JPH05129119A - Manufacture of granulated powder of rare earth magnet and resin bond magnet - Google Patents

Manufacture of granulated powder of rare earth magnet and resin bond magnet

Info

Publication number
JPH05129119A
JPH05129119A JP3290189A JP29018991A JPH05129119A JP H05129119 A JPH05129119 A JP H05129119A JP 3290189 A JP3290189 A JP 3290189A JP 29018991 A JP29018991 A JP 29018991A JP H05129119 A JPH05129119 A JP H05129119A
Authority
JP
Japan
Prior art keywords
powder
resin
magnet
rare earth
granulated powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3290189A
Other languages
Japanese (ja)
Inventor
Toru Inaguma
徹 稲熊
Hiroaki Sakamoto
広明 坂本
Toshio Mukai
俊夫 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3290189A priority Critical patent/JPH05129119A/en
Publication of JPH05129119A publication Critical patent/JPH05129119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To fill a die cavity with a compound uniformly and easily and to promote the densification of a compact at the time of the compression molding by using granulated powder, in the granulated powder compound which has been developed for the purpose of manufacturing efficiently a rare earth bond magnet having an excellent magnetic characteristic. CONSTITUTION:In granulated powder which is constituted of two rare earth magnet powders of the same kind with average grain diameter DA and DB (DA>=DB) respectively and resin, a solid resin coating is formed as the first layer and a solid resin coating is formed as the second layer around the surface of a core powder A and the plurality of powders B are attached to the surface of the liquid resin coating. Since this granulated powder has an excellent fluidity, a narrow die cavity can be easily filled with this powder. At the time of compression molding, a space formed between large magnet powder grains can be filled with small grains, and therefore a high-density compact can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−Co系、R−Fe
−B系およびR−Fe−N系(RはYおよび希土類金
属)で代表される希土類磁石に関するものである。
The present invention relates to R-Co type, R-Fe type
The present invention relates to a rare earth magnet represented by a —B system and an R—Fe—N system (R is Y and a rare earth metal).

【0002】[0002]

【従来の技術】磁石粉末をエポキシ樹脂等の有機物で結
合したものを樹脂ボンド磁石と称している。樹脂ボンド
磁石は、後加工無しで寸法精度の高い成形体が得られる
こと、および他部品との一体成形が可能であることか
ら、磁気特性が焼結磁石よりも低いにもかかわらず小型
モータを中心に多数搭載されている。特に、異方性ボン
ド磁石は等方性ボンド磁石に比べ優れた磁気特性を有す
ることから、今後の開発が期待されている。
BACKGROUND OF THE INVENTION Resin-bonded magnets are made by binding magnet powders with an organic material such as epoxy resin. Resin-bonded magnets can form compacts with high dimensional accuracy without post-processing, and can be integrally molded with other parts. Many are installed in the center. In particular, anisotropic bonded magnets have excellent magnetic properties as compared with isotropic bonded magnets, and therefore are expected to be further developed.

【0003】上述の希土類磁石粉末は次のR−Co系、
R−Fe−B系、R−Fe−N系(RはYおよび希土類
金属)などの合金系で得られる。
The rare earth magnet powder described above is based on the following R--Co system,
It can be obtained by an alloy system such as R-Fe-B system and R-Fe-N system (R is Y and a rare earth metal).

【0004】R−Co系磁石粉末は、SmCo5 ならび
にSm2Co17金属間化合物を主相とした合金を用いて
製造できる。SmCo5 系磁石粉末は適当な組成系で高
周波溶解等を用いて溶解し凝固させた後に、合金を微粉
砕して得られる。Sm2 Co17系磁石粉末は適当な組成
系を持つ合金に溶体化および時効処理を施した後、微粉
砕することによって得られる。
The R-Co magnet powder can be produced by using an alloy containing SmCo 5 and Sm 2 Co 17 intermetallic compounds as main phases. The SmCo 5 based magnet powder is obtained by melting and solidifying the SmCo 5 based magnet powder in a suitable composition system using high frequency melting or the like, and then finely pulverizing the alloy. The Sm 2 Co 17 magnet powder is obtained by subjecting an alloy having an appropriate composition system to solution treatment and aging treatment, and then finely pulverizing it.

【0005】磁気的に等方性のR−Fe−B系磁石粉末
は、Nd2 Fe14B金属間化合物を含む合金系で製造で
きる。代表的な製造方法は、単ロール液体急冷法によっ
て合金溶湯を超急冷するものである(特開昭59−64
739号、特開昭60−9852号公報)。
The magnetically isotropic R-Fe-B magnet powder can be produced by an alloy system containing an Nd 2 Fe 14 B intermetallic compound. A typical manufacturing method is to rapidly quench the molten alloy by a single roll liquid quenching method (JP-A-59-64).
739, JP-A-60-9852).

