KR100415657B1 - METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH - Google Patents

METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH Download PDF

Info

Publication number
KR100415657B1
KR100415657B1 KR1019960067555A KR19960067555A KR100415657B1 KR 100415657 B1 KR100415657 B1 KR 100415657B1 KR 1019960067555 A KR1019960067555 A KR 1019960067555A KR 19960067555 A KR19960067555 A KR 19960067555A KR 100415657 B1 KR100415657 B1 KR 100415657B1
Authority
KR
South Korea
Prior art keywords
less
rolling
steel
cooling
strength
Prior art date
Application number
KR1019960067555A
Other languages
Korean (ko)
Other versions
KR19980048905A (en
Inventor
홍순택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019960067555A priority Critical patent/KR100415657B1/en
Publication of KR19980048905A publication Critical patent/KR19980048905A/en
Application granted granted Critical
Publication of KR100415657B1 publication Critical patent/KR100415657B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing ultra-high tensile strength steel having 220 ksi class yield strength is provided to lower the minimum addition amount of expensive Co to 9.5% level by applying direct quenching right after hot rolling and simplify manufacturing facility and remove environment polluting elements by skipping solution treatment. CONSTITUTION: The method comprises a step of heating a steel slab comprising 0.13 to 0.19 wt.% of C, 0.1 wt.% or less of Mn, 0.1 wt.% or less of Si, 9.5 to 10.5 wt.% of Ni, 9.5 to 14.5 wt.% of Co, 1.8 to 2.2 wt.% of Cr, 0.9 to 1.1 wt.% of Mo, 0.008 wt.% or less of P, 0.005 wt.% or less of S, 0.0007 to 0.0020 wt.% of B and a balance of Fe and other inevitable impurities to the temperature range of 1,150 to 1,300 deg.C; a step of hot rolling the heated steel slab at a reduction ratio of 10 to 30% and a finish rolling temperature of 800 to 950 deg.C per each rolling pass; a step of water cooling the hot rolled steel to an ordinary temperature in a cooling rate of 5 to 50 deg.C/sec by starting cooling within 30 seconds right after finishing the hot rolling step; and a step of aging the water cooled steel in the temperature range of 500 to 530 deg.C for 5 hours or more.

Description

항복강도 220ksi급 초고장력강의 제조방법Yield strength 220ksi grade ultra high strength steel manufacturing method

본 발명은 장갑판재, 포재료, 로켓트, 모타케이스, 렌딩기어, 무기시스템 등에 주로 사용되는 항복강도 220ksi급 초고장력강의 제조방법에 관한 것으로써, 보다 상세하게는 미량의 붕소(B)를 첨가하고 직접소입(Direct Quencbing)을 적용시켜 고가인 Co함량을 대폭적으로 감소시키면서도 강도, 인성이 우수한 초고장력강의 제조방법에 관한 것이다.The present invention relates to a method for producing a yield strength of 220ksi ultra high tensile strength steel mainly used in armor plate, fabric material, rocket, motor case, landing gear, weapon system, etc., in more detail by adding a small amount of boron (B) The present invention relates to a method of manufacturing high tensile strength steel having excellent strength and toughness while significantly reducing expensive Co content by applying direct quenching.

종래 항복강도 220ksi급 초고장력강의 대표적인 강은 중량%로, C:0.13-0.19%, Mn:0.1%이하, Si:0.1%이하, Ni:9.5-10.5%, Co:13.5-14.5%, Cr:1.8-2.2%, Mo:0.9-1.1%, P:0.008%이하, S:0.005%인하, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를, 1,150℃ 이상에서 충분히 가열한 후 열간압연을 실시하고 적정냉각 속도로 상온까지 냉각후 750-900℃에서 용체화 처리한 후 유냉에 의해 상온까지 냉각한 다음 500-530℃에서 5시간 이상 시효처리하여 제조되어 진다.Conventional yield strength of the 220ksi grade super high strength steel is represented by weight percent, C: 0.13-0.19%, Mn: 0.1% or less, Si: 0.1% or less, Ni: 9.5-10.5%, Co: 13.5-14.5%, Cr: 1.8-2.2%, Mo: 0.9-1.1%, P: 0.008% or less, S: 0.005% or less, Steel slab composed of the balance Fe and other unavoidable impurities is sufficiently heated above 1,150 ° C, and then hot rolled. The solution is cooled to room temperature at an appropriate cooling rate, and then solution-treated at 750-900 ° C., cooled to room temperature by oil cooling, and then aged at 500-530 ° C. for at least 5 hours.

상기 종래강은 항복강도가 220ksi급으로 우수한 강도와 인성을 가지고 있는반면에 고가인 Co함량이 14%정도로 함유하고 있어서 제조비용이 높다는 단점이 있다. 또한, 제조공정 중 용체화처리후 반드시 유냉을 실시해야 하므로 유냉설비가 필요할 뿐만 아니라 폐유의 발생으로 인한 환경오염 유발이 문제시된다.The conventional steel has a disadvantage in that the yield cost is high because the yield strength is about 220 ksi and has a high Co content of about 14% while having excellent strength and toughness. In addition, since the oil cooling must be performed after the solution treatment during the manufacturing process, not only the oil cooling equipment is required, but also causing the environmental pollution due to the generation of waste oil.

이에, 본 발명자는 상기 종래 문제점을 해결하기 위해 연구와 실험을 행하고 그 근거 하에 본 발명을 제안하게 된 것으로써, 본 발명은 열간압연 직후 직접소입법을 적용시켜 고가인 Co함량의 최소 첨가량을 9.5% 수준까지 낮출 수 있는 반면, 용체화처리의 생략으로 제조설비의 단순화 및 환경오염 요소를 제거할 수 있는 항복강도 200ksi급 초고장력강의 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present inventors have conducted research and experiments to solve the above-mentioned problems and proposed the present invention on the basis of the present invention. The present invention applies a direct quenching method immediately after hot rolling to reduce the minimum amount of expensive Co content to 9.5. The purpose of the present invention is to provide a method of manufacturing high strength steel of yield strength of 200ksi, which can reduce the level to%, while simplifying the manufacturing equipment and eliminating environmental pollution by eliminating the solution treatment.

제1도는 발명강과 비교강의 강도 및 충격인성을 비교한 그래프1 is a graph comparing the strength and impact toughness of the invention steel and the comparative steel

상기 목적을 달성하기 위한 본 발명은 항복강도 220ksi급 초고장력강의 제조방법에 있어서, 중량%로, C : 0.13-0.19%, Mn:0.1%이하, Si:0.1%이하, Ni:9.5-10.5%, Co:9.5-14.5%, Cr:1.8-2.2%, Mo:0.9-1.1%, P:0.008%이하, S:0.005%이하, B:0.0007-0.0020%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를, 1,150-1,300℃의 온도범위로 가열한 후, 각 압연패스당 10-30%의 압하율과 800-950℃의 마무리압연 온도조건으로 열간압연한 다음, 상기 압연종료직후 30초 이내에 냉각을 개시하여 5-50℃/sec의 냉각속도로 상온까지 수냉한 후, 500-530℃의 온도범위에서 5시간이상 시효처리 하는 것을 포함하여 구성되는 항복강도 220ksi급 초고장력강의 제조방법에 관한 것이다.In order to achieve the above object, the present invention provides a yield strength of 220ksi grade ultra high strength steel, in weight%, C: 0.13-0.19%, Mn: 0.1% or less, Si: 0.1% or less, Ni: 9.5-10.5% , Co: 9.5-14.5%, Cr: 1.8-2.2%, Mo: 0.9-1.1%, P: 0.008% or less, S: 0.005% or less, B: 0.0007-0.0020%, balance Fe and other unavoidable impurities The steel slab is heated to a temperature range of 1,150-1,300 ° C, hot rolled at a rolling reduction of 10-30% for each rolling pass and a finish rolling temperature of 800-950 ° C, and within 30 seconds immediately after the end of the rolling. A method of producing a yield strength of 220 ksi class ultra high tensile strength steel comprising starting cooling, cooling to room temperature at a cooling rate of 5-50 ° C./sec, and then aging at a temperature range of 500-530 ° C. for at least 5 hours. will be.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 항복강도 220ksi 급 초고장력강의 기본조성계에 결정입계에 석출하여 입계에너지를 감소시켜 경화능을 증대할 수 있는 원소인 B을 적정량 첨가하여 경화능을 보완하고, 또한 직접소입을 적용함으로써, 종래의 Co 함량을 대폭 낮출 수 있는 강성분 설계를 도모하며, 아울러 용체화처리를 생략하여 열처리 원단위를 개선하고, 종래의 용체화열처리 과정에서 필수적으로 실시되었던 유냉을 실시하지 않고서도 물성을 확보함과 아울러 폐유발생으로 인한 환경오염을 방지할 수 있는데, 그 특징이 있다.The present invention supplements the hardenability by adding an appropriate amount of B, an element that can increase the hardenability by precipitating the grain at the grain boundary to the basic composition system of yield strength 220ksi ultra high tensile strength steel, and also by applying direct hardening, Promote the design of steel components that can drastically reduce the conventional Co content, improve the raw heat treatment unit by eliminating the solution treatment, and secure the physical properties without performing oil cooling, which was essential in the conventional solution heat treatment process. In addition, it is possible to prevent the environmental pollution caused by the generation of waste oil, it is characterized.

이를 위해 우선 상기 C는 소정의 강도를 확보하기 위해 0.13%이상 첨가되어야 하며, 0.19%이상 첨가시는 용접성을 해치며 탄화물 형성 이외의 고용 C에 의해 인성이 열화되므로 0.13-0.19%범위로 첨가하는 것이 바람직하다.To this end, the C must be added at least 0.13% to secure a predetermined strength, and when added above 0.19%, the weldability is deteriorated and toughness is degraded by solid solution C other than carbide formation, so it is added in the range of 0.13-0.19%. It is preferable.

상기 Mn은 강도의 증가에는 효과가 커지만 MnS의 형성으로 인성을 저하시키므로 0.1% 이하로 제한하는 것이 바람직하다.Although Mn is effective in increasing the strength, it is preferable to limit the toughness to 0.1% or less since the toughness is reduced by the formation of MnS.

상기 Si는 Mn과 같이 강도향상에는 어느 정도 효과가 있지만 SiO2등의 산화물을 형성하여 인성을 해칠 우려가 있으므로 0.1%이하로 제한하는 것이 바람직하다.Although Si has some effect on improving strength like Mn, it is preferable to limit it to 0.1% or less because it may damage the toughness by forming an oxide such as SiO 2 .

상기 Ni은 저온인성을 향상시키는 합금원소이지만 고가인 관계로 9.5-10.5%로 제한하는 것이 바람직하다.Ni is an alloying element for improving low temperature toughness, but is preferably limited to 9.5-10.5% due to its high cost.

상기 Co는 2차 경화형 합금에서 매우 중요한 합금원소로 침상 마르텐사이트(lath martensite)기지의 전위회복을 지연시켜, 미세한 M2C 탄화물의석출을 조장시켜 강도의 향상에 지대한 작용을 한다. 그러나 너무 고가인 관계로 9.5-14.5%로 제한하는 것이 바람직하다.Co is a very important alloying element in the secondary hardening alloy, delays the potential recovery of the needle martensite base, promotes the precipitation of fine M 2 C carbide, and plays a significant role in improving the strength. However, because it is too expensive, it is desirable to limit it to 9.5-14.5%.

상기 Cr은 M2C 탄화물에 직접 관계하는 합금원소로 1.8%이상 첨가하여야 하며 너무 과다한 첨가는 용접성을 해치므로 1.8-2.2%로 한정하는 것이 바람직하다.The Cr is an alloying element directly related to the M 2 C carbide should be added more than 1.8% and too much addition is detrimental to weldability, so it is preferable to limit it to 1.8-2.2%.

상기 Mo는 Cr과 같이 M2C 탄화물의 석출에 직접 관련된 합금원소로 0.9%이상 첨가되어야 하며 고가이므로 0.9-1.1%로 제한하는 것이 바람직하다.Mo is an alloying element directly related to the precipitation of M 2 C carbides, such as Cr, should be added at least 0.9% and is preferably limited to 0.9-1.1% because it is expensive.

상기 P는 충격인성을 해치고 소려취성을 유발시키는 원소이므로 그 함량은 0.008% 이하로 제한하는 것이 유효하다.Since P is an element that impairs impact toughness and induces brittle brittleness, it is effective to limit the content to 0.008% or less.

상기 S는 충격인성과 용접성을 해치는 원소이므로 0.005%이하로 한정하는 것이 바람직하다.Since S is an element that impairs impact toughness and weldability, S is preferably limited to 0.005% or less.

상기 B는 본 발명의 핵심적 원소로서 결정입계에 석출하여 입계에너지를 감소시킴으로써 경화능을 증대시켜 용체화처리후 기존의 유냉대신 공냉을 가능케 하는 합금원소이다. 함유량이 0.0007% 이하면 그 효과를 기대할 수 없고, 0.0020% 이상 첨가되면 용접성 및 열간가공성을 해치므로 0.0007-0.0020%로 한정하는 것이 바람직하다.The B is an alloying element which precipitates at the grain boundary and reduces the grain boundary energy as a key element of the present invention, thereby increasing the hardenability to allow air cooling instead of conventional oil cooling after solution treatment. If the content is 0.0007% or less, the effect cannot be expected, and if it is added 0.0020% or more, the weldability and hot workability are deteriorated, so it is preferable to limit the content to 0.0007-0.0020%.

상기와 같이 조성되는 강 슬라브는 가열온도가 1,150℃이하의 경우 압연종료 온도를 맞추기 어렵고, 1,300℃이상으로 가열되면 결정립의 이상성장을 초래하여 강의 인성을 저하시키므로 슬라브의 가열온도는 1,150-1,300℃의 범위로 하는 것이 바람직하다.The steel slab formed as described above is difficult to match the finish temperature when the heating temperature is 1,150 ℃ or less, and when heated to 1,300 ℃ or more it causes abnormal growth of grains to reduce the toughness of the steel slab heating temperature is 1,150-1,300 ℃ It is preferable to set it as the range of.

상기와 같은 조건으로 슬라브를 가열한 후, 열간압연은 각 압연패스당 압하율이 높을수록 강도와 인성을 개선하는 효과를 가지지만, 30%이상의 압하는 저온구역에서 압연설비의 과부하를 초래하므로 각 압연패스당 압하율은 10-30%로 압연종료시 까지 연속압연하는 것이 바람직하다.After heating the slab under the above conditions, hot rolling has the effect of improving the strength and toughness as the reduction ratio of each rolling pass increases, but over 30% of the rolling causes overload of the rolling equipment in the low temperature zone. The rolling reduction per rolling pass is preferably 10-30% and is continuously rolled until the end of rolling.

상기 조건으로 슬라브를 압하하는데, 이때 압연종료온도가 750℃이하인 경우 압연설비의 과부하를 초래할 수 있고, 950℃이상으로 압연종료온도는 재결정 압연구역이므로 강도를 저하시킬 우려가 있으므로 상기 압연종료온도는 750-950℃로 제한하는 것이 바람직하다.The slab is pressed under the above conditions. At this time, when the rolling end temperature is 750 ° C. or lower, the rolling equipment may be overloaded. The rolling end temperature is higher than 950 ° C. as the recrystallization rolling zone may reduce the strength. It is desirable to limit to 750-950 ° C.

상기와 같이 열간압연을 종료한 후 수냉을 하는데, 이때 수냉개시전까지 유지시간이 짧을수록 미세결정 압하효과를 크게 할 수 있으며, 반면 시간이 너무 길어지면 미세결정 압하효과가 줄어들므로 상기 압연종료후 유지시간은 30초 이내로 한정하는 것이 효과적이다. 압연종료후 상기 시간동안 유지한 후 냉각속도는 빠를수록 강도의 확보측면에서는 유리하지만, 제조시 후판냉각의 속도가 50℃/sec 이상이거나 5℃/sec 이하의 냉각속도는 강도의 확보에 불리한 베이나이트와 같은 조직의 생성이 우려되므로 냉각속도는 5-50℃/sec로 제한하는 것이 바람직하다.Water cooling is performed after the end of hot rolling as described above, wherein the shorter the holding time until the start of the water cooling can increase the microcrystalline reduction effect. On the other hand, if the time is too long, the microcrystalline reduction effect is reduced. It is effective to limit the time to 30 seconds or less. After the end of rolling, the cooling rate is more favorable in terms of securing strength after the end of rolling. However, the cooling speed of thick plate cooling at 50 ° C / sec or more or less than 5 ° C / sec or less in manufacturing is disadvantageous for securing strength. It is preferable to limit the cooling rate to 5-50 ° C./sec since the formation of a tissue such as knight is concerned.

상기와 같이 냉각한 후 시효온도는 강도와 인성의 확보에 중요한 인자인데, 500℃이하의 온도에서는 강도확보에 주요한 탄화물인 M2C의 석출이 어렵고, 반면 530℃이상의 온도에서 시효할 경우 과시효로 인한 강도의 확보가 어려우므로 500-530℃에서 5시간 이상 시효처리하는 것이 바람직하다.After cooling as above, the aging temperature is an important factor to secure the strength and toughness. At temperatures below 500 ℃, precipitation of M 2 C, which is a major carbide for securing strength, is difficult, whereas when aging at temperatures above 530 ℃, Since it is difficult to secure the strength due to the aging treatment at 500-530 ℃ more than 5 hours is preferable.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

하기 표1과 같은 강 슬라브를 하기표2의 조건으로 제조한 다음 기계적 특성을 측정한 후, 그 결과를 하기표 2에 나타내었다. 표 2에서 발명재1, 2, 3의 경우 압연종료직후 15초이내에 냉각을 개시하였다.To prepare a steel slab as shown in Table 1 under the conditions of Table 2 and then to measure the mechanical properties, the results are shown in Table 2 below. In Table 2, for Inventive Materials 1, 2 and 3, cooling was started within 15 seconds immediately after the end of rolling.

[표 1]TABLE 1

[표 2]TABLE 2

※DQ : 직접소입, FRT : 압연종료온도, CR : 냉각속도, HT : 압연종료 후 유지시간, YS : 항복강도, TS : 인장강도, vE상온: 상온충격에너지※ DQ: Direct quenching, FRT: Rolling end temperature, CR: Cooling speed, HT: Holding time after rolling end, YS: Yield strength, TS: Tensile strength, vE Room temperature : Room temperature impact energy

상기표 1,2에 나타난 바와 같이, 종래강의 경우 용체화처리 후 유냉을 실시하면 항복강도 220ksi급 초고장력강을 제조할 수 있었다(종래재(4)). 본 발명강의 경우 미량의 B 을 첨가하고 직접소입법을 적용시킬 경우 동일 Co함량(발명강A)의 경우 항복강도는 제조조건에 따라 약간의 차이는 있으나 대체로 7-15ksi 정도의 강도증가와 함께 상온 충격인성도 약 20Joules정도 향상된 것을 알 수 있다(발명재(1)). Co함량 약 10%정도를 갖는 발명강(C)의 경우 종래강 대비 고가인 Co함량이 4% 정도 감소되었는데도 불구하고 종래강과 거의 동일 강도를 가지면서 상온충격 인성이 약 30Joules 정도 향상된 것을 볼 수 있었다(발명재(3)). 따라서 본 발명재(1-3)가 종래재(4)에 비하여 강도와 인성의 측면에서 훨씬 우수한 물성을 갖음을 알 수 있었다.As shown in Tables 1 and 2, in the case of conventional steel, oil cooling was performed after the solution treatment to produce a yield strength of 220 ksi class ultra high tensile strength steel (prior material 4). In the case of the present invention, when a small amount of B is added and the direct quenching method is applied, the yield strength of the same Co content (invention steel A) is slightly different depending on the manufacturing conditions, but is generally increased with the strength of about 7-15 ksi and room temperature. Impact toughness is also improved by about 20 Joules (Invention material (1)). In the case of the inventive steel (C) having about 10% Co content, although the Co content, which is expensive compared to the conventional steel, was reduced by about 4%, the room temperature impact toughness was improved by about 30 Joules while having almost the same strength as the conventional steel. (Invention material (3)). Therefore, it was found that the present invention material (1-3) has much better physical properties in terms of strength and toughness than the conventional material (4).

한편, 상기 표2의 기계적 특성인 물성치를 제1도에 그래프로 비교하였는데, 강의 강도와 인성의 관계는 일반적으로 서로 반비례의 관계를 갖지만 제1도에 도시된 바와 같이 본 발명의 경우 직접소입에 의해 합금원소의 고용도 증대와 압연후 곧바로 소임처리함에 의해 전위밀도 및 공공의 증가로 강도의 상승을 초래하였으며, 또한 미세결정 압하에 의한 유효결정립의 미세화에 의한 인성의 확보에 의해 좋은 강도-인성의 관계를 갖음을 알 수 있다.On the other hand, the mechanical properties of the mechanical properties of Table 2 are compared graphically in Figure 1, the relationship between the strength and toughness of the steel is generally inversely proportional to each other, but as shown in Figure 1 in the case of the present invention As a result, the solid solution of the alloying element was increased and immediately after rolling, an increase in dislocation density and porosity resulted in an increase in strength, and a good strength-toughness was ensured by securing toughness by miniaturization of effective grains by microcrystalline rolling. It can be seen that the relationship with.

상술한 바와 같이, 본 발명강은 미량의 B첨가와 직접소입법의 적용에 의해종래강과 비교하여 Co의 최소첨가량을 9.5%수준까지 낮출 수 있어 고가의 Co함량을 최대 약 4%정도 감소시킬 수 있으며, 용체화처리의 생략으로 제조설비의 단순화와 제조비용을 절감할 수 있다. 또한 본 발명은 종래의 용체화처리 후 유냉을 실시함에 의해 냉각유의 누출에 의한 환경오염이 되는 문제를 획기적으로 개선할 수 있는 장점을 가지면서 우수한 강도-인성을 갖는 효과를 가진다.As described above, the present invention steel can reduce the minimum amount of Co to 9.5% level compared to conventional steels by applying a small amount of B and direct quenching method, thereby reducing the expensive Co content by up to about 4%. In addition, the elimination of the solution treatment can simplify the manufacturing equipment and reduce the manufacturing cost. In addition, the present invention has the effect of having excellent strength-toughness while having the advantage that can significantly improve the problem of environmental pollution by leakage of cooling oil by performing oil cooling after the conventional solution treatment.

Claims (1)

항복강도 220ksi급 초고장력강의 제조방법에 있어서, 중량%로, C : 0.13-0.19%, Mn:0.1%이하, Si:0.1%이하, Ni:9.5-10.5%, Co:9.5-14.5%, Cr:1.8-2.2%, Mo:0.9-1.1%, P:0.008%이하, S:0.005%이하, B:0.0007-0.0020%, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를, 1,150-1,300℃의 온도범위로 가열한 후, 각 압연패스당 10-30%의 압하율과 800-950℃의 마무리압연 온도조건으로 열간압연한 다음 상기 압연종료직후 30초 이내에 냉각을 개시하여 5-50℃/sec의 냉각속도로 상온까지 수냉한 후, 500-530℃의 온도범위에서 5시간이상 시효처리하는 것을 포함하여 이루어지는 것을 특징으로 하는 항복강도 220ksi급 초고장력강의 제조방법.Yield strength In the manufacturing method of the 220 ksi class ultra high tensile strength steel, in weight%, C: 0.13-0.19%, Mn: 0.1% or less, Si: 0.1% or less, Ni: 9.5-10.5%, Co: 9.5-14.5%, Cr : 1.8-2.2%, Mo: 0.9-1.1%, P: 0.008% or less, S: 0.005% or less, B: 0.0007-0.0020%, steel slab composed of balance Fe and other unavoidable impurities, at 1,150-1,300 ° C. After heating to the temperature range, hot rolling was carried out at a rolling rate of 10-30% and finishing rolling temperature of 800-950 ° C. for each rolling pass, and then cooling was started within 30 seconds immediately after the end of rolling. After cooling to room temperature at a cooling rate of 5, the method of producing a yield strength of 220ksi ultra high strength steel, characterized in that it comprises aging treatment for at least 5 hours in the temperature range of 500-530 ℃.
KR1019960067555A 1996-12-18 1996-12-18 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH KR100415657B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960067555A KR100415657B1 (en) 1996-12-18 1996-12-18 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960067555A KR100415657B1 (en) 1996-12-18 1996-12-18 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH

Publications (2)

Publication Number Publication Date
KR19980048905A KR19980048905A (en) 1998-09-15
KR100415657B1 true KR100415657B1 (en) 2004-03-31

Family

ID=37319035

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960067555A KR100415657B1 (en) 1996-12-18 1996-12-18 METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH

Country Status (1)

Country Link
KR (1) KR100415657B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665922A (en) * 1979-10-31 1981-06-04 Daido Steel Co Ltd Production of ultra high strength steel
JPS62256915A (en) * 1986-04-30 1987-11-09 Nippon Kokan Kk <Nkk> Production of high-tension steel plate
JPH1096020A (en) * 1996-09-24 1998-04-14 Nkk Corp Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665922A (en) * 1979-10-31 1981-06-04 Daido Steel Co Ltd Production of ultra high strength steel
JPS62256915A (en) * 1986-04-30 1987-11-09 Nippon Kokan Kk <Nkk> Production of high-tension steel plate
JPH1096020A (en) * 1996-09-24 1998-04-14 Nkk Corp Manufacture of ts780mpa class high tensile-strength steel excellent in resistance to hot dip galvanizing crack

Also Published As

Publication number Publication date
KR19980048905A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
KR102030815B1 (en) High intensity medium manganese steel forming parts for warm stamping and manufacturing method for the same
CN108431272B (en) Steel sheet for low-temperature pressure vessel having excellent resistance to PWHT and method for producing same
KR20180072965A (en) Steel wire rod and steel wire having high toughness and method for manufacturing thereof
KR20210080239A (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
KR100967030B1 (en) High Tensile Steel for Deep Drawing and Manufacturing Method Thereof
JP4005517B2 (en) High-strength composite steel sheet with excellent elongation and stretch flangeability
KR20140055463A (en) Ultra-high strength cold-rolled steel sheet and method for manufacturing the same
CN113166901B (en) Chromium-molybdenum steel plate with excellent creep strength and preparation method thereof
KR101985777B1 (en) Medium manganese steel having super plasticity and manufacturing method for the same
KR101819383B1 (en) Quenched high carbon steel sheet and method for manufacturing the same
KR100415657B1 (en) METHOD FOR MANUFACTURING ULTRA-HIGH TENSILE STRENGTH STEEL HAVING 220 ksi CLASS YIELD STRENGTH
KR20100047015A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR102222244B1 (en) Martensit-based precipitation hardening type lightweight steel and manufacturing method for the same
JP3454869B2 (en) Spheroidizing annealing method of continuous annealing of high carbon steel sheet
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
KR100256332B1 (en) The manufacturing method for yield strength 220ksi super high strength steel
KR100363188B1 (en) A METHOD OF MANUFACTURING ULTRA HIGH STRENGTH STEEL WITH TENSILE STRENGTH 150kgf/㎟ GRADE
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
KR100325705B1 (en) Method of manufacturing high strength steel sheet
KR100340505B1 (en) A Method of Manufacturing Ultra high Strength Steel having Superior Toughness
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
KR960005222B1 (en) Making method of high nitrogen austenite stainless cold steel sheet
KR102498142B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR102498144B1 (en) Armored steel havinh high hardness and excellent low-temperature impact toughness and method for manufacturing thereof
KR100256330B1 (en) The manufacturing method for tensile strength 120kgf/mm2 high strength steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 13

EXPY Expiration of term