JPS62256915A - Production of high-tension steel plate - Google Patents

Production of high-tension steel plate

Info

Publication number
JPS62256915A
JPS62256915A JP61097849A JP9784986A JPS62256915A JP S62256915 A JPS62256915 A JP S62256915A JP 61097849 A JP61097849 A JP 61097849A JP 9784986 A JP9784986 A JP 9784986A JP S62256915 A JPS62256915 A JP S62256915A
Authority
JP
Japan
Prior art keywords
rolling
steel
toughness
less
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61097849A
Other languages
Japanese (ja)
Other versions
JPH0781164B2 (en
Inventor
Takashi Abe
隆 阿部
Masashi Hori
雅司 堀
Toshimichi Omori
大森 俊道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61097849A priority Critical patent/JPH0781164B2/en
Publication of JPS62256915A publication Critical patent/JPS62256915A/en
Publication of JPH0781164B2 publication Critical patent/JPH0781164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a steel plate having excellent weldability and high strength and toughness with high productivity by hot rolling a high-tension steel specified in the contents of C, Cu, Nb, etc., under controlled conditions and subjecting the steel to an aging treatment after cooling. CONSTITUTION:The steel consisting of 0.01-0.10wt% C, 0.01-0.80% Si, 0.20-2.0% Mn, 0.6-1.5% Cu, 0.05-0.060% Nb, 0.05-0.080% SolAl, and the balance Fe and unavoidable impurities is produced. Such steel is heated to 950-1250 deg.C and is subjected to >=50% rolling in a 900-1,000 deg.C range. The finish rolling is ended at 800 deg.C or over and <=900 deg.C. The rolled steel is cooled immediately thereafter down to <=500 deg.C at a cooling rate of 2-50 deg.C/sec, then the steel plate is subjected to the aging treatment. Adequate rations of >=1 kinds among Ni, Cr, Mo, V, Ti, and B are incorporated into the above- mentioned steel according to need. The high-tensile steel plate having excellent weldability and toughness is obtd. at the improved rolling efficiency by the above-mentioned method.

Description

【発明の詳細な説明】 「発明の目的」 本発明は高張力鋼板の製造方法に係り、溶接施工性の優
れた高強度、高靭性鋼板を圧延能率を低下させることな
く高い生産性を維持し低コストに製造することのできる
方法を提供しようとするものである。
[Detailed Description of the Invention] "Object of the Invention" The present invention relates to a method for manufacturing high-strength steel plates, and is a method for producing high-strength, high-toughness steel plates with excellent weldability while maintaining high productivity without reducing rolling efficiency. The purpose is to provide a method that can be manufactured at low cost.

産業上の利用分野 溶接施工を受ける高張力構造用鋼の製造技術。Industrial applications Manufacturing technology for high-strength structural steel that undergoes welding.

従来の技術 溶接施工性を良好とするためにCuの時効析出強化を利
用した鋼の代表例としてはASTMに規格化されている
A710あるいはA736鋼が挙げられる。これらは1
.0〜1.3 %のCuを含み、主に焼ならしあるいは
焼入れ後に時効することによって所要の強度・靭性を付
与するものである。本鋼種は比較的低い炭素当量の成分
であるため優れた溶接性を示すが、高い靭性を付与する
ためには焼ならしあるいは焼入れといった熱処理が必要
であり、熱処理コストがかかり工程が多くなった。そこ
でこのような問題を改善するた必Cuの時効析出強化に
対し制御圧延・制御冷却(Therm。
BACKGROUND OF THE INVENTION Typical examples of steels that utilize age precipitation strengthening of Cu to improve weldability include A710 and A736 steels standardized by ASTM. These are 1
.. It contains 0 to 1.3% Cu, and is imparted with the required strength and toughness mainly by aging after normalizing or quenching. This steel type exhibits excellent weldability due to its relatively low carbon equivalent content, but heat treatment such as normalizing or quenching is required to impart high toughness, which increases heat treatment costs and requires many steps. . Therefore, in order to improve this problem, it is necessary to use controlled rolling and controlled cooling (Therm) to strengthen Cu by aging precipitation.

−mechanical Control Proce
ss)を利用したCu添加高張力鋼板が提案されている
。その特徴とするところは、制御圧延あるいは制御冷却
を実施し、これによって強度・靭性等の特性を付与し熱
処理工程を省略することにある。
-Mechanical Control Process
A Cu-added high-strength steel sheet using ss) has been proposed. The feature is that controlled rolling or controlled cooling is performed to impart properties such as strength and toughness, and the heat treatment step is omitted.

このような考え方に基づいたものとして、0.06%C
−1,40%Mn−1,2%Cu −0,03%Nb鋼
に制御圧延・制御冷却を実施したもの〔鉄と鋼、71(
1985)、51507’lが発表されている。
Based on this idea, 0.06%C
-1,40%Mn-1,2%Cu -0,03%Nb steel subjected to controlled rolling and controlled cooling [Tetsu to Hagane, 71 (
1985), 51507'l has been published.

発明が解決しようとする問題点 しかし、前記したような従来のTMCPを利用するCu
析出強化鋼においては靭性確保のため圧延工程において
オーステナイト低温域で圧延を仕上げることが必要で、
比較的厳しい制御圧延の実施を必須要件とし、このため
以下に列挙する問題点がある。
Problems to be Solved by the Invention However, when using the conventional TMCP as described above,
In precipitation strengthened steel, it is necessary to finish rolling in the austenite low temperature range in the rolling process to ensure toughness.
Implementation of relatively strict controlled rolling is an essential requirement, which causes the following problems.

■ 制御圧延に伴う圧延能率の低下 ■ 圧延荷重の増加による圧延機の負荷増大。■ Decreased rolling efficiency due to controlled rolling ■ Increased load on the rolling mill due to increased rolling load.

従って高コスト化も避は得ない。Therefore, higher costs are unavoidable.

「発明の構成」 問題点を解決するための手段 C’:0.01〜0. 10wt%、Si:0.01〜
0.80wt%、Mn : 0.20〜2. 0wt%
、Cu :0.6〜1.5 wt%、Nb : 0.0
05〜0.060 wt%、sol、Ajl!: 0.
005〜0.080wt% を含有し、残部がFeおよび不可避的不純物からなる鋼
を950〜1250℃に加熱してから900〜1000
℃の温度範囲で50%以上の圧延を施し、800℃を越
え900℃/secで最終仕上げ圧延をなし、その後直
ちに2〜b 速度で550℃/secの温度域まで冷却し、次いで時
効処理を行うことを特徴とする高張力鋼板の製造方法、
および、 C:0.01〜O,10wt%、Si:0.01〜0.
30wt%、iAn : 0.21)−2,0wt%、
Cu :0.6〜1.5 wt%、Nb : 0.00
5 〜0.060wt%、 S01.八β:0.005
〜0.080wt% を含有すると共に、 Ni : 0.05〜0.8 wt%、Cr : 0.
05〜1.5 wt%、Mo : 0.03〜Q、5w
t%、V:0.01〜0.20wt%、Ti:Q、Q3
〜0.10wt%、B : 0.0003〜0.003
wt% の何れか1種または2種以上を含有し、残部がFeおよ
び不可避的不純物からなる鋼を950〜1250℃に加
熱してから900〜1000℃の温度範囲で50%以上
の圧延を施し、800℃を超え900℃/secで最終
仕上げ圧延をなし、その後直ちに2〜b 以下の温度域まで冷却し、次いで時効処理を行うことを
特徴とする高張力鋼板の製造方法。
"Structure of the invention" Means for solving the problem C': 0.01 to 0. 10wt%, Si: 0.01~
0.80wt%, Mn: 0.20-2. 0wt%
, Cu: 0.6 to 1.5 wt%, Nb: 0.0
05-0.060 wt%, sol, Ajl! : 0.
005 to 0.080 wt%, with the balance consisting of Fe and unavoidable impurities, is heated to 950 to 1250°C, and then
The material is rolled by 50% or more in the temperature range of 100°C, and final finish rolling is carried out at 900°C/sec over 800°C, and then immediately cooled to a temperature range of 550°C/sec at a speed of 2 to 30°C, and then subjected to aging treatment. A method for manufacturing a high-strength steel plate, characterized by:
and C: 0.01-0.10 wt%, Si: 0.01-0.
30wt%, iAn: 0.21)-2.0wt%,
Cu: 0.6-1.5 wt%, Nb: 0.00
5 to 0.060wt%, S01. Eight β: 0.005
~0.080 wt%, Ni: 0.05~0.8 wt%, Cr: 0.08 wt%.
05-1.5 wt%, Mo: 0.03-Q, 5w
t%, V: 0.01-0.20wt%, Ti:Q, Q3
~0.10wt%, B: 0.0003~0.003
A steel containing one or more of the following wt% and the remainder consisting of Fe and unavoidable impurities is heated to 950 to 1250°C and then rolled to a temperature of 50% or more in a temperature range of 900 to 1000°C. A method for producing a high-strength steel sheet, which comprises performing final finish rolling at a temperature exceeding 800° C. and 900° C./sec, followed by immediately cooling to a temperature range of 2 to 2 b 2 or less, and then aging treatment.

作用 C:0.旧%以上、iAn : 0.20%以上、Nt
) : 0.005%以上を含有させることによって強
度を向上する。
Effect C: 0. Old% or more, iAn: 0.20% or more, Nt
): Strength is improved by containing 0.005% or more.

C:0.10%以下、Si:0.80%以下、Mn:2
.0%以下、Nb : 0.060%以下、Cu:0.
60%以上含有させることによって強靭化を図る。
C: 0.10% or less, Si: 0.80% or less, Mn: 2
.. 0% or less, Nb: 0.060% or less, Cu: 0.
Toughness is achieved by containing 60% or more.

Cを0.10%以下として溶接性劣化を避けると共に強
度確保のため多量の合金元素を添加する必要がないよう
にし、Slを0.8%以下として溶接性を良好にする。
C is set to 0.10% or less to avoid deterioration of weldability and there is no need to add a large amount of alloying elements to ensure strength, and Sl is set to 0.8% or less to improve weldability.

sol、 Aβを0.005%以上として脱酸を図り、
しかも0,08%以下として鋼の清浄性を確保する。
sol, Aβ is set at 0.005% or more to deoxidize,
Moreover, the cleanliness of the steel is ensured by setting it to 0.08% or less.

上記基本成分に対しCrを0.05%以上、MOを0.
03%、B : 0.0003%以上を含有させること
によって焼入れ性を向上し、加速冷却における強度向上
効果を増大し、又Ni0.05%以上含有させて母材靭
性を向上する。
With respect to the above basic components, Cr is 0.05% or more and MO is 0.05% or more.
B: By containing 0.0003% or more, the hardenability is improved and the strength improvement effect during accelerated cooling is increased, and by containing 0.05% or more Ni, the base material toughness is improved.

■を0.01%以上、Tiを0.03%以上を含有させ
て析出強化を図る。
Precipitation strengthening is achieved by containing 0.01% or more of (2) and 0.03% or more of Ti.

Crが0.80%以下、MOが0.50%以下として経
済性を得しめる。
Economic efficiency is achieved by setting Cr to 0.80% or less and MO to 0.50% or less.

製造プロセスとして950℃以上に加熱することにより
Nbの固溶を図ると共に好ましい熱間加工性を得しめ、
又1250℃/secとしてオーステナイト粒の粗大化
を避ける。
As a manufacturing process, by heating to 950°C or higher, Nb is dissolved in solid form and favorable hot workability is obtained.
Further, the heating rate is set at 1250° C./sec to avoid coarsening of austenite grains.

900℃〜1000℃で50%以上の第1段圧延をなす
ことによりCuの含有によっても再結晶による細粒化効
果を充分に得しめ、しかも再結晶完了後の粒成長を回避
する。
By conducting the first stage rolling at 900° C. to 1000° C. at a rate of 50% or more, the grain refining effect due to recrystallization can be sufficiently obtained even by the inclusion of Cu, and grain growth after completion of recrystallization can be avoided.

800℃〜900℃で第2段圧延し最終仕上げをなすこ
とにより変態組織を一層細粒化する。
A second stage rolling is performed at 800° C. to 900° C. to achieve a final finish, thereby making the transformed structure even finer.

圧延後直ちに2〜b 550℃/secまで冷却することにより変態組織を細
粒の低温変態組織主体として強度、靭性を向上させる。
Immediately after rolling, the steel is cooled to 2 to 550° C./sec to make the transformed structure mainly composed of fine-grained low-temperature transformed structures, thereby improving strength and toughness.

実施例 上記したような本発明について更に説明すると、従来か
ら靭性の改善を図るため未再結晶域での圧延を強化する
制御圧延技術が発展され、その具体的方法としては特開
昭60−59018に見られるように、例えば800℃
/secの累積圧下を圧延において施す、所謂オーステ
ナイト低温域圧延が必要とされてきた。つまり圧延によ
る靭性向上に対しては低温圧延(主に800℃/sec
)を必須とするのが従来の考え方であるが、この場合は
前述したように圧延能率面での不利は避は得ない。
EXAMPLE To further explain the present invention as described above, a controlled rolling technique has been developed that strengthens rolling in the non-recrystallized region in order to improve toughness. For example, 800℃ as seen in
There has been a need for so-called austenite low-temperature range rolling in which a cumulative reduction of /sec is applied during rolling. In other words, for improving toughness by rolling, low temperature rolling (mainly 800℃/sec)
) is essential, but in this case, as mentioned above, disadvantages in terms of rolling efficiency are unavoidable.

そこで本発明者等は、圧延能率を低下させることなく優
れた鋼板特性を得るための方策をプロセス・成分の改善
という立場から鋭意検討した結果、Cuが鋼の熱間加工
後の再結晶を抑制する性質を有するという全く新規の知
見を初めて見出した。然してこの新規な知見に基づいて
圧延方法と靭性の関連を新たに再検討した結果、Cuを
0.6%以上含む鋼においては、再結晶温度域での圧延
及び圧延後の冷却条件を工夫することによって、所要の
機械的性質を得るための制御圧延条件を従来に比べ大幅
に緩和できることを見出し、これによって圧延能率の大
幅向上、圧延機の寿命向上という多大な利益がもたらさ
れるのである。
Therefore, the inventors of the present invention conducted extensive studies from the standpoint of improving processes and components to obtain excellent steel sheet properties without reducing rolling efficiency, and found that Cu suppresses recrystallization after hot working of steel. For the first time, we have discovered a completely new finding that it has the property of However, as a result of reconsidering the relationship between rolling method and toughness based on this new knowledge, it was found that for steel containing 0.6% or more of Cu, rolling in the recrystallization temperature range and cooling conditions after rolling should be devised. By doing so, it was discovered that the controlled rolling conditions for obtaining the required mechanical properties could be significantly relaxed compared to conventional methods, resulting in significant benefits such as a significant improvement in rolling efficiency and an extension of the life of the rolling mill.

即ち成分的特徴として00.6%以上のCuを含有させ
、更に製造条件として■再結晶温度域である900℃以
上の温度範囲で圧下率50%以上の圧延を実施し、■圧
延後に加速冷却を施す、ことを組合わせることによって
初めて未再結晶域での制御圧延条件を緩和させ得るであ
る。
In other words, as a component characteristic, Cu is contained in an amount of 0.6% or more, and as manufacturing conditions, (1) rolling is carried out at a reduction rate of 50% or more in a temperature range of 900°C or more, which is the recrystallization temperature range, and (2) accelerated cooling is performed after rolling. By combining these two methods, it is possible to relax the controlled rolling conditions in the non-recrystallized region.

以下に本発明における構成要件についてその仔細を述べ
ると、本発明はまず成分的には0.6 %以上1.5%
以下のCuを含有させることを必須の条件としているが
、これには以下に述べる2つの効果がある。即ち第1は
時効によるε−Cuの析出に基づいた強化が図れること
であり、第2は熱間圧延時における再結晶抑制効果に基
づいた靭性向上効果である。つまりCu添加は強度およ
び靭性の両者を改善することに有効である。
Describing the details of the constituent elements of the present invention below, the present invention first consists of 0.6% or more and 1.5%
Inclusion of the following Cu is an essential condition, and this has two effects described below. That is, the first is that it can be strengthened based on the precipitation of ε-Cu due to aging, and the second is that the toughness is improved based on the effect of suppressing recrystallization during hot rolling. In other words, the addition of Cu is effective in improving both strength and toughness.

また900℃以上の温度域での圧延を規定しているのは
、上述したようにCuが再結晶抑制効果を有するため、
従来の製造条件より高い温度域での圧延を実施しないと
再結晶域での圧延の確保が困難となるためである。再結
晶域での圧延は、一般的に知られているように加熱時の
粗粒オーステナイトを細かくするのに有効であり、再結
晶域圧延の圧下の大小が鋼板の機械的性質、特に靭性と
密接に関係する。Cu添加鋼においては、比較的高い温
度領域での再結晶域圧延が特性向上のために肝要であり
、従来技術はこの点を全く考慮していなかった。
Furthermore, rolling in a temperature range of 900°C or higher is specified because Cu has a recrystallization suppressing effect as mentioned above.
This is because unless rolling is performed in a temperature range higher than conventional manufacturing conditions, it will be difficult to ensure rolling in the recrystallization region. As is generally known, rolling in the recrystallization zone is effective in refining coarse-grained austenite during heating, and the magnitude of the rolling reduction in the recrystallization zone affects the mechanical properties of the steel sheet, especially its toughness. closely related. In Cu-added steel, recrystallization region rolling in a relatively high temperature range is essential for improving properties, and the prior art did not take this point into consideration at all.

更に圧延後の冷却条件を規定しているのは、主に鋼板強
度の確保を目的としている。圧延後の加速冷却の実施に
より、空冷ままに比べより低い低炭素当量の母材成分の
もとて必要な強度が得られるが、これによって母材靭性
および溶接性の改善も同時にもたらされる。
Furthermore, the cooling conditions after rolling are specified mainly for the purpose of ensuring the strength of the steel sheet. The implementation of accelerated cooling after rolling provides the necessary strength due to the lower carbon equivalent base metal content compared to air cooling, but it also provides improved base metal toughness and weldability.

即ち、適量なCuの添加と未再結晶域圧延の前後工程で
ある再結晶域圧延及び圧延後の冷却条件を的確に制御す
ることにより、低温オーステナイト域での制御圧延を緩
和することができ、このことが能率面の改善につながる
のである。
That is, by adding an appropriate amount of Cu and accurately controlling the recrystallization region rolling and post-rolling cooling conditions, which are the steps before and after the non-recrystallization region rolling, controlled rolling in the low-temperature austenite region can be relaxed. This leads to improved efficiency.

本発明における成分、圧延・冷却条件の限定理由を述べ
ると以下の如くである。
The reasons for limiting the components and rolling/cooling conditions in the present invention are as follows.

0.01≦C≦0.10%。0.01≦C≦0.10%.

炭素は強度向上に有利な元素であるが、0.10%を超
えると溶接性・靭性を損なうことがあるので上限を0.
10%とした。また0、旧%未満では、強度を確保する
ために多量の合金元素添加が必要となり経済的に不利と
なるので下限を0.01%とした。
Carbon is an element that is advantageous for improving strength, but if it exceeds 0.10%, it may impair weldability and toughness, so the upper limit should be set at 0.1%.
It was set at 10%. Furthermore, if the content is less than 0.0%, a large amount of alloying elements must be added to ensure strength, which is economically disadvantageous, so the lower limit was set at 0.01%.

0.01≦Si≦0.80%。0.01≦Si≦0.80%.

Siは脱酸元素および固溶強化元素として有用な元素が
あるが、0.80%を超えると溶接性の劣化および母材
靭性の劣化をもたらすことがあり、上限を0.8%とし
た。また0、01%未満では、その効果が期待できない
ので下限を0.01%とした。
Si is an element useful as a deoxidizing element and a solid solution strengthening element, but if it exceeds 0.80%, it may cause deterioration of weldability and base material toughness, so the upper limit was set at 0.8%. Further, if the content is less than 0.01%, the effect cannot be expected, so the lower limit was set at 0.01%.

0.20≦Mn≦2.0 %。0.20≦Mn≦2.0%.

Mnは比較的経済的に強度向上が図れる元素であるが、
2.0%を超えると溶接性・母材靭性の双方に対し不利
となることがあるので、上限を2.0 %とした。一方
0.2%未満では、強度確保のため他の合金元素の多量
添加が必要となり経済的に不利となるので、下限を肌2
0%とした。
Mn is an element that can improve strength relatively economically, but
If it exceeds 2.0%, it may be disadvantageous to both weldability and base metal toughness, so the upper limit was set at 2.0%. On the other hand, if it is less than 0.2%, large amounts of other alloying elements must be added to ensure strength, which is economically disadvantageous.
It was set to 0%.

0.60≦Cu≦1.5 %。0.60≦Cu≦1.5%.

Cuの添加は本発明を構成する主要な要件であり、ε−
Cuによる時効析出強化およびCuによる再結晶抑制効
果を通じて、鋼板の強靭化に有効に作用するが、0.6
%未満では所要の析出強化量、再結晶抑制効果が得られ
ず、また1、5%を超えると強化量が飽和に近づき、添
加に見合った特性向上が得られない場合があるので、添
加範囲を0.60≦Cu≦1.5 %とした。
Addition of Cu is the main requirement constituting the present invention, and ε-
Although Cu effectively strengthens the steel sheet through aging precipitation strengthening and Cu's recrystallization suppressing effect, 0.6
If it is less than 1%, the required amount of precipitation strengthening and recrystallization suppressing effect cannot be obtained, and if it exceeds 1.5%, the amount of strengthening approaches saturation, and the property improvement commensurate with the addition may not be obtained. was set to 0.60≦Cu≦1.5%.

0、005  ≦Nb≦0.060  %。0,005≦Nb≦0.060%.

Nbは微量添加で析出強化が達成できる元素であり、ま
たNb添加は、制御圧延及び加速冷却による機械的性質
の向上効果を一層大きくするが、0、060%を超える
添加ではこれらの効果がほぼ飽和し、逆に靭性面で不利
益となることがあるので上限を0.060%とした。一
方、0.005 %未満ではその効果が少ないので下限
を0.005 %とした。
Nb is an element that can achieve precipitation strengthening with the addition of a small amount, and the addition of Nb further increases the effect of improving mechanical properties through controlled rolling and accelerated cooling, but if the addition exceeds 0.060%, these effects are almost completely lost. The upper limit was set at 0.060% because the content may become saturated and be disadvantageous in terms of toughness. On the other hand, if the content is less than 0.005%, the effect is small, so the lower limit was set at 0.005%.

0、005≦sol、 Al≦0.080%。0,005≦sol, Al≦0.080%.

Aβは、脱酸材として使用されるが、0.005 %未
満ではその効果が十分でなく、また0、 080%を超
えると鋼の清浄性を損なうことがあるので添加範囲を0
.005≦so1.Aβ≦0.080%とした。
Aβ is used as a deoxidizer, but if it is less than 0.005%, its effect is insufficient, and if it exceeds 0.080%, it may impair the cleanliness of steel, so the range of addition should be reduced to 0.
.. 005≦so1. Aβ≦0.080%.

以上のような基本成分に対し本発明では必要に応じ以下
の成分の1種または2種以上を含有させる。
In the present invention, one or more of the following components may be added to the above-mentioned basic components as necessary.

0.05≦N+≦0.080 %。0.05≦N+≦0.080%.

N1は、母材靭性、脆性亀裂伝播停止性能を向上させる
目的で添加する元素であるが、経済性及び有効性の点か
ら範囲を0.05≦N+≦0.080%とした。
N1 is an element added for the purpose of improving base material toughness and brittle crack propagation arresting performance, and the range was set to 0.05≦N+≦0.080% from the point of view of economy and effectiveness.

0.05≦Cr≦1.5  %。0.05≦Cr≦1.5%.

Crは焼入れ性を向上させ、加速冷却における強度向上
効果を一層増大させる元素であるが、経済性と有効性を
考慮しその範囲を0.05≦Cr≦1.5%とした。
Cr is an element that improves hardenability and further increases the effect of improving strength during accelerated cooling, but in consideration of economy and effectiveness, the range is set to 0.05≦Cr≦1.5%.

0.03≦MO≦0.50%。0.03≦MO≦0.50%.

MOは、前記Crと同様に焼入れ性を向上させ、加速冷
却による強化作用に対し有効に作用する元素であって、
経済性及び有効性の点から範囲を0.03≦MO≦0.
50%とした。
MO is an element that improves hardenability like the above-mentioned Cr and acts effectively against the strengthening effect caused by accelerated cooling,
From the point of view of economy and effectiveness, the range is 0.03≦MO≦0.
It was set at 50%.

0.01≦V≦0.20%。0.01≦V≦0.20%.

■は微量添加で析出強化に有効に作用する元素であり、
強度向上に有効に働くが、0.01%未満では効果が少
なく、0.20%を超えると靭性面で有害となることが
あるので添加範囲を0.01≦■≦0.20%とした。
■ is an element that effectively acts on precipitation strengthening when added in small amounts,
It works effectively to improve strength, but if it is less than 0.01%, the effect is small, and if it exceeds 0.20%, it may be harmful in terms of toughness, so the addition range was set as 0.01≦■≦0.20%. .

0.03≦Ti≦0.10%。0.03≦Ti≦0.10%.

適量のTi添加はTiCによる析出強化に有効に寄与す
るが、0.03%未満ではその効果が少なく、また0、
10%を超えると効果がほぼ飽和するのでその範囲を0
.03≦Ti≦0.10%とした。
Adding an appropriate amount of Ti effectively contributes to precipitation strengthening by TiC, but if it is less than 0.03%, the effect is small;
If it exceeds 10%, the effect is almost saturated, so set the range to 0.
.. 03≦Ti≦0.10%.

0.0003≦B≦0.0030%。0.0003≦B≦0.0030%.

Bは、極く微量の添加で鋼の焼入れ性を向上させ組織改
善を通じて強靭化に作用するが、0.0003%未満で
はその効果が期待されず、一方0.0030%を超える
と効果が飽和するので、添加範囲を0、0003≦B≦
0.0030%とした。
When added in a very small amount, B improves the hardenability of steel and strengthens it by improving its structure, but if it is less than 0.0003%, the effect is not expected, and on the other hand, if it exceeds 0.0030%, the effect is saturated. Therefore, the addition range is 0,0003≦B≦
It was set to 0.0030%.

次に上記のような成分を含有する鋼を本発明においては
以下に示すプロセスで製造する。
Next, in the present invention, steel containing the above components is manufactured by the process shown below.

加熱温度:950℃以上1250℃/sec。Heating temperature: 950°C or higher and 1250°C/sec.

スラブ加熱温度が950℃未満ではNbが未固溶のまま
残ること及び圧延加工上困難を伴う等の問題が生じる。
If the slab heating temperature is lower than 950° C., problems such as Nb remaining undissolved and difficulties in rolling processing occur.

一方、1250℃を超えるスラブ加熱は加熱時のオース
テナイト粒径を著しく粗大にし、圧延・時効後の機械的
性質を劣化させる。従って加熱温度を950℃以上、1
250℃/secとした。
On the other hand, heating the slab above 1250°C significantly coarsens the austenite grain size during heating and deteriorates the mechanical properties after rolling and aging. Therefore, the heating temperature should be set to 950℃ or higher, 1
The temperature was set at 250°C/sec.

圧延条件=900℃以上1000℃/secの温度範囲
で50%以上の圧延を施し、8 00℃を超え900℃/secの温度 範囲で最終仕上りとなる圧延を実施する。
Rolling conditions: 50% or more rolling is performed in a temperature range of 900°C or higher and 1000°C/sec, and final rolling is performed in a temperature range of 800°C or higher and 900°C/sec.

圧延条件は本発明の基本的な構成要件であり、その特徴
は2段階の圧延を規定しているところにある。
The rolling conditions are a basic component of the present invention, and its feature is that it specifies two-stage rolling.

第1段圧延:900℃以上1000℃/secの範囲で
50%以上の圧延を行う。
First stage rolling: 50% or more rolling is performed in the range of 900° C. or higher and 1000° C./sec.

この圧延の規定は再結晶域での圧延に関するものである
。再結晶域圧延によってオーステナイト粒を細粒化させ
機械的性質を向上させ得ることは一般的に良く知られて
いるが、本発明の特徴は従来の温度域より高温側に規定
していることである。
This rolling regulation concerns rolling in the recrystallization zone. It is generally well known that rolling in the recrystallization region can refine austenite grains and improve mechanical properties, but the feature of the present invention is that the rolling temperature is specified at a higher temperature than the conventional temperature range. be.

即ち、900℃未満の温度域ではCuの再結晶抑制効果
のため未再結晶領域となり、再結晶による細粒化効果が
十分に期待できない。一方、1000℃を超える温度域
による圧下は、再結晶はするものの再結晶後の粒径が十
分細かくならない上、再結晶完了後粒成長を起こすとい
う問題もある。従って第1段階の温度域を900℃以上
1000℃/secに規定した。
That is, in a temperature range of less than 900° C., a non-recrystallized region occurs due to the recrystallization suppressing effect of Cu, and a sufficient grain refinement effect due to recrystallization cannot be expected. On the other hand, reduction in a temperature range exceeding 1000° C. causes the problem that although recrystallization occurs, the grain size after recrystallization does not become sufficiently fine, and grain growth occurs after completion of recrystallization. Therefore, the temperature range of the first stage was defined as 900° C. or higher and 1000° C./sec.

また圧下量については、50%未満の圧下ては十分な再
結晶が期待できないので上記圧延温度域で50%以上の
圧延を行う。
Regarding the rolling reduction amount, since sufficient recrystallization cannot be expected with a rolling reduction of less than 50%, rolling is performed at a rolling temperature of 50% or more in the above rolling temperature range.

第2段圧延:800℃を超え900℃/secの温度範
囲で最終仕上りとなる圧延を 実施する。
Second stage rolling: Final finishing rolling is carried out in a temperature range exceeding 800°C and 900°C/sec.

この圧延の規定は未再結晶域での圧延に関するものであ
る。再結晶圧延後に未再結晶域圧延を施すことにより、
変態組織の一層の細粒化を図るものである。800℃/
secの圧延の実施は圧延能率の面で著しく不利となり
、一方900℃を超える温度域では未再結晶域の圧延と
ならない。 従って第2段階の温度域を800℃を超え
900℃/secの範囲に規定した。
This rolling regulation relates to rolling in a non-recrystallized region. By performing non-recrystallization area rolling after recrystallization rolling,
This aims to further refine the transformed structure. 800℃/
sec rolling is extremely disadvantageous in terms of rolling efficiency, and on the other hand, rolling in a non-recrystallized region cannot be achieved in a temperature range exceeding 900°C. Therefore, the temperature range of the second stage was set to exceed 800°C and exceed 900°C/sec.

冷却条件;圧延後直ちに2℃/S以上50℃/S以下の
冷却速度で550℃/secの 温度範囲まで冷却する。
Cooling conditions: Immediately after rolling, it is cooled to a temperature range of 550°C/sec at a cooling rate of 2°C/S or more and 50°C/S or less.

圧延後の冷却は、変態組織を細粒の低温変態組織主体と
して強度靭性を向上させることを目的としている。即ち
、2℃/S未満の冷却速度では十分な強靭化が達成でき
なく、また50℃/Sを超える冷却は過大な冷却設備が
必要となり経済的に不利となる。一方、550℃を超え
る温度で冷却を停止すると、変態強化が不十分となり強
靭化が達成されない。従って、冷却速度範囲を2℃/S
以上50℃/S以下とし、冷却停止温度を550℃/s
ecに規定する。
The purpose of cooling after rolling is to improve strength and toughness by making the transformed structure into a fine-grained, low-temperature transformed structure. That is, if the cooling rate is less than 2°C/S, sufficient toughness cannot be achieved, and if the cooling rate is more than 50°C/S, excessive cooling equipment is required, which is economically disadvantageous. On the other hand, if cooling is stopped at a temperature exceeding 550°C, transformation strengthening will be insufficient and toughening will not be achieved. Therefore, the cooling rate range is 2℃/S
Above 50℃/s or less, cooling stop temperature 550℃/s
Specified in ec.

本発明によるものの具体的な製造例について説明すると
以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

本発明者等が用いた本発明に従った鋼およびその比較鋼
についての成分組織は次の表1に示す通りである。
The compositional structures of the steel according to the present invention used by the present inventors and its comparative steel are as shown in Table 1 below.

即ち本発明における鋼成分組成上、特徴をなす0.6 
≦Cu≦1.5%の範囲内のCuが添加されている成分
例がC−F!!I、H〜0鋼であって、A、B。
That is, 0.6, which is characteristic in terms of the steel composition in the present invention.
An example of a component to which Cu within the range of ≦Cu≦1.5% is C-F! ! I, H~0 steel, A, B.

G鋼はCuが本発明範囲外の成分例である。また、A−
Glは、Ni、 Cr、 Mo等の合金元素を含まない
C−Mn−Cu−Nb系であり、コレニ対しH,I、J
鋼はそれぞれN3 Cr、 MOを単独添加をしたもの
であって、K鋼、N鋼はNi、 Cr、 Moを同時に
添加した例であり、更にLSM、G鋼は微量元素である
■、Ti5Bが添加されている。
G steel is an example of a component in which Cu is outside the scope of the present invention. Also, A-
Gl is a C-Mn-Cu-Nb system that does not contain alloying elements such as Ni, Cr, and Mo;
Steels have N3, Cr, and MO added individually, K steel and N steel are examples of Ni, Cr, and Mo added at the same time, and LSM and G steels have trace elements ■ and Ti5B. has been added.

また、実施した製造条件及び得られた機械的性質は第2
表に示す如くである。ここで、製造例1〜6は本発明範
囲内の同一製造条件のもので、Cu量の異なるA−G鋼
を製造した場合の特性例であり、本発明成分粗穴条件を
満足するC−F鋼はいずれもYS≧60kgf/mm2
、vTrs≦−120℃という優れた強度・靭性を示す
ことがわかる。これに対し、Cu<Q、5%のASB鋼
、Cu > 1.5%のG鋼は強度あるいは靭性が劣る
。また製造例7〜13は本発明に従う成分の鋼であるD
鋼を用い製造条件を変えて製造した特性例である。製造
例7.10.11はA鋼を用い本発明範囲内で製造した
ものであり、優れた強靭性が付与されていることがわか
る。これに対し、製造例8.9.12.13はそれぞれ
再結晶域圧延の温度域、圧下率、圧延後の冷却速度、停
止温度が本発明範囲外のものであり、いずれもv Tr
s≧−70℃であり十分な靭性が得られていない。一方
、製造例14〜20は本発明鋼であるH鋼〜○鋼に対し
本発明範囲内で製造したものであり、いずれも優れた強
度、靭性が付与されていることがわかる。
In addition, the manufacturing conditions implemented and the mechanical properties obtained are the second
As shown in the table. Here, production examples 1 to 6 are characteristic examples when A-G steels with different amounts of Cu were produced under the same production conditions within the scope of the present invention, and C- All F steels have YS≧60kgf/mm2
, vTrs≦−120°C, which shows excellent strength and toughness. On the other hand, ASB steel with Cu < Q and 5% and G steel with Cu > 1.5% are inferior in strength or toughness. Further, Production Examples 7 to 13 are steels having compositions according to the present invention.
This is an example of characteristics manufactured using steel and changing manufacturing conditions. Production Examples 7.10.11 were produced using A steel within the scope of the present invention, and it can be seen that they were provided with excellent toughness. On the other hand, in Production Examples 8.9.12.13, the temperature range of recrystallization zone rolling, rolling reduction, cooling rate after rolling, and stop temperature are outside the range of the present invention, and all of them are v Tr
s≧-70°C, and sufficient toughness was not obtained. On the other hand, Production Examples 14 to 20 are steels of the present invention, H steel to O steel, produced within the scope of the present invention, and it can be seen that excellent strength and toughness were imparted to all of the steels.

なお前記したD鋼に関し加熱温度1050℃、圧延後に
加熱冷却したものについて、圧延仕上り温度を変えた場
合の強度、靭性および圧延時間の変化を要約して示して
いるのが添附図面であって900℃を越える圧延条件は
強度、能率の面で有利であるとしても靭性的には著しく
劣ることが明らかである。これに対し800℃未満の場
合においては圧延能率面において急激に不利となるもの
で、本発明における圧延仕上り温度を採用することによ
ってこれらの関係を略適切に満足し好ましい生産性確保
した鋼板の製造が可能となる。又本発明者等は前記した
表1中の本発明鋼に対し、低温割れ感受性を検討すべく
斜めy型溶接割れ試験を行ったところ、何れも予熱を施
さない25℃の条件であっても割れは全く生じなかった
。また入熱40KJ/ cmの条件で溶接した溶接熱影
響部のシャルピー、CTOD特性も低温で充分なもので
あることが確言忍された。
The attached drawing summarizes the changes in strength, toughness, and rolling time when the finishing temperature of the steel D is heated at 1050°C and heated and cooled after rolling. It is clear that although rolling conditions exceeding .degree. C. are advantageous in terms of strength and efficiency, they are significantly inferior in toughness. On the other hand, when the temperature is less than 800°C, the rolling efficiency becomes suddenly disadvantageous, and by adopting the finishing rolling temperature of the present invention, it is possible to manufacture a steel plate that approximately satisfies these relationships appropriately and secures preferable productivity. becomes possible. In addition, the present inventors conducted a diagonal Y-type weld cracking test on the steels of the present invention listed in Table 1 above to examine their susceptibility to cold cracking, and found that even at 25°C without preheating, No cracking occurred. It was also confirmed that the Charpy and CTOD characteristics of the welded heat-affected zone welded under the condition of heat input of 40 KJ/cm were sufficient at low temperatures.

「発明の効果」 以上説明したような本発明によるときは、制御圧延条件
を緩和することができて圧延能率を向上し、又圧延機の
負荷を軽減し、PCXの低い成分系の鋼種で強度確保が
可能であって低温割れ感受性や熱影響部の靭性のような
溶接施工性の改善された高強度、高靭性鋼板を得しめる
ものであって、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, it is possible to relax the controlled rolling conditions, improve the rolling efficiency, reduce the load on the rolling mill, and increase the strength of the steel with a low PCX composition. This invention is industrially highly effective, as it is possible to obtain a high-strength, high-toughness steel plate with improved weldability such as low-temperature cracking susceptibility and toughness of the heat-affected zone.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、圧延仕
上り温度を変えた場合の強度、靭性、圧延時間の変化を
示した図表である。 特 許 出 願 人   日本鋼管株式会社発    
明    者    阿   部       隆同 
              堀       雅  
 用向               大   森  
 俊   道手続補正書(自発) 昭和 □□□、63月3 日
The drawing shows the technical content of the present invention, and is a chart showing changes in strength, toughness, and rolling time when the finishing temperature of rolling is changed. Patent applicant: From Nippon Kokan Co., Ltd.
Author Ryudo Abe
Masa Hori
Yomuka Omori
Toshi Do procedural amendment (voluntary) Showa □□□, March 3rd

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.01〜0.10wt%、Si:0.01
〜0.80wt%、Mn:0.20〜2.0wt%、C
u:0.6〜1.5wt%、Nb:0.005〜0.0
60wt%、sol.Al:0.005〜0.080w
t% を含有し、残部がFeおよび不可避的不純物からなる鋼
を950〜1250℃に加熱してから900〜1000
℃の温度範囲で50%以上の圧延を施し、800℃を越
え900℃以下で最終仕上げ圧延をなし、その後直ちに
2〜50℃/secの冷却速度で550℃以下の温度域
まで冷却し、次いで時効処理を行うことを特徴とする高
張力鋼板の製造方法。
(1) C: 0.01-0.10wt%, Si: 0.01
~0.80wt%, Mn:0.20~2.0wt%, C
u: 0.6 to 1.5 wt%, Nb: 0.005 to 0.0
60wt%, sol. Al: 0.005~0.080w
t%, with the balance consisting of Fe and unavoidable impurities, is heated to 950-1250°C and then heated to 900-1000°C.
50% or more rolling in the temperature range of 100°C, final finish rolling at more than 800°C and less than 900°C, then immediately cooled at a cooling rate of 2 to 50°C/sec to a temperature range of 550°C or less, and then A method for manufacturing a high-strength steel sheet, characterized by performing an aging treatment.
(2)C:0.01〜0.10wt%、Si:0.01
〜0.80wt%、Mn:0.20〜2.0wt%、C
u:0.6〜1.5wt%、Nb:0.005〜0.0
60wt%、sol.Al:0.005〜0.080w
t% を含有すると共に、 Ni:0.05〜0.8wt%、Cr:0.05〜1.
5wt%、Mo:0.03〜0.5wt%、V:0.0
1〜0.20wt%、Ti:0.03〜0.10wt%
、B:0.0003〜0.003wt% の何れか1種または2種以上を含有し、残部がFeおよ
び不可避的不純物からなる鋼を950〜1250℃に加
熱してから900〜1000℃の温度範囲で50%以上
の圧延を施し、800℃を超え900℃以下で最終仕上
げ圧延をなし、その後直ちに2〜50℃/secの冷却
速度で550℃以下の温度域まで冷却し、次いで時効処
理を行うことを特徴とする高張力鋼板の製造方法。
(2) C: 0.01-0.10wt%, Si: 0.01
~0.80wt%, Mn:0.20~2.0wt%, C
u: 0.6 to 1.5 wt%, Nb: 0.005 to 0.0
60wt%, sol. Al: 0.005~0.080w
t%, Ni: 0.05 to 0.8 wt%, Cr: 0.05 to 1.
5wt%, Mo: 0.03-0.5wt%, V: 0.0
1 to 0.20 wt%, Ti: 0.03 to 0.10 wt%
, B: 0.0003 to 0.003 wt%, and the remainder is Fe and inevitable impurities, heated to 950 to 1250°C, and then heated to 900 to 1000°C. Rolling of 50% or more in the range, final finish rolling at over 800°C and below 900°C, then immediately cooling to a temperature range of 550°C or less at a cooling rate of 2 to 50°C/sec, and then aging treatment. A method of manufacturing a high tensile strength steel plate, characterized by:
JP61097849A 1986-04-30 1986-04-30 Method for manufacturing high-strength and high-toughness steel sheet Expired - Fee Related JPH0781164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097849A JPH0781164B2 (en) 1986-04-30 1986-04-30 Method for manufacturing high-strength and high-toughness steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097849A JPH0781164B2 (en) 1986-04-30 1986-04-30 Method for manufacturing high-strength and high-toughness steel sheet

Publications (2)

Publication Number Publication Date
JPS62256915A true JPS62256915A (en) 1987-11-09
JPH0781164B2 JPH0781164B2 (en) 1995-08-30

Family

ID=14203181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097849A Expired - Fee Related JPH0781164B2 (en) 1986-04-30 1986-04-30 Method for manufacturing high-strength and high-toughness steel sheet

Country Status (1)

Country Link
JP (1) JPH0781164B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215122A (en) * 1988-07-04 1990-01-18 Kobe Steel Ltd Production of high strength and high toughness thick steel plate having excellent weldability
JPH02129317A (en) * 1988-11-08 1990-05-17 Nippon Steel Corp Production of 80kgf/mm2 class high tension steel having excellent weldability
JPH02254120A (en) * 1989-03-29 1990-10-12 Nippon Steel Corp Production of high tension strength steel having excellent weldability and low temperature toughness
JPH04224623A (en) * 1990-12-25 1992-08-13 Kobe Steel Ltd Manufacture of thick 50kg class low yield ratio-high tensile strength steel plate small in difference of hardness in plate thickness direction
US5798873A (en) * 1993-11-25 1998-08-25 Canon Kabushiki Kaisha Small-sized zoom lens
KR100325705B1 (en) * 1997-12-27 2002-06-26 이구택 Method of manufacturing high strength steel sheet
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
KR100415657B1 (en) * 1996-12-18 2004-03-31 주식회사 포스코 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022729A1 (en) 2013-08-13 2015-02-19 新日鐵住金株式会社 Steel plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896817A (en) * 1981-12-07 1983-06-09 Sumitomo Metal Ind Ltd Production of high tensile hot rolled steel material having high toughness
JPS6059018A (en) * 1983-08-03 1985-04-05 Nippon Steel Corp Production of cu-added steel having excellent weldability and low-temperature toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896817A (en) * 1981-12-07 1983-06-09 Sumitomo Metal Ind Ltd Production of high tensile hot rolled steel material having high toughness
JPS6059018A (en) * 1983-08-03 1985-04-05 Nippon Steel Corp Production of cu-added steel having excellent weldability and low-temperature toughness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215122A (en) * 1988-07-04 1990-01-18 Kobe Steel Ltd Production of high strength and high toughness thick steel plate having excellent weldability
JPH0735538B2 (en) * 1988-07-04 1995-04-19 株式会社神戸製鋼所 Method for manufacturing high strength and high toughness thick steel plate with excellent weldability
JPH02129317A (en) * 1988-11-08 1990-05-17 Nippon Steel Corp Production of 80kgf/mm2 class high tension steel having excellent weldability
JPH02254120A (en) * 1989-03-29 1990-10-12 Nippon Steel Corp Production of high tension strength steel having excellent weldability and low temperature toughness
JPH04224623A (en) * 1990-12-25 1992-08-13 Kobe Steel Ltd Manufacture of thick 50kg class low yield ratio-high tensile strength steel plate small in difference of hardness in plate thickness direction
US5798873A (en) * 1993-11-25 1998-08-25 Canon Kabushiki Kaisha Small-sized zoom lens
KR100415657B1 (en) * 1996-12-18 2004-03-31 주식회사 포스코 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH
KR100325705B1 (en) * 1997-12-27 2002-06-26 이구택 Method of manufacturing high strength steel sheet
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel

Also Published As

Publication number Publication date
JPH0781164B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JPS5877528A (en) Manufacture of high tensile steel with superior toughness at low temperature
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
KR100699629B1 (en) Continuous casting slab suitable for the production of non-tempered high tensile steel material
JPS62256915A (en) Production of high-tension steel plate
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JPS6141968B2 (en)
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPS625216B2 (en)
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH083635A (en) Production of steel plate excellent in toughness
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPH07173534A (en) Production of ni-containing steel sheet excellent in toughness and workability
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH0670248B2 (en) Manufacturing method of ultra-high-strength steel plate for welding with excellent homogeneity in the thickness direction
JP3212380B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JPS6289815A (en) Manufacture of high yield point steel for low temperature
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JPH05163527A (en) Manufacture of high tension steel superior in weldability
JPH0247525B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees