JPS62256468A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS62256468A
JPS62256468A JP61099978A JP9997886A JPS62256468A JP S62256468 A JPS62256468 A JP S62256468A JP 61099978 A JP61099978 A JP 61099978A JP 9997886 A JP9997886 A JP 9997886A JP S62256468 A JPS62256468 A JP S62256468A
Authority
JP
Japan
Prior art keywords
circuit
source
drain regions
parasitic
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099978A
Other languages
Japanese (ja)
Inventor
Yukio Ozawa
幸雄 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61099978A priority Critical patent/JPS62256468A/en
Publication of JPS62256468A publication Critical patent/JPS62256468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To constitute a delay circuit longer in delay time than the one using an inverter circuit in the same number of constituent cells by a method wherein gate electrodes and source and drain regions which are the constituent elements of each transistor at the internal region are each used as a resistor element and a capacitance element. CONSTITUTION:The parasitic resistance of each gate is connected in series with wirings L1-L4 and the parasitic capacities of each source and drain regions are connected in parallel. Accordingly, a resistor R shows the sum of the parasitic resistances between the terminals of the gate electrodes G1-G4 of each transistor and a capacity C shows the sum of the parasitic capacities of the source and drain regions P1-P3 and N1-N3 of each transistor. In case a passive circuit or an active circuit is thought as a delay element consisting of the same one cell, the passive circuit consisting of the parasitic resistances and the parasitic capacities is more efficient than the active circuit consisting of the transistors. By using each of the gate electrodes and the source and drain regions as an R element and a C element in such a way, a delay circuit more efficient than the one using an inverter circuit in a number of necessary cells can be made without providing a special element at the internal region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路に関し、特にその内部回路に遅
延回路を有する(、MO8ゲートアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit, and more particularly to an MO8 gate array having a delay circuit in its internal circuit.

〔従来の技術〕[Conventional technology]

一般的に、CMOSゲートアレイ構造の集積回路は内部
基本セルと外部I10セルにより構成されている。内部
基本セルは所望の論理機能を得る為の単位素子の集まシ
であシ、外部I10セルは集積回路内とその外部との論
理レベルの変換回路や、駆動能力補強の為のバッファを
構成する為の素子群である。
Generally, an integrated circuit with a CMOS gate array structure is composed of an internal basic cell and an external I10 cell. The internal basic cell is a collection of unit elements to obtain the desired logic function, and the external I10 cell constitutes a logic level conversion circuit between the inside and outside of the integrated circuit and a buffer for reinforcing the driving capacity. This is a group of elements for

第4図にCMOSゲートアレイ内部基本セルの構造の一
例を示す。Pチャンネルトランジスタ(Pch  Tr
)のソース・ドレイン領域PL、P2゜P3ri回路上
の必要に応じてソース又はドレイン領域のどちらとして
も使用できる。それら領域間を分ける形でゲート電極G
l、G2が置かれ、実効的なトランジスタ動作をするチ
ャネル領域TI。
FIG. 4 shows an example of the structure of a basic cell inside a CMOS gate array. P-channel transistor (Pch Tr)
) source/drain regions PL, P2.degree.P3ri can be used as either source or drain regions as required on the circuit. A gate electrode G is formed to separate those regions.
1, G2 are placed and the channel region TI performs an effective transistor operation.

T2が形成される。同様にNチャンネルトランジスタ(
Nch  T’r)もソース・ドレイン領域Nl。
T2 is formed. Similarly, N-channel transistor (
Nch T'r) is also the source/drain region Nl.

N2.N3及びゲート電極G3.G4で構成され、チャ
ンネル領域T3.T4が形成される。各ゲート電極の両
端は接続端子が形成できる様に幅広に形成されている。
N2. N3 and gate electrode G3. G4, and a channel region T3. T4 is formed. Both ends of each gate electrode are formed wide so that connection terminals can be formed.

以上の様な基本内部セルがチリプ上の内部領域に複数個
アレイ状に配置され、それら相互を配線パターンで結線
することにより所望の論理機能を得ることができる。
A plurality of basic internal cells as described above are arranged in an array in the internal region of the chip, and a desired logic function can be obtained by interconnecting them with a wiring pattern.

上記基本セル構造例も含め、一般のゲートアレイの内部
基本セルの構成は、チップナイズとの相関の大きいセル
占有面積の制約、コンピュータによる自動設計との契合
性を踏まえ、その製造プロセス上で考えられる最も高速
の回路動作が実現できる様配慮されている。
The configuration of the internal basic cells of general gate arrays, including the basic cell structure example above, is designed based on the manufacturing process, taking into account constraints on cell occupation area, which has a strong correlation with chip size, and compatibility with computer-based automatic design. Consideration has been given to achieving the fastest circuit operation possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した様な内部基本セルの7レイ上にて遅延回路を構
成する場合、従来の手法としてインバータ回路を多数段
連ねることにより遅延機能をもたせていた。しかしなが
ら単位インバータ回路の動作速度が早い場合、所望の遅
延時間を得る為には多数の内部基本セルを資すことにな
シ、内部領域の有効利用の大きな妨げとなる。
When constructing a delay circuit on the seven lays of internal basic cells as described above, the conventional method is to provide a delay function by arranging multiple stages of inverter circuits. However, when the operating speed of the unit inverter circuit is high, it is necessary to use a large number of internal basic cells to obtain a desired delay time, which greatly hinders effective use of the internal area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は以上の問題点を解決するものであシ、内部領域
内の基本セルを構成するトランジスタの、ゲート電極を
抵抗素子とし、ソース又はドレイン領域を容量素子とし
て使用した遅延回路を含むものである。
The present invention is intended to solve the above problems, and includes a delay circuit in which the gate electrode of a transistor constituting a basic cell in an internal region is used as a resistance element, and the source or drain region is used as a capacitance element.

本発明の半導体集積回路は、MOS トランジスタよシ
成る基本セルがプレイ状に配置される内部領域を有し、
前記基本セルアレイの一部のMOSトランジスタのゲー
ト電極を抵抗素子としソース又はドレイン領域を容量素
子とした回路を含むことを特徴とする。
The semiconductor integrated circuit of the present invention has an internal region in which basic cells consisting of MOS transistors are arranged in a play shape,
The present invention is characterized in that it includes a circuit in which the gate electrodes of some MOS transistors in the basic cell array are resistive elements and the source or drain regions are capacitive elements.

〔実施例〕〔Example〕

以下本発明について図面を参照して説明する。 The present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例の平面図である。Pチャンネ
ルトランジスタのソース・ドレイン領域PL 、P2 
、P3と、Nチャンネルトランジスタのソース・ドレイ
ン領域Nl 、N2 、N3及びゲート電極Gl、G2
.G3.G4は第2図と同様に各トランジスタの構成要
素を示している。さらに第1図では配#Lo 、Ll、
Lz 、L3 、L4が各ゲート電極及びソース・ドレ
イン領域を接続している状態を表わしている。
FIG. 1 is a plan view of one embodiment of the present invention. P-channel transistor source/drain region PL, P2
, P3, source/drain regions Nl, N2, N3 of N-channel transistors and gate electrodes Gl, G2
.. G3. G4 indicates the constituent elements of each transistor as in FIG. Furthermore, in FIG. 1, the wiring #Lo, Ll,
This shows a state in which Lz, L3, and L4 connect each gate electrode and source/drain region.

第2図は第1図の等価回路である。第1図での配線IJ
I−L、aは各ゲートの寄生抵抗を直列に接続し、各ノ
ース・ドレイン領域の寄生容量を並列に接続している。
FIG. 2 is an equivalent circuit of FIG. 1. Wiring IJ in Figure 1
I-L,a connects the parasitic resistance of each gate in series, and connects the parasitic capacitance of each north drain region in parallel.

従って第2図に示す抵抗Rは各トランジスタのゲート電
極Gl、G2.G3.G4の端子間の寄生抵抗の和を示
し、容量Cは各トランジスタのソース・ドレイン領域P
I、P2゜P3 、Nl、Nz、N3の寄生容量の和を
示す。
Therefore, the resistor R shown in FIG. 2 is connected to the gate electrodes Gl, G2 . G3. Indicates the sum of parasitic resistance between the terminals of G4, and the capacitance C is the source/drain region P of each transistor.
It shows the sum of the parasitic capacitances of I, P2°P3, Nl, Nz, and N3.

ゲート電極の材質をポリシリコン、ソース・ドレイン領
域を一般の不純物拡散により形成した場合、素子寸法に
もよるが、抵抗Rの値は〜10”Ω、容貴Cの値は〜I
ff″13Fのオーダーにもなる。
When the material of the gate electrode is polysilicon and the source/drain regions are formed by general impurity diffusion, the value of resistance R is ~10''Ω and the value of resistance C is ~I, although it depends on the device dimensions.
You can also order ff″13F.

第2図に示す様な等価回路で例えばR−=5にΩ。For example, in an equivalent circuit as shown in Fig. 2, Ω is set to R-=5.

c=o、spF’の場合、時定数CRti2.5nse
cにもなる。一方、同じ基本セルでインバータを構成し
た場合、入出力間の遅延時間はIns以下である。
When c=o, spF', time constant CRti2.5nse
It also becomes c. On the other hand, when an inverter is configured with the same basic cells, the delay time between input and output is less than Ins.

CRによって定まる時定数と、インバータの遅延時間と
では定義が弱干異なるが、同じ一セルによる遅延素子と
して考えた場合、寄生抵抗及び寄生容量による受動回路
の方がトランジスタによる能動回路よシはるかに効率が
よい0  ゛この様にゲート電極、ノース・ドレイン領
域を各々几・C素子として使用することにより、内部領
域に特殊な素子を設けることなく、インバータ回路よシ
必要セル数の上で効率のよい遅延回路をりくることがで
きる。
The definition of the time constant determined by CR and the delay time of an inverter is slightly different, but when considered as a delay element using the same cell, a passive circuit using parasitic resistance and capacitance is much more effective than an active circuit using transistors. 0 ゛By using the gate electrode and the north drain region as a C element in this way, the efficiency can be improved in terms of the number of cells required for the inverter circuit without providing special elements in the internal region. You can create a good delay circuit.

第3図はさらに大きな遅延時間を得る為の本発明の応用
回路例である。第1図のCR接続を多数のセルにわたっ
て実施すれば、遅延時間本大きくできるが、この場合、
出力波形上での、High−Lowの中間レベルを維持
する時間も長くなシ、PチャンネルトランジスタとNチ
ャンネルトランジスタとの同時オンによる貫通電流が多
く流れてしまう。従って図の様にC@Rによる遅延回路
の中間に通常のCMOSバ、ファBl、B2を組み入れ
て波形成形を行なうことにより貞通電流の少ない、よシ
安定した遅延回路となる。
FIG. 3 is an example of an applied circuit of the present invention for obtaining a larger delay time. If the CR connection in Fig. 1 is implemented over a large number of cells, the delay time can be increased, but in this case,
It takes a long time to maintain the intermediate level between High and Low on the output waveform, and a large amount of through current flows due to simultaneous ON of the P-channel transistor and the N-channel transistor. Therefore, as shown in the figure, by incorporating a normal CMOS bus, B1, and B2 in the middle of a delay circuit using C@R and performing waveform shaping, a highly stable delay circuit with less cross current can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、内部領域のトランジスタの
構成要素であるゲート電極、ソース・ドレイン領域を各
々抵抗、容量素子として使用することにより、同一構成
セル数で、インバータ回路によるものよシバるかに遅延
時間の長い遅延回路を構成することができ、セル使用効
率の高いゲートアレイ設計に大きな効果をもたらすもの
である0
As explained above, the present invention uses the gate electrode and source/drain regions, which are the constituent elements of the transistor in the internal region, as resistors and capacitors, respectively, so that it is superior to the inverter circuit with the same number of cells. It is possible to construct a delay circuit with a very long delay time, and it has a great effect on gate array design with high cell usage efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面概略図、第2図は
第1図の等価回路図、第3図は本発明の応用例の等価回
路図、第4図riCMOSゲートアレイの内器基本セル
の一例を示す平面概略図であるO PI、P2.P3・・・・・・Pチャンネルトランジス
タのソース・ドレイン領JiLN1.N2.N3・・・
・・・Nチャンネルトランジスタのソース・ドレイン領
域、Gl、G2.G3.G4・・・・・・ゲート電極、
T1.T2.T3.T3・・・・・・チャンネル領域、
几。 R1、Rz 、R3・・・・・・抵抗、C,CI、C2
,C3・・・・・・容量、LO、Ll 、L2 、L3
 、L4・・・・・・配m、Bx、Bz・・・・・・C
MOSバッファー。 代理人 弁理士  内 原   “ ・日、 パ )? l、 l?’、Fe2 :象技(ケーと電々)盗
ち 3 区    CI、CZ、C3: N/’ノース
・園ンイ漬坏°)F3L52. −CMO5ハ”yファ
ー葛4図
FIG. 1 is a schematic plan view showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of FIG. 1, FIG. 3 is an equivalent circuit diagram of an application example of the present invention, and FIG. OPI, P2. P3...Source/drain region of P channel transistor JiLN1. N2. N3...
. . . Source/drain regions of N-channel transistors, Gl, G2 . G3. G4...Gate electrode,
T1. T2. T3. T3...channel area,
几. R1, Rz, R3...Resistance, C, CI, C2
, C3...Capacity, LO, Ll, L2, L3
, L4...m, Bx, Bz...C
MOS buffer. Agent Patent Attorney Uchihara "・Japanese, Pa)? l, l?', Fe2: Elephant Techniques (K and Electric) Theft 3 Wards CI, CZ, C3: N/'North, Sono-Ni Pickling °) F3L52 .-CMO5 H”y Fur Kuzu 4 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)MOSトランジスタより成る基本セルがアレイ状
に配置される内部領域を有し、前記基本セルアレイの一
部のMOSトランジスタのゲート電極を抵抗素子としソ
ース又はドレイン領域を容量素子とした回路を含むこと
を特徴とする半導体集積回路。
(1) It has an internal region in which basic cells made of MOS transistors are arranged in an array, and includes a circuit in which the gate electrodes of some of the MOS transistors in the basic cell array are resistive elements and the source or drain regions are capacitive elements. A semiconductor integrated circuit characterized by:
(2)前記抵抗素子及び容量素子により構成された回路
が遅延回路であることを特徴とする特許請求の範囲第1
項記載の半導体集積回路。
(2) Claim 1, characterized in that the circuit constituted by the resistive element and the capacitive element is a delay circuit.
Semiconductor integrated circuit described in Section 1.
JP61099978A 1986-04-28 1986-04-28 Semiconductor integrated circuit Pending JPS62256468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099978A JPS62256468A (en) 1986-04-28 1986-04-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099978A JPS62256468A (en) 1986-04-28 1986-04-28 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62256468A true JPS62256468A (en) 1987-11-09

Family

ID=14261756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099978A Pending JPS62256468A (en) 1986-04-28 1986-04-28 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62256468A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135745A (en) * 1983-01-24 1984-08-04 Hitachi Ltd Semiconductor integrated circuit device
JPS6018932A (en) * 1983-07-12 1985-01-31 Seiko Epson Corp Semiconductor device
JPS6124247A (en) * 1984-07-12 1986-02-01 Sanyo Electric Co Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135745A (en) * 1983-01-24 1984-08-04 Hitachi Ltd Semiconductor integrated circuit device
JPS6018932A (en) * 1983-07-12 1985-01-31 Seiko Epson Corp Semiconductor device
JPS6124247A (en) * 1984-07-12 1986-02-01 Sanyo Electric Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPH03114256A (en) Semiconductor storage device
JPH07130879A (en) Semiconductor storage device
JPH0661452A (en) Semiconductor device
JP3771283B2 (en) Semiconductor integrated circuit device
JPH0375899B2 (en)
JPS6157710B2 (en)
US4742019A (en) Method for forming aligned interconnections between logic stages
JPS62256468A (en) Semiconductor integrated circuit
JPS61248551A (en) Cmos structure cell
US4984058A (en) Semiconductor integrated circuit device
JPS59121853A (en) Semiconductor device
JPS59175748A (en) Semiconductor integrated circuit device
JPH02188023A (en) Output buffer circuit
JPS6012751A (en) Semiconductor integrated circuit
JPH03217055A (en) Semiconductor integrated circuit device
JPS63217820A (en) Cmos delay circuit
JPS5844741A (en) Semiconductor integrated circuit
JPH03116867A (en) Semiconductor integrated circuit device
JPS61212118A (en) Coincidence detecting circuit
US20040032008A1 (en) Circuit configuration for setting the input resistance and the input capacitance of an integrated semiconductor circuit chip
JP3004921B2 (en) Semiconductor storage device
JPS63124615A (en) Logic integrated circuit
JP2519889Y2 (en) Semiconductor integrated circuit device
JPS6272143A (en) Pattern formation of semiconductor integrated circuit
JPH0246767A (en) Semiconductor integrated circuit of gate array system