-control device in the embodiment operates, Qmin flows through the bypass pipes 13 and 18, so that the flow amount of the discharge pipe 4 is It becomes Q-Qmin. The bypass pipes 13 and 18 are opened and closed by the bypass valve 10. Bypass valve 10
The opening mechanism includes a cylinder 11, a piston 12, connecting tubes 14a, 14b, 14c, and a pressure balancing circuit 17
And the bypass valve 1 in conjunction with the rotary switch 7.
It opens and closes 0. Reference numeral 7 denotes the above-mentioned rotary switch, which uses the flap valve 8 to connect the bearing portion 9 to the pressure detection tubes 6A, 6
It is a mechanism that operates at the pressure detected at B. Pressure detection tube 6
A and 6B are arranged facing each other around the inlet of the impeller 1 of the suction pipe 5. Reference numerals 14a and 15 are communication pipes that communicate from the cylinder 11 to the bearing 9 and from the bearing 9 to the bypass pipe 18, respectively.

【0016】次にこのような構成の第一実施例での軸動
力低減装置の作用を説明する。まず、P>Pn となる領
域の感知方法は、図3(a),(b)に示すようにP>
Pnの状態では羽根車1には逆流を生じており、吸込管
5には円周方向に旋回流16が発生する。(a)図に示
すように吸込管5には圧力検出穴の向きを流れに対し互
いに反対(順方向,逆方向)にした圧力検出管6Aと6
Bを設けておけば、これにより検知される圧力は、入口
逆流が生じてない場合には(Ps)A =(Ps)Bである
が、逆流の旋回流16を生じると(a)図の例では(P
s)A >(Ps)B となり、状態が変化したことが感知でき
る。なお、この圧力検出管6A,6Bは一対の例として
説明したが、一対ではなく、一対のものを複数組適用
し、逆旋回流の差圧を検出するようにして検出精度を上
げることもできるものである。又、シリンダ11とピス
トン12の摺動部及びフラップ弁8の軸受部9aと軸受
部9bは作動に差しつかえない範囲でせまくするが、特
にシールは設けないので多少の漏れは存在し(Pd)A と
(Pd)B に差がでるため必要があればバランス用の回路
17を設ける。
Next, the operation of the shaft power reducing apparatus in the first embodiment having such a configuration will be described. First, the method of sensing the region where P> Pn is as shown in FIGS.
In the state of Pn, a reverse flow is generated in the impeller 1, and a swirling flow 16 is generated in the suction pipe 5 in the circumferential direction. As shown in (a), the suction pipe 5 has pressure detection pipes 6A and 6A whose pressure detection holes are opposite to each other in the flow direction (forward direction, reverse direction).
If B is provided, the pressure detected by this is (Ps) A = (Ps) B when the inlet backflow does not occur, but when the backflow swirl flow 16 is generated, In the example (P
Since s) A> (Ps) B, it can be sensed that the state has changed. Although the pressure detection tubes 6A and 6B have been described as a pair of examples, a plurality of pairs of pressure detection tubes may be applied instead of one pair to detect the differential pressure of the reverse swirl flow to improve the detection accuracy. It is a thing. Further, the sliding portions of the cylinder 11 and the piston 12 and the bearing portions 9a and 9b of the flap valve 8 are limited within a range that does not impair the operation, but since there is no particular seal, there is some leakage (Pd). Since there is a difference between A and (Pd) B, a balancing circuit 17 is provided if necessary.

【0017】次に、バイパス弁開閉機構の制御について
述べる。図4はバイパス弁10の開閉機構を示すもの
で、ロータリスイッチ7には、わづかな圧力差で一方向
に開閉するフラップ弁8が設けられており、その軸受部
9は図5に示すようにフラップ弁8が開くと軸受部9a
の流路9cを軸受9bの流路9dが連結される構造にな
っている。ロータリスイッチ7のフラップ弁8で仕切ら
れる両方のチャンバには、吸込管5からの圧力(Ps)A
,(Ps)B が導かれている。この場合フラップ弁8が
開く側には圧力が低くなる(Ps)B がつながれる。軸受
部9aにはバイパス弁10を開閉するシリンダ11を介
し、高圧のポンプ吐出圧(Pd)B が管14aにより導か
れている。又、軸受部9bの流路は吸込管5につながっ
ている。一方バイパス弁10は通常時はポンプの吐出圧
Pd と吸込圧Ps の差により閉じている。閉じる力F
は;F≒f1 (Pd −Ps)で、f1 は弁の面積である。
又、シリンダ11内のピストン12上下には吐出圧Pd
が加わっているがこの状態では弁の開閉に関係ない。こ
の状態を図6(b)に示している。
Next, the control of the bypass valve opening / closing mechanism will be described. FIG. 4 shows an opening / closing mechanism of the bypass valve 10. The rotary switch 7 is provided with a flap valve 8 that opens and closes in one direction by a slight pressure difference, and its bearing portion 9 is as shown in FIG. When the flap valve 8 is opened to the bearing 9a
The flow passage 9c is connected to the flow passage 9d of the bearing 9b. The pressure (Ps) A from the suction pipe 5 is applied to both chambers partitioned by the flap valve 8 of the rotary switch 7.
, (Ps) B are derived. In this case, pressure (Ps) B, which is low in pressure, is connected to the opening side of the flap valve 8. A high-pressure pump discharge pressure (Pd) B is guided to the bearing portion 9a through a cylinder 11 that opens and closes a bypass valve 10 by a pipe 14a. The flow path of the bearing portion 9b is connected to the suction pipe 5. On the other hand, the bypass valve 10 is normally closed due to the difference between the pump discharge pressure Pd and the suction pressure Ps. Closing force F
Is F≈f 1 (Pd −Ps), where f 1 is the valve area.
Further, the discharge pressure Pd is above and below the piston 12 in the cylinder 11.
In this state, it is not related to the opening and closing of the valve. This state is shown in FIG.

【0018】以下、弁10の開閉について具体的に説明
する。入口逆流が生じると、前述のように(Ps)A >
(Ps)B となる。この時には、フラップ弁8が開き、軸
受部9aと軸受部9bの流路が短絡し、シリンダ下部の
圧力(Pd)B は連絡管15を通り吸込管5へ流れる。こ
の状態を図6(a)に示している。この時は、(Pd)A
>(Pd)B となりバイパス弁10が開き吐出側から吸込
側に連通し、バイパス回路が機能する。従って、P>P
n の状態が回避されポンプの起動時の動力が軽減される
ことになる。
The opening and closing of the valve 10 will be specifically described below. When an inlet backflow occurs, (Ps) A>
(Ps) B. At this time, the flap valve 8 is opened, the flow paths of the bearing portion 9a and the bearing portion 9b are short-circuited, and the pressure (Pd) B in the lower portion of the cylinder flows through the connecting pipe 15 to the suction pipe 5. This state is shown in FIG. At this time, (Pd) A
> (Pd) B, the bypass valve 10 opens and the discharge side communicates with the suction side, and the bypass circuit functions. Therefore, P> P
The state of n is avoided and the power at the time of starting the pump is reduced.

【0019】次に、本発明の第二実施例を図7乃至図1
0により説明する。図7は軸動力低減装置を適用した全
体の構成を示す概念図、図8は図7の構成を詳細に説明
した図、図9は図8におけるB−B断面図、図10は軸
動力低減効果を示すグラフである。
Next, a second embodiment of the present invention will be described with reference to FIGS.
The description will be made using 0. FIG. 7 is a conceptual diagram showing an overall configuration to which the shaft power reduction device is applied, FIG. 8 is a diagram illustrating the configuration of FIG. 7 in detail, FIG. 9 is a sectional view taken along line BB in FIG. 8, and FIG. 10 is a shaft power reduction. It is a graph which shows an effect.

【0020】図7において、20はポンプで、24は吐
出弁であり、本装置はバイパス管25およびバイパス弁
26から構成される。図8において、21は羽根車、2
2は案内羽根、23はベルマウス、25はバイパス管、
26はバイパス弁、27はバイパス弁の構成部品の揺動
部、27aは同揺動部27に設けられた穴、28は同じ
く構成部品の弾性材で一例として示すバネ、29は同じ
くケーシングを示す。
In FIG. 7, 20 is a pump, 24 is a discharge valve, and this apparatus is composed of a bypass pipe 25 and a bypass valve 26. In FIG. 8, 21 is an impeller, 2
2 is a guide vane, 23 is a bell mouth, 25 is a bypass pipe,
Reference numeral 26 is a bypass valve, 27 is an oscillating portion of a component of the bypass valve, 27a is a hole provided in the oscillating portion 27, 28 is a spring also shown by an elastic material of the component, and 29 is also a casing. .

【0021】次に、このような構成の第二実施例の作用
を示す。まず、ポンプを起動する場合ポンプ下流の吐出
弁24は全閉となっているので羽根車21から吐出弁2
4までは水は流出する所がなく起動して回転が上昇する
につれてこの間の管路の圧力は上昇していく。一方バイ
パス管25の途中に設けられたバイパス弁26の中に組
み込まれている揺動部27は、ポンプの停止時には揺動
部27の流水部に接しているヘッドの部分には圧力がな
くバネ28の力によってバランスし揺動部27が押され
てそのヘッド部がポンプ管路の流水部と面が一致してい
る。しかし、ポンプが起動して揺動部27のヘッド部に
圧力が作用してくると、この水圧力がバネ28の力に打
ち勝って揺動部27がケーシング29の中で移動する。
Next, the operation of the second embodiment having such a structure will be described. First, when the pump is started, the discharge valve 24 on the downstream side of the pump is fully closed.
Up to 4, there is no place for water to flow out, and the pressure in the pipeline during this period increases as the rotation starts and rotation increases. On the other hand, the oscillating portion 27 incorporated in the bypass valve 26 provided in the middle of the bypass pipe 25 has no spring in the head portion in contact with the flowing water portion of the oscillating portion 27 when the pump is stopped and there is no spring. The swinging portion 27 is pushed by being balanced by the force of 28 so that its head portion is flush with the flowing water portion of the pump conduit. However, when the pump is activated and pressure is applied to the head portion of the oscillating portion 27, this water pressure overcomes the force of the spring 28 and the oscillating portion 27 moves in the casing 29.

【0022】図8はこの移動した状態を示しており、こ
の状態では図9に断面B−Bで示すように揺動部27に
設けられた穴27aがバイパス管25と連通する様にな
っており圧力の高い水はポンプの吐出側からバイパス管
25を通ってポンプの上流の低圧部へと流れる。
FIG. 8 shows this moved state, and in this state, the hole 27a provided in the swinging portion 27 communicates with the bypass pipe 25 as shown in the section BB in FIG. Water with a high drop pressure flows from the discharge side of the pump through the bypass pipe 25 to the low pressure section upstream of the pump.

【0023】更に、図7の全体図に示す吐出弁24が開
かれた仕様点付近になると揺動部27のヘッドに作用し
ていた水圧が低下するため、揺動部27は再びバネ28
の力によってポンプの吐出管路の方に移動しバイパス管
と揺動部の穴27aがずれてバイパス管25の流路が閉
じられ流水はストップする。
Further, when the discharge valve 24 shown in the general view of FIG. 7 is close to the open specification point, the water pressure acting on the head of the oscillating portion 27 decreases, so that the oscillating portion 27 again has the spring 28.
Force moves to the discharge pipe line of the pump, the bypass pipe and the hole 27a of the oscillating portion are displaced, the flow passage of the bypass pipe 25 is closed, and the running water stops.

【0024】図10に軸動力低減範囲を示すが、縦軸は
(a)が揚程、(b)が軸動力である。Hは揚程、Qは
揚水量、Pは軸動力でPn ,Hn ,Qn はそれぞれ仕様
点nでの軸動力,揚程,揚水量である。(b)図におい
て、上記のような軸動力低減装置がない場合は、締切軸
動力はA点であるが、軸動力低減装置を適用し、効果が
生じるとB点となり軸動力の低減範囲は図の斜線部であ
る。即ち、(a)図の揚程の曲線でみると、締切点、即
ち、C点からD点までの圧力範囲では図8に示す揺動部
27のヘッドに作用する圧力がバネ28の力に勝ってお
り、バイパス管25を通って流水が流れている。すなわ
ちD点に相当する流量まではバイパス管25で流すこと
を示す。
FIG. 10 shows the range of shaft power reduction. In the vertical axis, (a) is the lift and (b) is the shaft power. H is the pump head, Q is the pumped water amount, P is the shaft power, and Pn, Hn, and Qn are the shaft power, pump head, and pumped water amount at the specification point n, respectively. In the figure (b), when there is no such shaft power reducing device, the deadline shaft power is point A, but when the shaft power reducing device is applied and the effect is produced, it becomes point B and the range of shaft power reduction is It is a hatched portion in the figure. That is, as seen from the lift curve in FIG. 8A, the pressure acting on the head of the oscillating portion 27 shown in FIG. 8 exceeds the force of the spring 28 in the deadline, that is, in the pressure range from point C to point D. The flowing water flows through the bypass pipe 25. That is, it indicates that the bypass pipe 25 flows up to the flow rate corresponding to the point D.

【0025】更に、図7に示す本来の吐出弁24が開か
れ揚水が開始されるとD点から仕様点への圧力は低下
し、上記と逆にバイパス弁26が閉鎖され、通常のポン
プ運転となる。
Further, when the original discharge valve 24 shown in FIG. 7 is opened and pumping is started, the pressure from the point D to the specification point drops, and conversely to the above, the bypass valve 26 is closed and normal pump operation is performed. Becomes

【0026】このように、本第二実施例においては、バ
イパス管25とこの途中に設けたバイパス弁26を水圧
に応じて自動的に開閉させるのでポンプの軸動力を低減
することができ、モータの容量も小さくすることができ
る。
As described above, in the second embodiment, the bypass pipe 25 and the bypass valve 26 provided on the way are automatically opened and closed according to the water pressure, so that the axial power of the pump can be reduced and the motor The capacity of can also be reduced.

【0027】次に本発明の第三実施例を図11乃至図1
5により説明する。図11は軸動力低減装置を適用した
ポンプの全体の概念図、図12はその詳細な構成を示す
縦断面図、図13は図12のC−C断面図、図14は軸
動力低減効果を示すグラフ、図15はポンプ運転モード
と圧力感知弁の関係を示すグラフである。
Next, a third embodiment of the present invention will be described with reference to FIGS.
5 will be described. FIG. 11 is a conceptual diagram of the entire pump to which the shaft power reducing device is applied, FIG. 12 is a vertical sectional view showing the detailed configuration thereof, FIG. 13 is a sectional view taken along line CC of FIG. 12, and FIG. FIG. 15 is a graph showing the relationship between the pump operation mode and the pressure sensing valve.

【0028】図11において、本第三実施例は、30は
ポンプ本体、33はベルマウス、34は吐出弁、35は
ポンプ本体に取付けたバイパス管、35aはバイパス管
36に連通し環状となす圧力管、36はバイパス管35
の途中に設けられた圧力感知弁、37はバイパス管35
に連通するジェットノズル、38はポンプ本体6から圧
力感知弁36に連結されるパイロット管より構成されて
いる。
In FIG. 11, in the third embodiment, 30 is a pump main body, 33 is a bell mouth, 34 is a discharge valve, 35 is a bypass pipe attached to the pump main body, and 35a is an annular shape communicating with a bypass pipe 36. Pressure pipe, 36 is bypass pipe 35
A pressure sensing valve provided in the middle of the
The jet nozzle 38 communicating with the pump main body 6 is composed of a pilot pipe connected to the pressure sensing valve 36.

【0029】次にこのような構成での作用を説明する。
ポンプを締切状態で起動させると水は羽根車31により
昇圧されるが、流れないため、羽根車31の入口部に大
きな逆流域が形成される。定格回転数近くになると、さ
らに吐出圧力が上がるため、圧力感知弁2が作動し全開
となる。吐出管の水の一部はバイパス管35を通り、更
にベルマウス33に設けた環状の圧力管35aとジェッ
トノズル37を通り、羽根車31の入口直前に噴出され
る。図13に示すようにジェットノズル37は、ベルマ
ウス33の周方向に4ケ所設けており、このジェットノ
ズル37はポンプ回転方向Rと同じ方向にジェットを噴
出する様にノズルに角度を持たせている。このノズル数
は4ケ所でなくてポンプの種類により大きな逆流を防止
する場合には4ケ所以上にしても良いものである。つま
り、ポンプ締切運転時の羽根車入口部に生じた逆流域を
ジェットノズル37の噴出により、予旋回39を与え、
締切軸動力を低減させる効果となる。
Next, the operation of this structure will be described.
When the pump is started in the shut-off state, water is boosted by the impeller 31 but does not flow, so that a large backflow area is formed at the inlet of the impeller 31. When the rotation speed approaches the rated speed, the discharge pressure further rises, so that the pressure sensing valve 2 operates and is fully opened. A part of the water in the discharge pipe passes through the bypass pipe 35, further passes through the annular pressure pipe 35a provided in the bell mouth 33 and the jet nozzle 37, and is jetted just before the inlet of the impeller 31. As shown in FIG. 13, jet nozzles 37 are provided at four locations in the circumferential direction of the bell mouth 33. The jet nozzles 37 are angled so as to eject jets in the same direction as the pump rotation direction R. There is. The number of nozzles is not 4 but may be 4 or more if large backflow is to be prevented depending on the type of pump. That is, the backward flow region generated at the impeller inlet portion during the pump shutoff operation is jetted by the jet nozzle 37 to give a pre-turn 39,
This has the effect of reducing the deadline shaft power.

【0030】ポンプ吐出量が増加すれば、揚程が下がる
ため、圧力感知弁36が作動し全閉となり、噴出が止ま
る。この為ポンプ仕様点近くではポンプ効率,吸込性能
が低下することなく、本来の性能が発揮される。
When the pump discharge amount increases, the head is lowered, so that the pressure sensing valve 36 is actuated to be fully closed and the ejection is stopped. Therefore, near the pump specifications, the original performance is exhibited without deterioration of pump efficiency and suction performance.

【0031】図14にこの場合の動力低減効果を示す
が、図において、Hは揚程、Pは軸出力、Qは揚水量、
Hn ,Pn ,Qn はそれぞれ仕様点nでの揚程,軸出
力,揚水量であり、実線が軸出力、一点鎖線が揚程を示
す。軸動力低減装置を適用しない場合は、締切軸動力
は、A点であるがジェットノズル37の噴流作用が生じ
るとB点となり流量が増加し吐出圧力がC点に下がると
圧力感知弁が作動し全閉となり噴流が止まり通常のポン
プ運転となる。従って本発明による軸動力低減部は、ハ
ッチングを入れた部分となる。
FIG. 14 shows the power reduction effect in this case. In the figure, H is the head, P is the shaft output, Q is the pumping amount,
Hn, Pn, and Qn are the head, the shaft output, and the pumping volume at the specification point n, respectively. The solid line shows the shaft output, and the one-dot chain line shows the head. When the shaft power reduction device is not applied, the dead shaft power is at point A, but when the jet action of the jet nozzle 37 occurs, it becomes point B and the flow rate increases and the pressure sensing valve operates when the discharge pressure drops to point C. It becomes fully closed, the jet flow stops, and normal pump operation starts. Therefore, the shaft power reducing portion according to the present invention is a hatched portion.

【0032】図15はポンプ運転モード例を示すが、ポ
ンプ起動から仕様点設定までの時間と、揚程の関係であ
り、主弁と圧力感知弁の開度の相関も示す。ポンプ起動
から定格回転までは、約10秒でこの間に圧力感知弁は
全閉から全開となる。吐出弁が全閉から全開となる間
に、吐出圧力が下がるため、感知弁設定圧力以下になる
と圧力感知弁が閉となり通常運転に入る。
FIG. 15 shows an example of the pump operation mode, which shows the relationship between the time from pump startup to the setting of the specification point and the lift, and also shows the correlation between the opening of the main valve and the pressure sensing valve. It takes about 10 seconds from the start of the pump to the rated rotation, during which the pressure sensing valve is fully closed to fully open. Since the discharge pressure drops while the discharge valve is fully closed to fully open, the pressure detection valve closes and normal operation starts when the pressure falls below the detection valve set pressure.

【0033】このように、本第3実施例においては、バ
イパス管35と、この途中に設けた圧力感知弁36を設
けて、この圧力感知弁36で水圧を検知して吸込口近辺
に環状に設けたジェットノズル37よりポンプの回転方
向に向けてジェットを噴出することにより逆流を抑制す
るようにしたので軸動力が低減し、ポンプ仕様点軸動力
をカバーできるモータでポンプ起動が可能となるため、
モータ出力は従来のもの以下で良く、コスト低減が計れ
るものである。
As described above, in the third embodiment, the bypass pipe 35 and the pressure sensing valve 36 provided in the middle of the bypass pipe 35 are provided, and the pressure sensing valve 36 detects the water pressure to form an annular shape near the suction port. Since the backflow is suppressed by ejecting a jet from the provided jet nozzle 37 in the rotation direction of the pump, the shaft power is reduced, and the pump can be started by a motor capable of covering the point power of the pump specification. ,
The motor output is less than that of the conventional one, and the cost can be reduced.

【0034】[0034]

【発明の効果】以上、具体的に説明したように本発明に
おいては、ポンプの締切運転時、又は部分負荷運転時に
吐出口と吸込口と間に設けたバイパス管により流体の圧
力を利用して圧力を調整し、又、吐出口側から吸込口側
へ流体をバイパスさせると共にノズルで噴射して逆旋回
流を防止するのでポンプの軸動力が低減され、これによ
ってモータの容量も小さくすることができ、大幅なコス
トダウンが可能となるものである。
As described above in detail, in the present invention, the fluid pressure is utilized by the bypass pipe provided between the discharge port and the suction port during the shutoff operation of the pump or the partial load operation. The pressure is adjusted, and the fluid is bypassed from the discharge side to the suction side and the reverse swirl flow is prevented by injecting with a nozzle to reduce the axial power of the pump, which can reduce the motor capacity. Therefore, the cost can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例に係る軸動力低減装置の全
体の構成を示す概念図である。
FIG. 1 is a conceptual diagram showing an overall configuration of a shaft power reduction device according to a first embodiment of the present invention.

【図2】本発明の第一実施例で、図1の詳細をポンプの
断面図と共に示した構成図である。
FIG. 2 is a configuration diagram showing the details of FIG. 1 together with a sectional view of a pump in the first embodiment of the present invention.

【図3】第一実施例での流体の流れを示して説明した
(a)が平面図、(b)が側面図である。
FIG. 3A is a plan view and FIG. 3B is a side view illustrating and explaining the flow of fluid in the first embodiment.

【図4】第一実施例での作用を説明した系統図である。FIG. 4 is a system diagram illustrating the operation of the first embodiment.

【図5】本発明の第一実施例に適用されるロータリスイ
ッチの構造を示す断面図である。
FIG. 5 is a sectional view showing a structure of a rotary switch applied to the first embodiment of the present invention.

【図6】図5におけるA−A断面図で、(a)がスイッ
チが開、(b)がスイッチが閉の状態を示している。
FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5, where (a) shows a state where the switch is open and (b) shows a state where the switch is closed.

【図7】本発明の第二実施例に係る軸動力低減装置の全
体の構成を示す概念図である。
FIG. 7 is a conceptual diagram showing an overall configuration of a shaft power reduction device according to a second embodiment of the present invention.

【図8】本発明の第二実施例で、図7の詳細をポンプの
断面図と共に示した構成図である。
8 is a configuration diagram showing the details of FIG. 7 together with a sectional view of a pump in a second embodiment of the present invention.

【図9】図8におけるB−B断面図である。9 is a sectional view taken along line BB in FIG.

【図10】本発明の第二実施例における軸動力低減効果
を示すグラフで、(a)が揚程、(b)が軸動力の関係
を示している。
FIG. 10 is a graph showing a shaft power reduction effect in the second embodiment of the present invention, in which (a) shows a lift and (b) shows a shaft power relationship.

【図11】本発明の第三実施例に係る軸動力低減装置の
全体構成を示す概念図である。
FIG. 11 is a conceptual diagram showing an overall configuration of a shaft power reduction device according to a third embodiment of the present invention.

【図12】本発明の第三実施例で図11の詳細をポンプ
の断面図と共に示した構成図である。
FIG. 12 is a configuration diagram showing the details of FIG. 11 together with a cross-sectional view of a pump in a third embodiment of the present invention.

【図13】図12におけるC−C断面図である。13 is a cross-sectional view taken along the line CC of FIG.

【図14】本発明の第三実施例に係る軸動力低減効果を
示すグラフである。
FIG. 14 is a graph showing the shaft power reduction effect according to the third embodiment of the present invention.

【図15】本発明の第三実施例に係るポンプ運転モード
と圧力感知弁の関係を示すグラフである。
FIG. 15 is a graph showing a relationship between a pump operation mode and a pressure sensing valve according to a third embodiment of the present invention.

【図16】ポンプの一般的な軸動力と流量との関係を示
す一般的な特性図である。
FIG. 16 is a general characteristic diagram showing a relationship between general shaft power of a pump and a flow rate.

【図17】従来のポンプの軸動力低減を行うためのポン
プの縦断面図である。
FIG. 17 is a vertical cross-sectional view of a conventional pump for reducing the axial power of the pump.

【符号の説明】[Explanation of symbols]

6A 圧力検出管 6B 圧力検出管 7 ロータリスイッチ 8 フラップ弁 9 軸受部 11 シリンダ 12 ピストン 13 バイパス管 25 バイパス管 26 バイパス弁 27 揺動部 28 バネ 29 ケーシング 35 バイパス管 35a 圧力管 36 圧力感知弁 37 ジェットノズル 6A Pressure detection pipe 6B Pressure detection pipe 7 Rotary switch 8 Flap valve 9 Bearing part 11 Cylinder 12 Piston 13 Bypass pipe 25 Bypass pipe 26 Bypass valve 27 Swing part 28 Spring 29 Casing 35 Bypass pipe 35a Pressure pipe 36 Pressure sensing valve 37 Jet nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大屋 浩司 兵庫県高砂市荒井町新浜二丁目1番1号 中外テクノス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Oya 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Chugai Technos Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポンプの吐出口と吸込口とをバイパス管
で連通して吐出口側より吸込口側へ流体を流入しポンプ
の軸動力と低減せしめる軸動力低減装置であって、前記
バイパス管を開閉するバイパス弁と、前記ポンプの吸込
口周辺で検出穴が互いに円周方向に順方向,逆方向とな
るように配設した一対の圧力検出管と、該一対の圧力検
出管の検出した差圧によって駆動され、弁軸の回動によ
って流路が開閉されるロータリスイッチと、該ロータリ
スイッチの開閉動作によりポンプの吐出口の圧力が所定
の圧力よりも高くなり軸動力が大きくなると前記バイパ
ス管を連通せしめるように前記バイパス弁を開くバイパ
ス弁開閉機構とを具備してなることを特徴とするポンプ
の軸動力低減装置。
1. A shaft power reduction device for connecting a discharge port and a suction port of a pump with a bypass pipe to allow a fluid to flow from the discharge port side to the suction port side and reduce the shaft power of the pump. A bypass valve for opening and closing the pump, a pair of pressure detection tubes arranged so that the detection holes around the suction port of the pump are in the forward and reverse directions in the circumferential direction, and the detection of the pair of pressure detection tubes is performed. A rotary switch which is driven by a differential pressure and whose flow path is opened / closed by the rotation of a valve shaft, and the bypass when the pressure at the discharge port of the pump becomes higher than a predetermined pressure and the shaft power becomes large by the opening / closing operation of the rotary switch. A shaft power reduction device for a pump, comprising: a bypass valve opening / closing mechanism that opens the bypass valve so that the pipes can communicate with each other.
【請求項2】 ポンプの吐出口と吸込口とをバイパス管
で連通して吐出口側より吸込口側へ流体を流入しポンプ
の軸動力を低減せしめる軸動力低減装置であって、一端
を前記ポンプの吐出口壁面に開放して他端にバネを設け
て密閉し、前記バイパス管に連通するケーシングと、一
端が該ケーシングの開放端に接して前記バイパス管の流
路を閉じ、他端が前記バネに取付けられて同ケーシング
内を摺動可能で、前記吐出口の圧力が所定の圧力以上に
なると前記バネ力に抗して摺動して前記バイパス管の流
路を連通せしめる揺動部とを具備してなることを特徴と
するポンプの軸動力低減装置。
2. A shaft power reduction device for connecting a discharge port and a suction port of a pump by a bypass pipe to allow fluid to flow from the discharge port side to the suction port side to reduce the shaft power of the pump, wherein one end of the shaft power reduction device is A casing communicating with the bypass pipe is opened to the discharge port wall surface of the pump and is closed at the other end, and one end is in contact with the open end of the casing to close the flow passage of the bypass pipe and the other end is An oscillating portion attached to the spring and slidable in the casing, and sliding when the pressure of the discharge port exceeds a predetermined pressure to slide against the spring force to connect the flow path of the bypass pipe. A shaft power reduction device for a pump, comprising:
【請求項3】 ポンプの吐出口と吸込口とをバイパス管
で連通して吐出口側より吸込口側へ流体を流入しポンプ
の軸動力を低減せしめる軸動力低減装置であって、前記
ポンプの吐出口の圧力を検出して同吐出口の圧力が所定
の圧力以上になると前記バイパス管の流路を連通せしめ
る圧力感知弁と、前記ポンプ吸込口の羽根車入口側周辺
に設けられ、同周辺部より同羽根車回転方向に向けて前
記圧力感知弁の作動により連通した前記バイパス管より
流体を導き、噴射して同羽根車入口に発生する旋回流を
抑制するための複数のノズルとを具備してなることを特
徴とするポンプの軸動力低減装置。
3. A shaft power reduction device for reducing the shaft power of a pump by connecting a discharge port and a suction port of a pump with a bypass pipe to flow a fluid from the discharge port side to the suction port side. A pressure sensing valve that detects the pressure at the discharge port and connects the flow path of the bypass pipe when the pressure at the discharge port exceeds a predetermined pressure, and a pressure sensing valve that is provided around the impeller inlet side of the pump suction port. A plurality of nozzles for guiding a fluid from the bypass pipe, which is communicated by the operation of the pressure sensing valve, toward the rotational direction of the impeller from the portion to jet the fluid and suppress a swirling flow generated at the inlet of the impeller. A shaft power reduction device for a pump characterized by the following.
JP11978393A 1993-05-21 1993-05-21 Shaft power reducer of pump Withdrawn JPH06330883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11978393A JPH06330883A (en) 1993-05-21 1993-05-21 Shaft power reducer of pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11978393A JPH06330883A (en) 1993-05-21 1993-05-21 Shaft power reducer of pump

Publications (1)

Publication Number Publication Date
JPH06330883A true JPH06330883A (en) 1994-11-29

Family

ID=14770117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11978393A Withdrawn JPH06330883A (en) 1993-05-21 1993-05-21 Shaft power reducer of pump

Country Status (1)

Country Link
JP (1) JPH06330883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732117B1 (en) * 2005-10-26 2007-06-25 요업기술원 FLOW rate DETECTOR
JP2015010479A (en) * 2013-06-26 2015-01-19 三菱重工業株式会社 Pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732117B1 (en) * 2005-10-26 2007-06-25 요업기술원 FLOW rate DETECTOR
JP2015010479A (en) * 2013-06-26 2015-01-19 三菱重工業株式会社 Pump

Similar Documents

Publication Publication Date Title
JP3872966B2 (en) Axial fluid machine
US9140267B2 (en) Compressor
CN103339452A (en) Ejector
CA1060265A (en) Variable output centrifugal pump
JP2008309029A (en) Centrifugal compressor
JP2003074360A (en) Turbocharger
JPH06330883A (en) Shaft power reducer of pump
JP3975501B2 (en) Centrifugal compressor
US4492516A (en) Method and apparatus for controlling recirculation in a centrifugal pump
US3970030A (en) Internal thrust reverser
JP4655603B2 (en) Centrifugal compressor
JP2534142B2 (en) Volute pump and automatic water supply device
JP2001355592A (en) Mixed flow pump of high specific speed
JPH0942187A (en) Priming device for feed water pump
JP3584117B2 (en) Centrifugal pump and automatic water supply pump device using the same
WO2023065377A1 (en) Isolated section shock wave forward transmission suppression structure for internal combustion wave rotor, and internal combustion wave rotor
JPH0861280A (en) Small water amount management operation device for horizontal shaft mixed flow pump
JP3322285B2 (en) Gas-liquid separation device
JPH0755352Y2 (en) Volute pump priming mechanism
JPH06264769A (en) Thrust load regulation mechanism of gas turbine engine
KR100349012B1 (en) Steam collecting device of oil supplying system
JP2012122368A (en) Centrifugal compression machine
JPH08226397A (en) Device for reducing shaft power of mixed flow pump or axial flow pump
JP2003184726A (en) Hydraulic machine
JPH07317643A (en) Hydraulic machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801