【0006】磁気的に異方性のR−Fe−B系磁石粉末
は上述した等方性の急冷粉末に塑性加工を施し、異方性
を付与することにより得られる。具体的な方法は、急冷
粉末をホットプレスによって合金の真密度に近い密度ま
で高めた後に、その成形体を再度熱間で据込み加工する
ものである(R.W.Lee,Appl.Phys.L
ett.46(8),15 April 1985,p
p790−791)。異方性粉末はこの据込み磁石を粉
砕することによって得られる。本出願人は先に、R−F
e−B系異方性粉末をより簡便に得る製造方法として、
上記の急冷粉末を金属製の容器に詰めて、容器と一緒に
熱間圧延する方法を提案した(特願平1−202675
号)。
The magnetically anisotropic R-Fe-B magnet powder is obtained by subjecting the above-mentioned isotropic quenched powder to plastic working to impart anisotropy. A specific method is to increase the density of the quenched powder to a density close to the true density of the alloy by hot pressing, and then hot set up the compact again (RW Lee, Appl. Phys. L
ett. 46 (8), 15 April 1985, p.
p790-791). An anisotropic powder is obtained by grinding this upset magnet. The applicant has previously proposed that the RF
As a production method for more easily obtaining an e-B anisotropic powder,
A method has been proposed in which the above-mentioned quenched powder is packed in a metal container and hot-rolled together with the container (Japanese Patent Application No. 1-220675).
issue).

【0007】R−Fe−N系磁石粉末は例えばSm2
17x (x=1〜3)金属間化合物を含む合金系を用
いて製造できる。Coeyらは適当な組成からなるSm
−Fe系合金を微粉砕した後、窒素雰囲気中で熱処理を
行い窒化することによって、磁石粉末が得られることを
報告している(J.M.D.Coey et al,P
ROCEEDINGS OF THE ELEVENT
H INTERNATIONAL WORKSHOP
ON RARE−EARTH MAGNETSAND
THEIR APPLICATIONS,Vol.2
editedby S.G.Sanker(CARNE
GIE MELLONUNIVERSITY,Pitt
sburgh,1990),pp36−59)。
R-Fe-N magnet powder is, for example, Sm 2 F
It can be produced using an alloy system containing an e 17 N x (x = 1 to 3) intermetallic compound. Coey et al. Have an appropriate composition of Sm.
It has been reported that magnet powder can be obtained by pulverizing an —Fe-based alloy, followed by heat treatment in a nitrogen atmosphere and nitriding (JMD Coey et al, P.
ROCEEDINGS OF THE ELEVENT
H INTERNATIONAL WORKSHOP
ON RARE-EARTH MAGNETSAND
THEIR APPLICATIONS, Vol. Two
edited by S. G. Banker (CARNE
GIE MELLONUNIVERSITY, Pitt
sburgh, 1990), pp36-59).

【0008】上記の希土類磁石粉末の成形方法として
は、磁石粉末にエポキシ等の樹脂を加え混練し、圧縮成
形する方法が一般的である。中でも異方性樹脂ボンド磁
石は異方性粉末を磁場中で圧縮成形することにより得ら
れる。例えばコンパウンドとして、SmCo5 系粉末ま
たはSm2 Co17系粉末と液体状の有機樹脂を混練した
ものを成形に用いると、高い密度の成形体が得られる
(例えば特開昭54−15415号公報)。
As a method for molding the above-mentioned rare earth magnet powder, a method is generally used in which a resin such as epoxy is added to the magnet powder, kneaded, and compression molded. Above all, the anisotropic resin bonded magnet is obtained by compression molding anisotropic powder in a magnetic field. For example, when a compound obtained by kneading SmCo 5 based powder or Sm 2 Co 17 based powder and a liquid organic resin as a compound is used for molding, a molded product having a high density can be obtained (for example, JP-A-54-15415). ..

【0009】また成形体の高密度化を実現する考え方と
して、T.Shimodaらは、磁石粉末粒子同士の間
に生じる空隙を小さな複数の粒子によって埋めることに
よって高密度化が可能であることを提案している(Th
e FourthInternational Wor
kshop on Rare Earth−Cobal
t Permanent Magnets and T
heir Applications,Hakone,
Japan,May 22−24 1979,335−
345)。
Further, as a concept for realizing a high density of the molded body, T. Shimoda et al. Have proposed that the density can be increased by filling the voids generated between magnet powder particles with a plurality of small particles (Th.
e Fourth International Wor
kshop on Rare Earth-Cobal
t Permanent Magnets and T
hair Applications, Hakone,
Japan, May 22-24 1979, 335-.
345).

【0010】[0010]

【発明が解決しようとする課題】本発明は、樹脂ボンド
永久磁石の形状の薄肉化および高密度化を容易に実現さ
せ、エレクトロニクス関連部品の小型化、軽量化、高性
能化に寄与するものである。
DISCLOSURE OF THE INVENTION The present invention makes it easy to reduce the thickness and density of a resin-bonded permanent magnet, and contributes to miniaturization, weight reduction, and high performance of electronic-related components. is there.

【0011】実際の磁石部品(例えば薄肉のリング磁
石)を圧縮成形法で生産性良く、高寸法精度で製造する
には、金型キャビティーヘコンパウンドを高速かつ均一
に充填できることが必須である。一方磁石特性は成形体
の密度に依存しているので、密度の高い成形体が望まれ
る。
In order to manufacture an actual magnet part (for example, a thin ring magnet) by a compression molding method with high productivity and high dimensional accuracy, it is essential to be able to uniformly and quickly fill the compound into the mold cavity. On the other hand, since the magnet characteristics depend on the density of the molded body, a molded body having a high density is desired.

【0012】液体状の樹脂と磁石粉末を混練したコンパ
ウンドは、密度の高い成形体は得られるが、流動性が非
常に低いのでコンパウンドをキャビティーへ均一に充填
できない。一方粉末状の樹脂と混合したコンパウンドで
は、流動性は著しく向上するが、成形体内部に空孔が残
存しやすいので高密度な成形体が得られない。
The compound obtained by kneading the liquid resin and the magnet powder can obtain a compact having a high density, but since the fluidity is very low, the compound cannot be uniformly filled in the cavity. On the other hand, in the case of a compound mixed with a powdery resin, the fluidity is remarkably improved, but since voids are likely to remain inside the molded product, a high-density molded product cannot be obtained.

【0013】本発明は、希土類磁石粉末を固体樹脂と液
体樹脂を用いて造粒したコンパウンドを提供することに
よって、コンパウンドのキャビティーへの充填性を向上
させると同時に、成形品の高密度化を実現するものであ
る。
The present invention provides a compound in which a rare earth magnet powder is granulated using a solid resin and a liquid resin, thereby improving the filling property of the compound into the cavity and at the same time increasing the density of the molded product. It will be realized.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とすること
は以下の通りである。すなわち、本発明は平均粒径がそ
れぞれDA およびDB で、DA ≧DB である同種の希土
類磁石粉末と樹脂から形成される造粒粉末において、核
となる粉末A粒子の表面に対して、固体樹脂の被膜が第
一層目にあり、液体樹脂の被膜が第二層目にあり、さら
にその表面に複数の粉末B粒子が付着している構造をと
ることを特徴とする造粒粉末である。上記の造粒粉末に
おいて、液体樹脂量を重量百分率で全樹脂量の20〜8
0%にすることはキャビティーへの磁石粉末の充填性お
よび成形体の高密度化にさらに有効な手段である。
The gist of the present invention is as follows. That is, in the present invention, the average particle diameter is D A and D B , respectively, and in the granulated powder formed of the same kind of rare earth magnet powder and D A ≧ D B and the resin, the surface of the powder A particle serving as the core is A solid resin coating is on the first layer, a liquid resin coating is on the second layer, and a plurality of powder B particles are attached to the surface of the coating. It is a powder. In the above granulated powder, the liquid resin amount is 20 to 8% by weight of the total resin amount.
Setting to 0% is a more effective means for filling the cavity with the magnet powder and increasing the density of the molded body.

【0015】また本発明は、平均粒径がそれぞれDA
よびDBで、DA ≧DB である同種の希土類磁石粉末と
樹脂を混合して成形する樹脂ボンド磁石の製造方法にお
いて、核となる粉末A粒子の表面に対して、第一層目に
固体樹脂の被膜を形成し、第二層目に液体樹脂の被膜を
形成し、さらにその表面に複数の粉末B粒子を付着させ
た造粒粉末を圧縮成形することを特徴とする樹脂ボンド
磁石の製造方法である。
Further, the present invention provides a method for producing a resin-bonded magnet, which comprises mixing a rare earth magnet powder of the same kind having a mean particle diameter of D A and D B and D A ≧ D B with a resin and molding the mixture. A solid resin coating film is formed on the first layer, a liquid resin coating film is formed on the second layer, and a plurality of powder B particles are attached to the surface of the powder A particles. A method for producing a resin-bonded magnet, which comprises compression-molding granular powder.

【0016】[0016]

【作用】本発明者らは、希土類磁石粉末と混練する樹脂
に液体樹脂と固体樹脂を合わせて用いることによって、
プレス成形品の高密度化が可能で、優れた充填性を持つ
造粒粉末が得られることを見いだした。
The inventors of the present invention use the liquid resin and the solid resin in combination with the resin to be kneaded with the rare earth magnet powder,
It was found that a press-molded product can be densified and a granulated powder having excellent filling properties can be obtained.

【0017】すなわち核となる磁石粉末表面に固体樹
脂、液体樹脂の順番で被膜を形成させ、その表面に核粒
子に比較して小さな寸法を持つ粉末粒子を付着させた造
粒粉末が本発明である。
That is, the present invention is a granulated powder in which a coating film is formed in the order of a solid resin and a liquid resin on the surface of a magnet powder serving as a core, and powder particles having a smaller size than the core particles are attached to the surface. is there.

【0018】この造粒粉末はそれぞれの造粒粉末同士が
付着しないので流動性に優れる。また成形時に大きな磁
石粉末粒子同士の間にできる空隙を小さな粒子で埋める
ことができるので、高い密度の成形体が得られる。
This granulated powder has excellent fluidity because the granulated powders do not adhere to each other. In addition, since voids formed between large magnet powder particles during molding can be filled with small particles, a compact having a high density can be obtained.

【0019】本発明によって作られる磁石は、高性能で
低価格になりうるという可能性から、小型モータ等各種
アクチュエータの磁石部品として広範および大量に使用
されることが期待される。
The magnets produced by the present invention have the possibility of high performance and low cost, and are therefore expected to be used widely and in large quantities as magnet parts for various actuators such as small motors.

【0020】以下、本発明の詳細について記す。希土類
磁石粉末と混練する樹脂には次のようなものを用いる。
液体樹脂には熱硬化性樹脂を用いるが、特に寸法安定
性、耐湿,耐薬品性に優れ、機械特性の優れたエポキシ
樹脂が最も有効である。また樹脂の粘性は特に限定しな
いが、表面に磁石粉末Bが付着し易いことが望まれる。
固体樹脂は熱可塑性または熱硬化性の樹脂が使用され
る。
The details of the present invention will be described below. The following is used as the resin to be kneaded with the rare earth magnet powder.
A thermosetting resin is used as the liquid resin, and an epoxy resin having excellent dimensional stability, moisture resistance, chemical resistance and mechanical properties is most effective. The viscosity of the resin is not particularly limited, but it is desired that the magnet powder B easily adheres to the surface.
As the solid resin, a thermoplastic or thermosetting resin is used.

【0021】まず粒度分布の異なる磁石粉末A,Bのう
ち粒径の大きな粉末A粒子の表面に固体樹脂で被膜を形
成する。この被膜の形成は磁石粉末Aと適量の固体樹脂
を溶かし込んだ有機溶剤を混合し、その後有機溶剤のみ
を揮発させることによって行う。次に液体樹脂を適量混
合し表面に塗布する。その後所定の重量比率の磁石粉末
Bを混合し造粒を行う。この造粒はボールミルなどを用
いると効率的である。図1(a),(b),(c)に従
来技術と本発明技術による磁石粉末を取り囲む樹脂の状
態の違いを模式的に示した。(a)は液体樹脂のみを用
いた場合であるが、液体樹脂が磁石粉末同士を接着する
ので、このコンパウンドの流動性は悪い。粉末樹脂のみ
を混練した様子を(b)に示した。このコンパウンドで
は磁石粉末同士が分離しているので、流動性は高い。し
かしこのコンパウンドを用いた成形体では空孔が生じ易
く、成形体の高密度化が困難である。
First, a coating of solid resin is formed on the surface of powder A particles having a large particle size among magnet powders A and B having different particle size distributions. This coating is formed by mixing the magnet powder A and an organic solvent in which an appropriate amount of solid resin is dissolved, and then volatilizing only the organic solvent. Next, an appropriate amount of liquid resin is mixed and applied to the surface. Thereafter, magnet powder B having a predetermined weight ratio is mixed and granulated. This granulation is efficient when using a ball mill or the like. 1 (a), 1 (b) and 1 (c) schematically show the difference in the state of the resin surrounding the magnet powder according to the prior art and the present invention. (A) shows the case where only the liquid resin is used, but since the liquid resin adheres the magnet powders to each other, the fluidity of this compound is poor. The state where only the powdered resin is kneaded is shown in (b). In this compound, magnet powders are separated from each other, so that the fluidity is high. However, in a molded product using this compound, voids are easily generated, and it is difficult to increase the density of the molded product.

【0022】一方(c)が本発明による造粒粉末の構造
である。それぞれの造粒粉末粒子同士は、磁石粉末Aを
磁石粉末Bが取り囲むのでお互いに接着しにくくなって
いる。すなわち造粒粉末の流動性は(a)に比べて優れ
ており、金型キャビティーへの充填は容易である。一方
液体樹脂の接着力で磁石粉末Bが磁石粉末Aを取り囲ん
でいるために、磁石粉末A同士の間に生じる空隙を粉末
Bで埋めることができるので、成形時に高密度化が効率
よく促進される。使用する磁石粉末の平均粒径は通常の
磁石部品の成形が可能な500μm以下が望ましい。ま
た磁石粉末が過度に細かく粉砕されると、成形による高
密度化が難しくなり、さらに工業的な取扱いが難しくな
るので、平均粒径は1μm以上が望ましい。
On the other hand, (c) is the structure of the granulated powder according to the present invention. Since each of the granulated powder particles surrounds the magnet powder A with the magnet powder B, it is difficult to adhere to each other. That is, the fluidity of the granulated powder is superior to that of (a), and it is easy to fill the mold cavity. On the other hand, since the magnet powder B surrounds the magnet powder A by the adhesive force of the liquid resin, the voids generated between the magnet powder A can be filled with the powder B, so that the densification can be efficiently promoted during molding. It The average particle size of the magnet powder used is preferably 500 μm or less, which allows molding of ordinary magnet parts. Further, if the magnet powder is pulverized excessively finely, it becomes difficult to increase the density by molding, and it becomes difficult to handle industrially. Therefore, the average particle diameter is preferably 1 μm or more.

【0023】造粒粉末を形成する二種の磁石粉末A,B
の粒径DA ,DB はDA ≧DB であることが必要であ
る。DA <DB の場合、粉末A粒子を複数のB粒子で取
り囲むことが難しく、流動性の高い造粒粉末が得られな
い。
Two types of magnet powders A and B forming granulated powder
It is necessary that the particle diameters D A and D B of D A ≧ D B. When D A <D B , it is difficult to surround the powder A particles with a plurality of B particles, and a granulated powder having high fluidity cannot be obtained.

【0024】磁石粉末に加える全樹脂量は、磁石粉末量
に対して重量百分率で1〜5%が一般的である。なぜな
ら、1%未満では樹脂量が少なく磁石粉末の結合が不十
分であり、5%を超えると成形磁石の密度が極度に低く
なるからである。
The total amount of resin added to the magnet powder is generally 1 to 5% in weight percentage with respect to the amount of magnet powder. This is because if it is less than 1%, the amount of resin is small and the binding of the magnet powder is insufficient, and if it exceeds 5%, the density of the molded magnet becomes extremely low.

【0025】液体樹脂の全樹脂量に対する重量百分率は
20%以上80%以下であることが望ましい。80%を
超える場合には、造粒粉末の流動性が著しく低下する。
20%未満の場合には、液体樹脂による粉末AとBの接
着力が不十分で造粒粉末の構造をとりにくい。その結
果、成形体の高密度化が困難である。
The weight percentage of the liquid resin with respect to the total amount of resin is preferably 20% or more and 80% or less. If it exceeds 80%, the fluidity of the granulated powder is significantly reduced.
When it is less than 20%, the adhesive force between the powders A and B by the liquid resin is insufficient and it is difficult to form the structure of the granulated powder. As a result, it is difficult to increase the density of the molded body.

【0026】[0026]

【実施例】実施例1 Nd−Fe−B系異方性磁石粉末を用いて実験を行っ
た。磁石粉末の組成は原子百分率でFe−14%Nd−
5%B−1%Cu(Nd14Fe805 Cu1 )である。
まず単ロール急冷法によって急冷粉末を作製した。異方
性化は上記急冷粉末を鉄製の容器に挿入し、内部を10
-3〜10-4torrに減圧し密封した後、700℃で熱間圧
延することによって行った。このようにして得た圧延材
に機械的な粉砕を施し、粒径が300μm以下の磁石粉
末を得た。その後ふるいによる分級を行い粉末A(30
0≧D(μm)≧150)と粉末B(D(μm)<15
0)を用意した。
Example 1 An experiment was conducted using Nd-Fe-B type anisotropic magnet powder. The composition of the magnet powder is Fe-14% Nd- in atomic percentage.
5% B-1% Cu (Nd 14 Fe 80 B 5 Cu 1 ).
First, a quenching powder was produced by the single roll quenching method. Anisotropy was achieved by inserting the above-mentioned quenched powder into an iron container and
The pressure was reduced to -3 to 10 -4 torr, sealed, and then hot-rolled at 700 ° C. The rolled material thus obtained was mechanically pulverized to obtain magnet powder having a particle size of 300 μm or less. After that, classification with a sieve is performed and powder A (30
0 ≧ D (μm) ≧ 150) and powder B (D (μm) <15
0) was prepared.

【0027】所定量の固体エポキシ樹脂をアセトンを溶
媒として粉末A粒子に均一に被膜を形成させた。それに
所定量の液体エポキシ樹脂を加え混練した。それに粉末
Bを加えて混合し造粒粉末を得た。ここで粉末Aの全磁
石粉末に対する重量百分率は50%にした。また全エポ
キシ樹脂の磁石粉末重量に対する百分率は3.0wt%に
固定した。
A predetermined amount of solid epoxy resin was used as a solvent to uniformly form a film on the powder A particles. A predetermined amount of liquid epoxy resin was added and kneaded. Powder B was added thereto and mixed to obtain granulated powder. Here, the weight percentage of the powder A with respect to the total magnet powder was 50%. The percentage of the total epoxy resin to the weight of the magnet powder was fixed at 3.0 wt%.

【0028】粉末の充填性は充填される磁石粉末のかさ
密度で表した。実験に用いた金型のキャビティーは幅が
2mmのスリット状で、充填深さは5mmに固定した。また
粉末を供給するフィーダは20cm/sec で移動しスリッ
ト上を幅方向に5往復させた。
The filling property of the powder is represented by the bulk density of the filled magnetic powder. The cavity of the mold used in the experiment was a slit with a width of 2 mm, and the filling depth was fixed at 5 mm. The feeder supplying the powder moved at 20 cm / sec and reciprocated 5 times in the width direction on the slit.

【0029】図2は固体エポキシ樹脂と液体エポキシ樹
脂の重量比率に対して、造粒粉末の充填性を示したもの
である。充填は5回行い、かさ密度のばらつきをエラー
バーで示した。優れた充填性は、かさ密度が大きいこと
と、そのばらつきが小さいことによって表される。また
これらのコンパウンドを成形圧力4 ton/cm2 で磁場中
で成形し、成形体の密度を測定した。
FIG. 2 shows the filling property of the granulated powder with respect to the weight ratio of the solid epoxy resin and the liquid epoxy resin. The filling was performed 5 times, and the variation in bulk density was indicated by an error bar. The excellent filling property is represented by the large bulk density and the small variation. Further, these compounds were molded in a magnetic field at a molding pressure of 4 ton / cm 2 , and the density of the molded body was measured.

【0030】図2に、固体エポキシ樹脂と液体エポキシ
樹脂の重量比率と成形体の密度および残留磁束密度(B
r)の関係を示した。液体エポキシのみを用いた場合に
はかさ密度が低く、またばらつきも大きいことから充填
性は劣っている。
FIG. 2 shows the weight ratio of the solid epoxy resin and the liquid epoxy resin, the density of the molded body and the residual magnetic flux density (B
The relationship of r) is shown. When only liquid epoxy is used, the bulk density is low and the dispersion is large, so the filling property is poor.

【0031】一方、固体エポキシ樹脂のみを用いた場合
には成形品の密度が低い。本発明のように液体エポキシ
樹脂と固体エポキシ樹脂を併用した造粒粉末は、充填時
のかさ密度が3g/cm3 程度で高いこと、およびばらつ
きが極めて小さいことから充填性に大変優れている。
On the other hand, the density of the molded product is low when only the solid epoxy resin is used. The granulated powder using both the liquid epoxy resin and the solid epoxy resin as in the present invention has a high bulk density of about 3 g / cm 3 at the time of filling, and has a very small variation, and therefore has excellent filling properties.

【0032】また、その造粒粉末を成形したときに得ら
れる密度も高い。固体エポキシ樹脂のみを使用した場合
には密度は5.6g/cm3 であるのに対し、造粒粉末で
は約5.9〜6.1g/cm3 の密度が得られた。成形品
のBrは固体樹脂を使用した場合には7.9kgである
が、造粒粉末では8.2〜8.5kgであった。
The density obtained when the granulated powder is molded is also high. The density was 5.6 g / cm 3 when only the solid epoxy resin was used, whereas the density of the granulated powder was about 5.9 to 6.1 g / cm 3 . The Br of the molded product was 7.9 kg when the solid resin was used, but was 8.2 to 8.5 kg for the granulated powder.

【0033】実施例2 等方性Nd−Fe−B系粉末を用いて、造粒粉末を成形
した。ここでは成形密度および残留磁束密度(Br)の
成形圧力依存性を調べた。等方性粉末は単ロール法を用
いて作製した超急冷粉末である。粉末粒径は150μm
以下であるが、ふるいで粉末A(150≧D(μm)≧
105)と粉末B(D(μm)<105)に分級した。
造粒は全樹脂量を磁石粉末重量に対して3.0wt%に固
定し、固体エポキシ樹脂と液体エポキシ樹脂を用いて実
施例1と同様な方法で行った。
Example 2 A granulated powder was molded using an isotropic Nd-Fe-B system powder. Here, the molding pressure dependence of the molding density and the residual magnetic flux density (Br) was investigated. The isotropic powder is a super-quenched powder produced using the single roll method. Powder particle size is 150 μm
As follows, powder A (150 ≧ D (μm) ≧
105) and powder B (D (μm) <105).
The granulation was performed in the same manner as in Example 1 using a solid epoxy resin and a liquid epoxy resin, with the total amount of resin fixed at 3.0 wt% with respect to the weight of the magnet powder.

【0034】ここで粉末Bの重量比率は全磁石粉末量に
対して50%である。また液体エポキシ樹脂と固体エポ
キシ樹脂の割合は1:1とした。
Here, the weight ratio of the powder B is 50% with respect to the total amount of the magnet powder. The ratio of liquid epoxy resin and solid epoxy resin was 1: 1.

【0035】図3には、成形圧力に対して得られた成形
体の密度およびBrを示した。同じ成形圧力で比較する
とき、本発明の造粒粉末を用いると、固体エポキシ樹脂
のみで被膜を形成したコンパウンドに比べて密度は0.
3〜0.5g/cm3 高く、Brは0.3〜0.5kg高
い。
FIG. 3 shows the density and Br of the obtained molded product with respect to the molding pressure. When compared at the same molding pressure, the density of the granulated powder of the present invention is 0.
It is 3 to 0.5 g / cm 3 higher and Br is 0.3 to 0.5 kg higher.

【0036】[0036]

【発明の効果】本発明の方法はこれまで困難であった樹
脂ボンド磁石の製造の改善に関するものである。本発明
方法によって優れた磁気特性と高い量産性を両立できる
ようになる。特に充填性の向上は肉厚の薄いリング磁石
などの製造が容易になるために、小型モータ等への磁石
の適用範囲が広くなり、産業上の価値が高い。
The method of the present invention relates to an improvement in the production of resin-bonded magnets, which has been difficult until now. The method of the present invention makes it possible to achieve both excellent magnetic properties and high mass productivity. In particular, the improvement of the filling property facilitates the manufacture of thin-walled ring magnets and the like, and thus the application range of the magnets to small motors and the like is widened, and the industrial value is high.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b),(c)は磁石粉末と樹脂を混
練した状態の模式図である。
1A, 1B, and 1C are schematic views of a state in which a magnet powder and a resin are kneaded.

【図2】固体エポキシ樹脂と液体エポキシ樹脂の重量比
率に対して、充填された造粒粉末のかさ密度と成形品の
密度および残留磁束密度(Br)を示した図表である。
FIG. 2 is a table showing the bulk density of the filled granulated powder, the density of the molded product, and the residual magnetic flux density (Br) with respect to the weight ratio of the solid epoxy resin and the liquid epoxy resin.

【図3】本発明の造粒粉末と、固体樹脂のみを被膜した
粉末をそれぞれ成形したときに得られる密度および残留
磁束密度(Br)の成形圧力依存性について示した図表
である。
FIG. 3 is a table showing the molding pressure dependence of the density and residual magnetic flux density (Br) obtained when molding the granulated powder of the present invention and the powder coated with only solid resin.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径がそれぞれDA およびDB で、
A ≧DB である同種の希土類磁石粉末と樹脂から形成
される造粒粉末において、核となる粉末A粒子の表面に
対して、固体樹脂の被膜が第一層目にあり、液体樹脂の
被膜が第二層目にあり、さらにその表面に複数の粉末B
粒子が付着している構造をとることを特徴とする希土類
磁石の造粒粉末。
1. An average particle size of D A and D B , respectively,
In a granulated powder formed from the same kind of rare earth magnet powder and resin having D A ≧ D B , a solid resin coating film is on the first layer on the surface of the powder A particle serving as a core, There is a coating on the second layer, and more than one powder B on the surface.
Granulated powder of a rare earth magnet, which has a structure in which particles are attached.
【請求項2】 液体樹脂量が重量百分率で全樹脂量に対
して20〜80%であることを特徴とする請求項1記載
の希土類磁石の造粒粉末。
2. The granulated powder of a rare earth magnet according to claim 1, wherein the liquid resin amount is 20 to 80% in weight percentage with respect to the total resin amount.
【請求項3】 平均粒径がそれぞれDA およびDB で、
A ≧DB である同種の希土類磁石粉末と樹脂から形成
される樹脂ボンド磁石の製造方法において、核となる粉
末A粒子の表面に対して、第一層目に固体樹脂の被膜を
形成し、第二層目に液体樹脂の被膜を形成し、さらにそ
の表面に複数の粉末B粒子を付着させた造粒粉末を圧縮
成形することを特徴とする樹脂ボンド磁石の製造方法。
3. An average particle size of D A and D B , respectively,
In a method for producing a resin-bonded magnet formed from a resin and a rare earth magnet powder of the same kind, wherein D A ≧ D B , a solid resin film is formed as a first layer on the surface of the powder A particles that are cores. A method for producing a resin-bonded magnet, comprising forming a coating film of liquid resin on the second layer, and compression-molding a granulated powder having a plurality of powder B particles attached to the surface thereof.
【請求項4】 液体樹脂量が重量百分率で全樹脂量に対
して20〜80%であることを特徴とする請求項3記載
の樹脂ボンド磁石の製造方法。
4. The method for producing a resin-bonded magnet according to claim 3, wherein the liquid resin amount is 20 to 80% in weight percentage with respect to the total resin amount.
JP3290189A 1991-11-06 1991-11-06 Manufacture of granulated powder of rare earth magnet and resin bond magnet Pending JPH05129119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3290189A JPH05129119A (en) 1991-11-06 1991-11-06 Manufacture of granulated powder of rare earth magnet and resin bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3290189A JPH05129119A (en) 1991-11-06 1991-11-06 Manufacture of granulated powder of rare earth magnet and resin bond magnet

Publications (1)

Publication Number Publication Date
JPH05129119A true JPH05129119A (en) 1993-05-25

Family

ID=17752906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3290189A Pending JPH05129119A (en) 1991-11-06 1991-11-06 Manufacture of granulated powder of rare earth magnet and resin bond magnet

Country Status (1)

Country Link
JP (1) JPH05129119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096325A1 (en) * 2004-03-31 2005-10-13 Nippon Kagaku Yakin Co., Ltd. Functional material composition, and method and apparatus for producing same
JP2007088206A (en) * 2005-09-22 2007-04-05 Tdk Corp Manufacturing method of rare earth sintered magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096325A1 (en) * 2004-03-31 2005-10-13 Nippon Kagaku Yakin Co., Ltd. Functional material composition, and method and apparatus for producing same
JPWO2005096325A1 (en) * 2004-03-31 2008-07-31 日本科学冶金株式会社 Composition of functional material, manufacturing method and manufacturing apparatus
US8288458B2 (en) 2004-03-31 2012-10-16 Nippon Kagaku Yakin Co., Ltd. Composition of a functional material, and method of and apparatus for producing same
JP2007088206A (en) * 2005-09-22 2007-04-05 Tdk Corp Manufacturing method of rare earth sintered magnet
JP4662046B2 (en) * 2005-09-22 2011-03-30 Tdk株式会社 Manufacturing method of rare earth sintered magnet

Similar Documents

Publication Publication Date Title
EP0239031B2 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
JP2004529508A (en) Inductive element and its manufacturing method
KR0149901B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JPS60254708A (en) Manufacture of permanent magnet
JPH0348645B2 (en)
JPS62256412A (en) Permanent magnet with prominent resistance to oxidation
JPH05152116A (en) Rare-earth bonded magnet and its manufacture
JPH05129119A (en) Manufacture of granulated powder of rare earth magnet and resin bond magnet
JPH04241402A (en) Permanent magnet
KR102632582B1 (en) Manufacturing method of sintered magnet
JP3229435B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JP3391704B2 (en) Rare earth magnet
JP3883138B2 (en) Manufacturing method of resin bonded magnet
JPS61184804A (en) Manufacture of bond magnet
JPH09312207A (en) Composition for rare-earth bonded magnet use, rare-earth bonded magnet and manufacture of rare-earth bonded magnet
JP3057593B2 (en) Rare earth-iron based resin bonded magnet and method of manufacturing the same
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JPH0774012A (en) Manufacture of bonded permanent magnet and raw material powder therefor
JP2986611B2 (en) Fe-BR bonded magnet
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPS62261102A (en) Bonded magnet for starter motor
JPH05211102A (en) Powder for permanent magnet and permanent magnet
JPS60254707A (en) Manufacture of permanent magnet