JPS62256412A - Permanent magnet with prominent resistance to oxidation - Google Patents

Permanent magnet with prominent resistance to oxidation

Info

Publication number
JPS62256412A
JPS62256412A JP61099753A JP9975386A JPS62256412A JP S62256412 A JPS62256412 A JP S62256412A JP 61099753 A JP61099753 A JP 61099753A JP 9975386 A JP9975386 A JP 9975386A JP S62256412 A JPS62256412 A JP S62256412A
Authority
JP
Japan
Prior art keywords
elements
oxidation
magnetic
powders
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61099753A
Other languages
Japanese (ja)
Other versions
JP2546989B2 (en
Inventor
Tsutomu Otsuka
努 大塚
Etsuo Otsuki
悦夫 大槻
Kinya Sasaki
佐々木 欣也
Teruhiko Fujiwara
照彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP61099753A priority Critical patent/JP2546989B2/en
Publication of JPS62256412A publication Critical patent/JPS62256412A/en
Application granted granted Critical
Publication of JP2546989B2 publication Critical patent/JP2546989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Abstract

PURPOSE:To improve characteristics and resistance to oxidation of a permanent magnet by carrying out a chemical conversion coating treatment for the permanent magnet which is obtained by performing a hot pressure formation of mixed powders or pressed green compacts consisting of magnetic powders and non-magnetic metal powders where phases of R2Fe14B are treated as the main phases. CONSTITUTION:The surface of permanent magnet of R2Fe14B-M systems is coated with a chemical conversion coating of resistance to oxidation, where such a magnet is obtained by forming mixed powders or their green compacts under hot pressure at the temperature range 300-1100 deg.C: among the mixed powders, one of which is alloy powders comprising the following distribution ratios shown by an atomic percentage; 10-20% R (R represents a rare earth element containing Y), 5-15% B as well as Fe ratios composed of remaining percentages and the other of which is powders of non-magnetic elements M having percentages shown by volume distribution ratios; 0-10% (0 is excl.). In such a case, M indicates a sort or two sorts or more of elements such as Zn, Al, S, In, Ga, Ge, Sn, Te, Cu, and Pb or compounds among these elements, alloys of the above and rare earth elements as well as alloys of the above elements and B. Thus the magnet improves its resistance to oxidation by decreasing R-rich phases in the magnet and providing resistance to oxidation maintained by chemical conversion coatings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はYを含む希土類元素(以下Rと略記する)とF
e 、 Bよシ成る金属間化合物及び非磁性元素Mよシ
成るR2Fe14B−M系磁石材料において、その耐酸
化性を改善したR2Fe14B−M系磁石材料に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a rare earth element containing Y (hereinafter abbreviated as R) and F
The present invention relates to an R2Fe14B-M based magnet material having improved oxidation resistance, which is composed of an intermetallic compound consisting of e and B and a non-magnetic element M.

〔従来技術〕[Prior art]

R−Fe−B系永久磁石の文献として、特開昭59−4
6008号公報や日本応用磁気学会、第35回研究会資
料(昭59年5月)などの焼結法によるもの、超急冷(
メルトスピニング法による)物質の焼鈍法によるもの(
特開昭60−100402 )、射出成形法及びボンド
磁石法によるもの(特開昭59−219904 )など
が挙げられる。これらの中で、焼結法による永久磁石が
最も高い磁気特性を有し、現在市販されているSm−C
o系磁石の代替として広がりつつある。
As a document on R-Fe-B permanent magnets, JP-A-59-4
Those using sintering methods such as Publication No. 6008 and Japan Society of Applied Magnetics, 35th Research Meeting Materials (May 1980), ultra-quenching (
by melt spinning method)) by annealing the material (
JP-A-60-100402), injection molding method and bonded magnet method (JP-A-59-219904). Among these, permanent magnets produced by sintering have the highest magnetic properties, and are currently commercially available Sm-C.
It is becoming popular as an alternative to o-based magnets.

この焼結法によるR−Fe−B系磁石は、R−Fe−B
系合金粉末成形体を常圧焼結法により得る方法であり、
その焼結法はSm−Co系永久磁石の製造で確立した技
術を、適用したものである。
The R-Fe-B magnet produced by this sintering method is made of R-Fe-B
This is a method of obtaining a compacted alloy powder by pressureless sintering method,
The sintering method is an application of technology established in the production of Sm--Co permanent magnets.

この常圧焼結法によpR−Fe−B系永久磁石を製造す
る場合、その緻密化は、高Nd相(液相)の出現に伴う
液相焼結によりて成される。それ故、焼結体中には磁性
相であり主相であるR2F814B相、非磁性相である
B富裕相、酸化物相の他に液相成分相であるR富裕相が
存在する。一般に本系磁石合金では、これら各相の存在
比に対応して磁石特性(特にBr e (BH)max
 )は変化する。現状のプロセスによシ得られる焼結体
中で、これら非磁性相の体積構成比は約10%以上であ
る。
When producing a pR-Fe-B permanent magnet by this pressureless sintering method, its densification is achieved by liquid phase sintering accompanied by the appearance of a high Nd phase (liquid phase). Therefore, in the sintered body, in addition to the R2F814B phase which is a magnetic phase and the main phase, the B-rich phase which is a non-magnetic phase, and the oxide phase, there is an R-rich phase which is a liquid phase component phase. In general, in this magnetic alloy, the magnetic properties (especially Bre (BH) max
) changes. In the sintered body obtained by the current process, the volume composition ratio of these non-magnetic phases is about 10% or more.

また、常圧焼結の場合には、充分な緻密化を得るために
は、液相成分を体積構成比で5%以上必要とするため、
常圧焼結によシ得られる磁石特性には限界がありた。さ
らにR−Fe−B系磁石の常圧焼結は900〜1200
℃という高温で行なわれるため。
In addition, in the case of pressureless sintering, in order to obtain sufficient densification, the liquid phase component needs to be at least 5% by volume;
There are limits to the magnetic properties that can be obtained by pressureless sintering. Furthermore, pressureless sintering of R-Fe-B magnets is 900 to 1200
This is because it is carried out at a high temperature of ℃.

収縮率が大きく、焼結体表面に変質相を生ずるため1寸
法精度による歩留シにも限界がある。
Since the shrinkage rate is large and an altered phase is produced on the surface of the sintered body, there is a limit to the yield achieved by one dimensional accuracy.

〔従来技術の問題点〕[Problems with conventional technology]

この焼結法によるR−Fe−B系永久磁石は、大気中で
極めて酸化し易い希土類元素やFeを含有し、特に金属
組織中にR富裕相が存在するため、このR−Fe−B系
磁石と磁気回路などの装置に組込んだ場合磁石の酸化に
よる特性の劣化、バラツキが生ずる。又、磁石よシ発生
する酸化物の飛散による周辺部品への汚染の°問題があ
った。これら耐食性改善の文献として特開昭60−63
903号公報などが挙げられる。これら文献には焼結し
て得られたR−Fe−B系磁石表面に耐酸化性の化成皮
膜を形成することについて述べである。しかしながら、
この文献による耐酸化性改善においても、その処理工程
中に多量の水を使用するため、処理工程中に特にR富裕
相が酸化する恐れがあシ耐酸化性が充分とは言い難い。
The R-Fe-B permanent magnet produced by this sintering method contains rare earth elements and Fe, which are extremely easily oxidized in the atmosphere, and in particular there is an R-rich phase in the metal structure. When a magnet is incorporated into a device such as a magnetic circuit, oxidation of the magnet causes deterioration and variation in characteristics. Additionally, there was the problem of contamination of surrounding parts due to scattering of oxides generated by the magnet. As a document on improving corrosion resistance, JP-A-60-63
For example, Publication No. 903 may be mentioned. These documents describe the formation of an oxidation-resistant chemical conversion film on the surface of an R-Fe-B magnet obtained by sintering. however,
Even in the improvement of oxidation resistance according to this document, since a large amount of water is used during the treatment process, there is a risk that the R-rich phase in particular may be oxidized during the treatment process, and the oxidation resistance cannot be said to be sufficient.

すなわち2本来化成皮膜の持つ耐酸化性をR−Fe−B
系磁石に付与することは極めて困難であった。
In other words, the oxidation resistance of the chemical conversion coating is R-Fe-B.
It was extremely difficult to apply it to magnets.

本発明は、これら問題点を解決するもので、その目的は
The present invention solves these problems, and its purpose is to:

l)非磁性金属結合相量の低減による特性向上の持つ耐
酸化性を付与することによる磁石の耐酸化性の向上 を実現した磁石材料を提供することにある。
l) It is an object of the present invention to provide a magnet material that achieves improved oxidation resistance of a magnet by imparting the oxidation resistance that improves properties by reducing the amount of non-magnetic metal binding phase.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため9本発明はR−re−B基磁性
粉末と2体積構成比で0〜10%(0は含まず)の非磁
性金属粉末との混合粉末またはその成形体を熱間加圧成
形することを特徴とする。ここで非磁性金属は、粉末、
あるいは磁性粉末への物理及び化学的表面被覆層のいず
れでもよい。また。
In order to achieve the above object, the present invention produces a mixed powder of an R-re-B-based magnetic powder and a non-magnetic metal powder of 0 to 10% (not including 0) by volume, or a molded product thereof. It is characterized by pressure molding. Here, the non-magnetic metal is powder,
Alternatively, it may be a physical or chemical surface coating layer on the magnetic powder. Also.

熱間加圧成形は、いわゆるホットプレス、熱間静水圧プ
レス、押し出しのいずれでも可能であるが。
Hot pressing can be done by any of the so-called hot pressing, hot isostatic pressing, and extrusion.

製品寸法精度の点よシホットプレス、押し出しが適して
いる。
In terms of product dimensional accuracy, hot press and extrusion are suitable.

すなわち2本発明では 1)非磁性金属を用いて、加圧成形することによる緻密
化の促進 2)磁性粒子を滑らかな界面で包み込むことによる磁石
の高保磁力化 3)熱間加圧成形を用いることによシ非磁性相の流動及
び磁性相の塑性変形を利用した非磁性相化成皮膜が本来
′持っている耐酸化性を磁石製品に付与することによる
耐食性の向上 以上の機能によシ製品寸法精度が高く、高い磁石特性を
有し、しかも耐酸化性に優れた磁石材料を提供すること
ができる。
In other words, in the present invention, 1) using a non-magnetic metal, densification is promoted by pressure forming; 2) magnetic particles are wrapped in a smooth interface to increase the coercive force of the magnet; 3) hot pressure forming is used. In particular, the non-magnetic phase chemical conversion coating, which utilizes the flow of the non-magnetic phase and the plastic deformation of the magnetic phase, has a function that goes beyond improving corrosion resistance by imparting the oxidation resistance originally possessed to magnetic products. It is possible to provide a magnetic material with high dimensional accuracy, high magnetic properties, and excellent oxidation resistance.

本発明が適用される永久磁石材料は、一般式%式%(1
) で示されるが、ここで式中のRはYを含む希土類元素の
うち、一種又は二種以上が用いられる。また(1)式に
おいて。
The permanent magnet material to which the present invention is applied has the general formula % formula % (1
) Here, R in the formula is one or more rare earth elements including Y. Also, in equation (1).

0.65≦X≦0.85 、0.05≦y≦0.15.
0(t≦10である。Feの量が多すぎるとBrは向上
するもののHcは極端に低下し、少なすぎるとBrの低
下によ!D (BH)m、xは減少するため、0.65
≦X≦0.85とした。Bは磁石特性の向上に著しい効
果をもたらすが、0.15を越えると特性劣化を生ずる
ため。
0.65≦X≦0.85, 0.05≦y≦0.15.
0 (t≦10. If the amount of Fe is too large, Br will improve but Hc will be extremely reduced; if it is too small, !D (BH)m,x will decrease due to the decrease in Br, so 0. 65
≦X≦0.85. B has a remarkable effect on improving the magnetic properties, but if it exceeds 0.15, the properties deteriorate.

005≦y≦0,15とした。また非磁性金属Mは量が
多すぎるとBrの低下が著しく2本発明の目的に合わな
いため1体積構成比で0(t≦10とする。(1)式で
示される磁石材料はR1−x−、Fe xB、の組成を
有する粉末と非磁性金属元素及び合金CM)粉末の混合
粉末、又は圧粉体を300〜1100℃の温度範囲にて
、5〜5000kg/crn2の圧力下で熱間加圧成形
を行うことによシ製造される。ここで熱間加圧成形時の
温度を300〜1100℃としたのは、300℃未満で
は成形体の充分な緻密化が図れず。
005≦y≦0,15. In addition, if the amount of non-magnetic metal M is too large, the Br will drop significantly.2 This is not suitable for the purpose of the present invention, so 1 volume composition ratio is set to 0 (t≦10.The magnet material represented by formula (1) is R1- A mixed powder of a powder having the composition of Manufactured by intermittent pressure molding. Here, the temperature during hot press molding was set at 300 to 1100°C, because if the temperature is lower than 300°C, sufficient densification of the molded product cannot be achieved.

1100℃以上ではR−Fe−B基磁性粒子の粒成長、
及びこの磁性相と非磁性元素又は合金との反応が顕著と
なり良好な磁石特性が得られないためである。
At 1100°C or higher, grain growth of R-Fe-B based magnetic particles,
This is because the reaction between this magnetic phase and the non-magnetic element or alloy becomes significant, making it impossible to obtain good magnetic properties.

また、熱間加圧成形圧力は5kg/ay+2未満では成
形体の充分な緻密化が図れないため5kvcrn2以上
とする必要がある。さらに、上記製法によシ製造された
磁石材料に耐酸化性を付与するために、化成処理を行う
。この化成処理は従来の工業上で用いている方法を用い
ればよく、リン酸亜鉛、リン酸マンガン等のリン酸塩処
理、クロム酸塩処理等の化成処理でよい。この化成被膜
の膜厚は、膜強度。
Further, if the hot pressing pressure is less than 5 kg/ay+2, sufficient densification of the molded product cannot be achieved, so it is necessary to set it to 5 kvcrn2 or more. Furthermore, in order to impart oxidation resistance to the magnet material manufactured by the above manufacturing method, a chemical conversion treatment is performed. This chemical conversion treatment may be performed by a conventional method used in industry, and may be a chemical conversion treatment such as a phosphate treatment using zinc phosphate or manganese phosphate, or a chromate treatment. The film thickness of this chemical conversion film is the film strength.

コスト面、耐食性の面よりリン酸塩皮膜の場合は5〜1
0μmが好ましく、クロム酸塩処理の場合は1〜5μm
が好ましい。
In the case of phosphate film, it is 5 to 1 in terms of cost and corrosion resistance.
0 μm is preferred, 1-5 μm in case of chromate treatment
is preferred.

また、これら化゛底皮膜の上に、樹脂等のコーティング
を行うことも可能である。
Furthermore, it is also possible to coat the bottom film with a resin or the like.

以下、その実施例について述べる。Examples thereof will be described below.

〈実施例−1〉 純度95%以上のNd−Fe−Bを用いて、アルゴン雰
囲気中で高周波加熱によ#)Nd、3Fe8.B6の組
成を有するNd2Fe14B相を主相とするインゴット
を得た。
<Example-1> Using Nd-Fe-B with a purity of 95% or more, Nd, 3Fe8. An ingot having a main phase of Nd2Fe14B having a composition of B6 was obtained.

次に、このインゴットを粗粉砕した後?−ルミルを用い
て、平均粒子径的4μmに湿式粉砕した。この粗粉末に
純度99.9%以上のkl粉末を5Fe1%の比率で加
え、?−ルミルにて均一分散混合した。
Next, after coarsely crushing this ingot? - Wet pulverization to an average particle size of 4 μm using Lumil. KL powder with a purity of 99.9% or more is added to this coarse powder at a ratio of 5Fe1%, and ? - Uniformly dispersed and mixed using Lumil.

得られた微粉末を20 kOe磁界中にて1. Ot/
cm2の圧力で成形後、真空中600℃前後の温度下で
1、o t7cv?の圧力で15分間ホットプレスした
。次に、上記方法により得られた磁石材料より]、 O
+o+X 10+o+X8+mの試験片を切り出し、リ
ン酸マンガ゛ン、リン酸亜鉛、クロム酸塩処理を行った
The obtained fine powder was heated in a 20 kOe magnetic field for 1. Ot/
After molding at a pressure of cm2, it was molded in a vacuum at a temperature of around 600°C for 1,000 t7cv? Hot pressing was carried out for 15 minutes at a pressure of . Next, from the magnet material obtained by the above method], O
+o+X 10+o+X8+m test pieces were cut out and treated with manganese phosphate, zinc phosphate, and chromate.

これら化成処理膜の膜厚を測定したところリン酸マンガ
ンで5〜7μm 、 IJン酸亜鉛で5〜9μm。
The thickness of these chemically treated films was measured and was 5 to 7 μm for manganese phosphate and 5 to 9 μm for IJ zinc phosphate.

クロム酸塩で2〜4μmであった。この試験片及び比較
のために上記ホットプレスにて得られた試料(リン酸塩
処理なし)と焼結法により得られたNd 1sF878
 B 7の組成を有する焼結磁石にリン酸マンガン処理
した試験片の磁石特性及びこれら試験片を、 5S−4
1板にアラルダイトAV−138(主剤)。
It was 2 to 4 μm for chromate. This test piece, the sample obtained by the above hot press (no phosphate treatment) for comparison, and Nd 1sF878 obtained by the sintering method.
5S-4
Araldite AV-138 (base ingredient) on one plate.

HV−998(硬化剤)(いずれも商品名)を用いて接
着した後、剪断加圧試験による接着強度試験結果を第−
表に示す。またこれら試験片を3時間の5%塩水噴霧試
験(JIS−Z−2371”) した結果を第二衣に示
す◇ 以下余日 第−表、第二衣によシ9本発明による磁石は。
After bonding using HV-998 (curing agent) (both trade names), the results of the adhesive strength test by shear pressure test were
Shown in the table. In addition, these test pieces were subjected to a 5% salt spray test (JIS-Z-2371'') for 3 hours, and the results are shown in Table 2.

耐酸化性に優れておシ、さらに高い磁石特性を有してい
ることがわかる。
It can be seen that it has excellent oxidation resistance and even higher magnetic properties.

〔発明の効果〕〔Effect of the invention〕

以上述べたように2本発明によれば、 R2Fe14B
相を主相とする磁性粉末と、非磁性金属粉末よシ得られ
る混合粉末又は圧粉体を熱間加−圧成形を行い得られる
磁石に、耐酸化性に優れた化成処理を行うことによフ従
来の焼結法によシ得られるR−Fe−B系磁石よりも高
い磁石特性を有し耐酸化性に優れた永久磁石を得ること
ができる。
As described above, according to the present invention, R2Fe14B
By hot-pressing a mixed powder or green compact obtained from a magnetic powder whose main phase is magnetic powder and a non-magnetic metal powder, a chemical conversion treatment with excellent oxidation resistance is applied to the magnet obtained. It is possible to obtain a permanent magnet with higher magnetic properties and excellent oxidation resistance than R-Fe-B magnets obtained by conventional sintering methods.

さらに、従来の焼結法に比べ低温で成形体の緻密化が図
れ製品寸法精度向上が実現できるため。
Furthermore, compared to conventional sintering methods, it is possible to densify the compact at a lower temperature and improve product dimensional accuracy.

工業上きわめて有益である。It is extremely useful industrially.

Claims (1)

【特許請求の範囲】[Claims] (1)原子百分率で10〜20%のR(ここでRはYを
含む希土類元素)、5〜15%のB、残部Feより成る
合金粉末と、体積構成比で0〜10%(0は含まず)の
非磁性元素Mの粉末との混合粉末またはその成形体を3
00〜1100℃の温度下で、熱間加圧成形して得られ
るR_2Fe_1_4B−M系永久磁石(MはZn、A
l、S、In、Ga、Ge、Sn、Te、Cu、Pbの
一種又は二種以上の元素、又はこれら元素間の化合物、
これら元素と希土類元素との合金、及びこれら元素とB
との合金を示す。)の表面に耐酸化性化成皮膜を被覆し
てなることを特徴とする希土類−鉄系永久磁石。
(1) An alloy powder consisting of 10 to 20% R (here R is a rare earth element including Y) in atomic percentage, 5 to 15% B, and the balance Fe, and 0 to 10% in volume composition ratio (0 is Mixed powder with powder of non-magnetic element M (not containing) or a molded product thereof
R_2Fe_1_4B-M permanent magnet (M is Zn, A
one or more elements of l, S, In, Ga, Ge, Sn, Te, Cu, Pb, or a compound between these elements,
Alloys of these elements and rare earth elements, and these elements and B
It shows the alloy with. ) A rare earth-iron permanent magnet characterized by having its surface coated with an oxidation-resistant chemical conversion film.
JP61099753A 1986-04-30 1986-04-30 Permanent magnet with excellent oxidation resistance Expired - Fee Related JP2546989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099753A JP2546989B2 (en) 1986-04-30 1986-04-30 Permanent magnet with excellent oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099753A JP2546989B2 (en) 1986-04-30 1986-04-30 Permanent magnet with excellent oxidation resistance

Publications (2)

Publication Number Publication Date
JPS62256412A true JPS62256412A (en) 1987-11-09
JP2546989B2 JP2546989B2 (en) 1996-10-23

Family

ID=14255746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099753A Expired - Fee Related JP2546989B2 (en) 1986-04-30 1986-04-30 Permanent magnet with excellent oxidation resistance

Country Status (1)

Country Link
JP (1) JP2546989B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043558A1 (en) * 2003-10-31 2005-05-12 Tdk Corporation Method for producing sintered rare earth element magnet
JP2007173501A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Pressed powder magnet and rotating machine using it
EP1970924A1 (en) * 2007-03-16 2008-09-17 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2019096868A (en) * 2017-11-24 2019-06-20 Tdk株式会社 Magnet and motor using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063903A (en) * 1983-09-16 1985-04-12 Sumitomo Special Metals Co Ltd Permanent magnet superior in resistance to oxidation
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100402A (en) * 1983-08-04 1985-06-04 ゼネラル モ−タ−ズ コ−ポレ−シヨン Iron-rare earth element-boron permanent magnet by high temperature heat treatment
JPS6063903A (en) * 1983-09-16 1985-04-12 Sumitomo Special Metals Co Ltd Permanent magnet superior in resistance to oxidation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005043558A1 (en) * 2003-10-31 2005-05-12 Tdk Corporation Method for producing sintered rare earth element magnet
US8377233B2 (en) 2004-10-19 2013-02-19 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
JP4719568B2 (en) * 2005-12-22 2011-07-06 日立オートモティブシステムズ株式会社 Powder magnet and rotating machine using the same
JP2007173501A (en) * 2005-12-22 2007-07-05 Hitachi Ltd Pressed powder magnet and rotating machine using it
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US8420010B2 (en) 2006-04-14 2013-04-16 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
US7985303B2 (en) 2007-03-16 2011-07-26 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet and its preparation
EP1970924A1 (en) * 2007-03-16 2008-09-17 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnets and their preparation
US8025744B2 (en) 2007-03-16 2011-09-27 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet and its preparation
US8252123B2 (en) 2007-03-16 2012-08-28 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet and its preparation
US8277578B2 (en) 2007-03-16 2012-10-02 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet and its preparation
US8557057B2 (en) 2007-03-16 2013-10-15 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet and its preparation
JP2019096868A (en) * 2017-11-24 2019-06-20 Tdk株式会社 Magnet and motor using the same

Also Published As

Publication number Publication date
JP2546989B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
EP0249973B1 (en) Permanent magnetic material and method for producing the same
US20020043301A1 (en) Density enhanced, DMC, bonded permanent magnets
JPS62256412A (en) Permanent magnet with prominent resistance to oxidation
US20020036367A1 (en) Method for producing &amp; manufacturing density enhanced, DMC, bonded permanent magnets
US5905424A (en) Bonded magnet made from gas atomized powders of rare earth alloy
JPH0422010B2 (en)
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JP2779794B2 (en) Manufacturing method of rare earth permanent magnet
JPS62256413A (en) Permanent magnet with eminent resistance to oxidation
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JPS63254703A (en) Manufacture of rare earth permanent magnet with excellent anti-oxidation
JPH01111843A (en) Rare-earth permanent magnet material and its manufacture
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH08167513A (en) Bonded permanent magnet
EP0549149A1 (en) Rare-earth bonded magnet, material therefor and method for manufacturing a bonded magnet
JP2903403B2 (en) Permanent magnet with excellent corrosion resistance
JP3149549B2 (en) Rare earth bonded magnet manufacturing method
JP2940623B2 (en) Method for producing rare earth-B-Fe sintered magnet excellent in corrosion resistance and magnetic properties
JPH04354104A (en) Manufacture of rare earth bond magnet
JPH01105502A (en) Rare earth permanent magnet exhibiting high resistance to oxidation and manufacture thereof
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPH05129119A (en) Manufacture of granulated powder of rare earth magnet and resin bond magnet
JPH02298231A (en) Manufacture of rare earths-b-fe series sintered magnet having excellent corrosion resistance and magnetic characteristics

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees