JPS622554A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS622554A
JPS622554A JP14138985A JP14138985A JPS622554A JP S622554 A JPS622554 A JP S622554A JP 14138985 A JP14138985 A JP 14138985A JP 14138985 A JP14138985 A JP 14138985A JP S622554 A JPS622554 A JP S622554A
Authority
JP
Japan
Prior art keywords
film
groove
semiconductor substrate
insulating film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14138985A
Other languages
Japanese (ja)
Inventor
Tomoyuki Furuhata
智之 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14138985A priority Critical patent/JPS622554A/en
Publication of JPS622554A publication Critical patent/JPS622554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device provided with a high inter-element insulating/isolating capability without causing degradation in performance characteristics of a microstructure transistor formed therein by a method wherein a groove is formed, impurity is allowed in a heat treatment process to be diffused from a second insulating film into a semiconductor substrate for the formation of a diffusion region. CONSTITUTION:After the formation of an SiO2 film 2 on a semiconductor substrate 1, the semiconductor substrate 1 is subjected to a selective, vertical RIE process with the SiO2 film 2 serving as a mask, whereby a groove 3 is formed. Next, a boron-containing silica film 4 is formed by application, which is so shaped as to fill up the groove 3. Heat treatment is accomplished for the diffusion of the boron out of the silica film 4, which results in the formation of a field inversion preventing region 5 on the side wall 3a and bottom 3b of the groove 3. Next, an etchant is used for the removal of the silica film 4 and SiO2 film 2. The groove 2 is then filled up with an SiO2 film 6.

Description

【発明の詳細な説明】 〔産業上の利用分計〕 本発明は、半導体集積回路素子の製造方法にかかり、よ
り詳しくは素子間絶縁分離技術に関する〔発明の概要〕 本発明は、素子間絶縁分離領域を形成する半導体装置の
製造方法において、半導体基板上に第1の絶縁膜を形成
し、選択的に前記第1の絶縁膜と前記半導体基板とを除
去し前記半導体内部に溝を形成後、全面に前記半導体基
板の不純物と同−導m型の不純物を含有するシリカフィ
ルム膜を形成し、熱処理により前記シリカフィルム膜か
ら前記半導体基板に不純物を拡散し、不純物拡散領域を
形成後、前記第1の絶縁膜とシリカフィルム膜とを除去
し、しかる後に前記半導体内部の溝を第2の絶縁膜によ
り埋めることにより、前記半導体内部の溝側壁部に容易
にフィールド反射防止領域を形成することを可能ならし
め、そこに形成される微細トランジスタの特性を劣化さ
せることなく、高い素子1間分離能力を有する半導体装
置を実現ならしめたものである。
[Detailed Description of the Invention] [Industrial Application] The present invention relates to a method for manufacturing a semiconductor integrated circuit element, and more particularly relates to inter-element insulation isolation technology [Summary of the Invention] In a method of manufacturing a semiconductor device in which an isolation region is formed, a first insulating film is formed on a semiconductor substrate, the first insulating film and the semiconductor substrate are selectively removed, and a groove is formed inside the semiconductor; , forming a silica film containing an m-type impurity having the same conductivity as the impurity of the semiconductor substrate on the entire surface, and diffusing the impurity from the silica film into the semiconductor substrate by heat treatment to form an impurity diffusion region; By removing the first insulating film and the silica film and then filling the groove inside the semiconductor with a second insulating film, a field antireflection region can be easily formed on the side wall of the groove inside the semiconductor. This makes it possible to realize a semiconductor device having a high element-to-element isolation ability without deteriorating the characteristics of the fine transistors formed therein.

〔従来の技術〕[Conventional technology]

従来の半導体装置における素子間絶縁分離は、耐酸化性
膜としてシリコン窒化膜を用い、素子間の領域(フィー
ルド領域)に選択的に熱酸化膜を形成するL OOOS
 (Local 0xidation of 5ili
−con )法が広く用いられていた。
Conventional insulating isolation between elements in semiconductor devices uses a silicon nitride film as an oxidation-resistant film, and a thermal oxide film is selectively formed in the region between the elements (field region) using LOOOS.
(Local Oxidation of 5ili
-con) method was widely used.

しかしながら、素子の微細化が進むに伴い、LOOO8
法におけるバーズビークの発生、フィールド領域からの
不純物のチャネル領域へのしみ出しによる狭チャネル効
果および長時間にわたる高温でのフィールド酸化により
発生する結晶欠陥等が問題となっていた。
However, with the progress of element miniaturization, LOOO8
Problems include the occurrence of bird's beaks in the process, narrow channel effects caused by impurities seeping into the channel region from the field region, and crystal defects caused by field oxidation at high temperatures over a long period of time.

そこで、般近では上記障害を除去するために、B OX
 (Buried (lxide工5olation 
)法に代表されるような溝堀りによる素子間絶縁分離技
術が提案されている。
Therefore, in general, in order to remove the above obstacles, BOX
(Buried (lxide engineering 5olation
) has been proposed.

この種の半導体装置の製造方法を第2図について説明す
る。ここで、半導体基板はP型とする。
A method of manufacturing this type of semiconductor device will be explained with reference to FIG. Here, the semiconductor substrate is of P type.

(1)  半導体基板1の素子領域上にシリコン酸化(
sio*)[マスク2を反応性イオンエツチング(R工
E)技術を用いて形成後、前記Sin。
(1) Silicon oxide (
sio*) [After forming the mask 2 using reactive ion etching (R-E) technology, the above-mentioned Sin.

膜2をマスクとしてフィールド領域の半導体基板を塩素
(OL)系のガスを用いてR工2で垂直にエツチングし
溝3を形成する。
Using the film 2 as a mask, the semiconductor substrate in the field region is vertically etched using an R process 2 using a chlorine (OL) gas to form a groove 3.

(t!X2図(α]参照) (2) 次に、フィールド反転防止用のフィールドボロ
ン(E)イオン注入7を行ない、熱処理によりフィール
ド反転防止領域5を形成する。(第2図(b)参照) (8)  その後、全面に気相成長(OVD)法により
Sin、膜6を溝の深さよりo、 2μm程度厚く堆積
する。さらに、前記EIiO,膜6上にレジスト膜8を
塗布し、表面を平担化する。(第2図(C)参照) (4)前工程で形成されたレジスト膜8とSin。
(See figure t! (8) After that, a Sin film 6 is deposited on the entire surface by a vapor phase deposition (OVD) method to a thickness of about 2 μm, which is about 0.2 μm thicker than the depth of the groove.Furthermore, a resist film 8 is applied on the EIiO film 6, The surface is flattened (see FIG. 2(C)). (4) Resist film 8 and Sin formed in the previous step.

膜6とのエツチング速度が等しい条件でR工Eにより前
記表面をエッチバックして、溝に5int膜6を残した
まま素子領域の半導体基板を露出する。(第2図(d)
参照ン 〔発明が解決しようとする問題点及び目的〕しかしなが
ら、前述の従来技術では、前述の問題点は除去できたが
、前記のような溝掘り構造のために、溝側壁部3αには
フィールド反転防止領域を形成することが困難である。
The surface is etched back by RE etching under the condition that the etching rate is equal to that of the film 6, and the semiconductor substrate in the element region is exposed while leaving the 5-inch film 6 in the groove. (Figure 2(d)
Reference [Problems and Objectives to be Solved by the Invention] However, although the above-mentioned conventional technology could eliminate the above-mentioned problems, due to the trench digging structure as described above, there is a field in the trench side wall portion 3α. It is difficult to form an anti-inversion region.

このため、そこに形成されたMOS)ランジスタのチャ
ネル+111方向両端部において、前記構造に起因して
電、界集中が起こり、前記両端部での反転電圧が低下す
る。
Therefore, due to the structure, electric field concentration occurs at both ends of the channel +111 direction of the MOS transistor formed there, and the inversion voltage at both ends decreases.

したがって、第6図に示すようにトランジスタのサブス
レッシ目ルド特性にハンプ(hump ) 9 力発生
してしまうという問題点を有する。
Therefore, as shown in FIG. 6, there is a problem in that a hump 9 force is generated in the subthreshold characteristic of the transistor.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、前記溝側壁部5αに容易にフィ
ールド反転防止用領域を形成ならしめ、そこに形成され
る微細トランジスタの特性を劣化させることなく、高い
素子間絶縁分離能力を有する半導体装置の製造方法を提
供するところにある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to easily form a field reversal prevention region on the groove side wall portion 5α, and to improve the characteristics of a fine transistor formed there. An object of the present invention is to provide a method for manufacturing a semiconductor device having high inter-element insulation isolation ability without deterioration.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上に第1
の絶縁膜を形成する工程と、選択的に前記第1の絶縁膜
と前記半導体基板とを除去し前記半導体内部に溝を形成
する工程と、全面に第2の絶縁膜を形成する工程と、熱
処理により前記第2絶縁膜から前記半導体基板に不純物
を拡散し、不純物拡散領域を形成する工程と、前記第1
及び第2の絶縁膜を除去する工程とを含み、しかる後に
前記半襟体内部の溝を第3の絶縁膜により埋める工程と
を有することを特徴とする。この場合、前記第2の絶縁
膜が、前記半導体基板の不純物と同一導電型の不純物を
含有するシリカフィルム膜であることが好ましい。
In the method for manufacturing a semiconductor device of the present invention, a first
a step of selectively removing the first insulating film and the semiconductor substrate to form a groove inside the semiconductor; and a step of forming a second insulating film on the entire surface; a step of diffusing impurities from the second insulating film to the semiconductor substrate by heat treatment to form an impurity diffusion region;
and a step of removing the second insulating film, and then a step of filling the groove inside the half-necked body with a third insulating film. In this case, it is preferable that the second insulating film is a silica film containing impurities of the same conductivity type as impurities of the semiconductor substrate.

〔実施例〕〔Example〕

以下図面を参照し本発明の詳細について説明する。第1
図は本発明の一実施例の工程別断面図である。本発明は
次の工程により実施される。ここで、半導体基板はP型
とする。
The details of the present invention will be explained below with reference to the drawings. 1st
The figure is a sectional view showing each step of an embodiment of the present invention. The present invention is carried out through the following steps. Here, the semiconductor substrate is of P type.

(1)  半導体基板1上にシリコン酸化(Sin、)
膜2を形成後、R工E技術を用いて素子領域上以外の前
記S10.膜2を選択的にエツチングする。さらに、前
記S10.膜2をマスクとして半導体基板1を塩素(a
t)系のガスを用いてR工Eで垂直にエツチングし、0
.5〜2μmの溝5を形成する。(第1図(a)−照ン (2)  次に、塗布法によりボロン(B)を含んだシ
リカフィルム膜4を形成する。この場合、20モル%程
度の濃度のボロンを含んだシリカフィルム膜が好ましい
。形成には例えば、シリコン化合物としてオリガノシラ
ノールRn81(OH)4−sと添加物のボロン化合物
とエタノールを主溶剤とした有機系溶液を、上記基板の
全面にスピナーにより2000〜6000 rpm  
で塗布後、500℃、1時間程度のベークをする。この
場合、塗布法によるシリカフィルム膜4は、段差部に厚
く、平担部に薄く形成されるので第1図Cb)に示すよ
うに溝3を埋めるような形状に形成できる。
(1) Silicon oxide (Sin) on the semiconductor substrate 1
After forming the film 2, the above-mentioned S10. Film 2 is selectively etched. Furthermore, the above S10. The semiconductor substrate 1 is coated with chlorine (a) using the film 2 as a mask.
t) Vertically etching with R process E using gas of 0
.. A groove 5 of 5 to 2 μm is formed. (Figure 1(a)-Irradiation (2)) Next, a silica film film 4 containing boron (B) is formed by a coating method. In this case, a silica film containing boron at a concentration of about 20 mol% is used. A film is preferable.For the formation, for example, an organic solution containing an organosilanol Rn81(OH)4-s as a silicon compound, a boron compound as an additive, and ethanol as a main solvent is applied to the entire surface of the substrate using a spinner for 2,000 to 6,000 mL. rpm
After coating, bake at 500°C for about 1 hour. In this case, the silica film 4 formed by the coating method is formed thickly on the stepped portions and thinly on the flat portions, so that it can be formed in a shape that fills the grooves 3 as shown in FIG. 1Cb).

さらに、窒素雰囲気中において1000℃。Further, at 1000°C in a nitrogen atmosphere.

30分間程度の熱処理を行ない、前記シリカフィルム膜
4からボロンを拡散し、溝の側壁部5α及び底部5bに
フィールド反転防止領域5を形成する。(第1図(b)
参照) (8)沸酸(HIF )系のエツチング液により前記シ
リカフィルム膜4及びS10.膜2を除去する。(第1
図(C)参照ン (4)以下、従来の技術で述べた方法と同様に810、
膜6とレジスト膜とのエッチバック法により、溝3を8
10.膜6で埋める。(特に図示せず。) 以上により本発明による半導体装置が得られる、(第2
図Cd)参照) 上記実施例に示したように、本発明によれば、半導体基
板に溝を形成した後、塗布法によりフィールド反転防止
用の不純物を含有するシリカフィルム膜を形成すること
により溝を埋め、熱処理により前記シリカフィルム膜か
ら半導体基板へ不純物を拡散させ、溝の側壁部3α及び
底面5bにフィールド反転防止領域を形成することが可
能となるなお、上記一実施例においては、熱処理として
1000℃、50分間程度を行なりたが、これはハ四ゲ
ンランプアニール炉による1000〜1150℃、5〜
20秒程度の高温短時間熱処理でも問題はない。
A heat treatment is performed for about 30 minutes to diffuse boron from the silica film 4 and form a field reversal prevention region 5 on the side wall 5α and bottom 5b of the groove. (Figure 1(b)
(8) The silica film membrane 4 and S10. Remove membrane 2. (1st
See Figure (C) (4) Hereinafter, 810, similar to the method described in the conventional technology
By etching back the film 6 and the resist film, the groove 3 is
10. Fill with membrane 6. (Not particularly shown.) As described above, a semiconductor device according to the present invention is obtained.
(See Figure Cd)) As shown in the above embodiment, according to the present invention, after forming a groove in a semiconductor substrate, a silica film containing impurities for preventing field reversal is formed by a coating method. It is possible to form a field reversal prevention region on the side wall portion 3α and the bottom surface 5b of the trench by filling the silica film with heat treatment and diffusing impurities from the silica film into the semiconductor substrate. The test was performed at 1000°C for about 50 minutes, but this was done using a four-gen lamp annealing furnace at 1000-1150°C for 5-50 minutes.
There is no problem even if the heat treatment is performed at a high temperature for a short time of about 20 seconds.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の製造方法によれば、前記溝0
JII壁部に容易にフィールド反転防止領域を形成する
ことができるため、そこに形成される微細トランジスタ
のチャネル幅両端部での反転電圧を高くすることが可能
となり、前記トランジスタのサブスレッシ冒ルド特性の
ハンプを除去でき、高い素子間絶縁分離能力を有する半
導体装置を実現できるという効果を有する。
As described above, according to the manufacturing method of the present invention, the groove 0
Since the field reversal prevention region can be easily formed on the JII wall, it is possible to increase the reversal voltage at both ends of the channel width of the fine transistor formed there, which improves the subthreshold characteristics of the transistor. This has the effect that a hump can be removed and a semiconductor device having high inter-element insulation isolation ability can be realized.

なお、上記実施例では、MOf9)ランジスタの素子間
絶縁分離法として述べたが、バイボー2トランジスタの
素子間絶縁分離法としても本発明は有効である。
Although the above embodiment has been described as a method for insulating and separating between elements of a MOf9 transistor, the present invention is also effective as a method for insulating and separating between elements of a Bibo 2 transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α)〜(d)は本発明の一実施例による半導体
装置の製造方法を示す工程別断面図、第2図(α)〜(
d)は従来法による半導体装置の製造方法を示す工程別
断面図、第3図は従来例を説明するためのトランジスタ
のサブスレッシ田ルド特性図を示す。 1・・・・・・・・・半導体基板 2.6・・・絶縁膜 5・・・・・・・・・半導体基板内部の溝3α・・・・
・・溝の側壁部 3b・・・・・・溝の底部 4・・・・・・・・・シリカフィルム膜5・・・・・・
・・・不純物拡散領域 以  上
FIGS. 1(α) to (d) are cross-sectional views showing steps for manufacturing a semiconductor device according to an embodiment of the present invention, and FIGS. 2(α) to (d) are
d) is a step-by-step sectional view showing a conventional method for manufacturing a semiconductor device, and FIG. 3 is a subthreshold characteristic diagram of a transistor for explaining the conventional example. 1... Semiconductor substrate 2.6... Insulating film 5... Groove 3α inside the semiconductor substrate...
...Groove side wall 3b...Groove bottom 4...Silica film membrane 5...
... Impurity diffusion region or higher

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に第1の絶縁膜を形成する工程と、
選択的に前記第1の絶縁膜と前記半導体基板とを除去し
前記半導体内部に溝を形成する工程と、全面に第2の絶
縁膜を形成する工程と、熱処理により前記第2の絶縁膜
から前記半導体基板に不純物を拡散し、不純物拡散領域
を形成する工程と、前記第1及び第2の絶縁膜を除去す
る工程とを含み、しかる後に前記半導体内部の溝を第3
の絶縁膜により埋める工程とを有することを特徴とする
半導体装置の製造方法。
(1) forming a first insulating film on the semiconductor substrate;
selectively removing the first insulating film and the semiconductor substrate to form a groove inside the semiconductor; forming a second insulating film on the entire surface; and removing the second insulating film from the second insulating film by heat treatment. The steps include diffusing impurities into the semiconductor substrate to form an impurity diffusion region, and removing the first and second insulating films, and then forming a third trench inside the semiconductor.
A method of manufacturing a semiconductor device, comprising the step of filling with an insulating film.
(2)前記第2の絶縁膜が前記半導体基板の不純物と同
一導電型の不純物を含有するシリカフィルム膜であるこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the second insulating film is a silica film containing impurities of the same conductivity type as impurities of the semiconductor substrate.
JP14138985A 1985-06-27 1985-06-27 Manufacture of semiconductor device Pending JPS622554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14138985A JPS622554A (en) 1985-06-27 1985-06-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14138985A JPS622554A (en) 1985-06-27 1985-06-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS622554A true JPS622554A (en) 1987-01-08

Family

ID=15290853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14138985A Pending JPS622554A (en) 1985-06-27 1985-06-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS622554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242853A (en) * 1989-10-25 1993-09-07 Sony Corporation Manufacturing process for a semiconductor device using bias ecrcvd and an etch stop layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242853A (en) * 1989-10-25 1993-09-07 Sony Corporation Manufacturing process for a semiconductor device using bias ecrcvd and an etch stop layer

Similar Documents

Publication Publication Date Title
JPS6038874A (en) Method of producing semiconductor device
JP3414590B2 (en) Method for manufacturing semiconductor device
JPH09172061A (en) Manufacture of semiconductor device
KR960005552B1 (en) Semiconductor device isolation method
JPH08139176A (en) Manufacture of semiconductor device
JP2004006660A (en) Method for manufacturing semiconductor device
JPH0237745A (en) Manufacture of semiconductor device
JP2955838B2 (en) Method for manufacturing semiconductor device
JPS622554A (en) Manufacture of semiconductor device
JPH0334541A (en) Manufacture of semiconductor device
JP2000100926A (en) Semiconductor device and manufacture thereof
JPS5812732B2 (en) Manufacturing method for semiconductor devices
JP2757358B2 (en) Method for manufacturing semiconductor device
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPS63228732A (en) Manufacture of semiconductor device
JPS6235533A (en) Manufacture of semiconductor device
JPH03153031A (en) Manufacture of semiconductor device
JPH01258439A (en) Semiconductor device and manufacture thereof
JP2790010B2 (en) Method for manufacturing semiconductor device
JP2763105B2 (en) Method for manufacturing semiconductor device
JPH033948B2 (en)
JPH05275528A (en) Forming method of element isolating region
JPH0917856A (en) Manufacture of semiconductor device
JPH0685051A (en) Manufacture of semiconductor device
JP2661357B2 (en) Method for manufacturing semiconductor device