JPH0685051A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0685051A
JPH0685051A JP23066792A JP23066792A JPH0685051A JP H0685051 A JPH0685051 A JP H0685051A JP 23066792 A JP23066792 A JP 23066792A JP 23066792 A JP23066792 A JP 23066792A JP H0685051 A JPH0685051 A JP H0685051A
Authority
JP
Japan
Prior art keywords
film
insulating film
polishing
forming
resistant insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23066792A
Other languages
Japanese (ja)
Inventor
Shunji Nakamura
俊二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23066792A priority Critical patent/JPH0685051A/en
Publication of JPH0685051A publication Critical patent/JPH0685051A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To reduce the number of manufacturing processes and to lower the cost, relating to manufacture of semiconductor devices. CONSTITUTION:1) The entire surface of semiconductor substrate is coated with a polishing-resistant insulation film 6, and a isolation grove is formed. And then the isolation groove is filled up, and the substrate is coated with a polycrystalline semiconductor film or an insulation film 6. With the polishing- resistant insulation film used as a polishing stopper, the polycrystalline semiconductor film or the insulation film is polished so that the polycrystalline semiconductor film or the insulation film remains within the isolation groove, for the first layer conductive film formed on the polishing-resistant insulation film. 2) An oxidation-resistant insulation film 4 is formed on the semiconductor substrate, and with the oxidation-resistant insulation film used as a mask, a field oxidation film 5 is formed, so that the first layer conductive film is formed on the oxidation-resistant insulation film and the field oxidation film. 3) The first layer conductive film is formed on the composit film of the oxidation- resistant insulation 4, for forming a field oxidation film, and the polishing- resistant insulation film 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り,特に高速集積回路に用いられるウエハプロセスの
簡略化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of simplifying a wafer process used for a high speed integrated circuit.

【0002】高度情報処理社会の発展に伴い,より高速
なコンピュータおよび,より高速な半導体集積回路およ
び,これらの半導体集積回路の構成要素である高速トラ
ンジスタが要望されている。一方,高速半導体集積回路
の微細化と高信頼化と低価格化のために工程の簡易化が
求められている。
Along with the development of the advanced information processing society, there is a demand for faster computers, faster semiconductor integrated circuits, and high-speed transistors that are components of these semiconductor integrated circuits. On the other hand, simplification of the process is required for miniaturization, high reliability, and cost reduction of high-speed semiconductor integrated circuits.

【0003】[0003]

【従来の技術】図4(A) 〜(E) および図5(F) 〜(H) は
従来例による製造方法を説明する断面図である。
2. Description of the Related Art FIGS. 4 (A) to 4 (E) and FIGS. 5 (F) to 5 (H) are sectional views for explaining a conventional manufacturing method.

【0004】この図は高速バイポーラトランジスタ (ト
ランジスタは勿論MOS 型であってもよい) のU溝分離工
程を示す。図4(A) において,p型シリコン(p-Si)基板
1上に,不純物の熱拡散により埋め込みコレクタ層とし
て n+ -Si 層2を形成し,次いで,素子形成層としてn
- -Si 層3をエピタキシャル成長する。
This figure shows a U-groove isolation process for a high speed bipolar transistor (the transistor may of course be a MOS type). In FIG. 4 (A), an n + -Si layer 2 is formed as a buried collector layer on the p-type silicon (p-Si) substrate 1 by thermal diffusion of impurities, and then an n + -Si layer is formed as an element formation layer.
- the -Si layer 3 is epitaxially grown.

【0005】次いで,気相成長(CVD) 法により,基板上
全面に耐酸化膜として窒化シリコン(Si3N4) 膜4を成長
し,通常のリソグラフィ工程により素子形成領域上にSi
3N4膜4を残す。
Next, a silicon nitride (Si 3 N 4 ) film 4 is grown as an oxidation resistant film on the entire surface of the substrate by a vapor phase epitaxy (CVD) method, and Si is formed on the element formation region by a normal lithography process.
3 N 4 Membrane 4 is left.

【0006】図4(B) において,Si3N4 膜4をマスクに
して,熱酸化を行いフィールド酸化膜5を形成する。図
4(C) において,熱りん酸を用いて,Si3N4 膜4を除去
する。
In FIG. 4B, the Si 3 N 4 film 4 is used as a mask to perform thermal oxidation to form a field oxide film 5. In FIG. 4C, the Si 3 N 4 film 4 is removed using hot phosphoric acid.

【0007】図4(D) において,基板上全面にSi3N4
6とりん珪酸ガラス(PSG) 膜7を成長し,U溝形成部を
開口したレジスト膜8を形成し,レジスト膜8をマスク
にしてPSG 膜7とSi3N4 膜6をエッチングする。
In FIG. 4 (D), a Si 3 N 4 film 6 and a phosphosilicate glass (PSG) film 7 are grown on the entire surface of the substrate to form a resist film 8 having an opening for forming a U groove, and the resist film 8 is formed. The PSG film 7 and the Si 3 N 4 film 6 are etched using the mask as a mask.

【0008】図4(E) において,パターニングされたレ
ジスト膜8とPSG 膜7とSi3N4 膜6をマスクにしてフィ
ールド酸化膜5およびn-Si層3をエッチングしてU溝を
形成する。このエッチングによりレジスト膜8は除去さ
れる。
In FIG. 4E, the field oxide film 5 and the n-Si layer 3 are etched by using the patterned resist film 8, PSG film 7 and Si 3 N 4 film 6 as a mask to form a U groove. . The resist film 8 is removed by this etching.

【0009】図5(F) において,フッ酸により残ったPS
G 膜7を除去する。次いで,Si3N4 膜6をマスクにして
U溝内部に露出するSi基板表面に厚さ約3000Åの熱酸化
膜を形成する。
In FIG. 5 (F), PS left by hydrofluoric acid
The G film 7 is removed. Then, using the Si 3 N 4 film 6 as a mask, a thermal oxide film having a thickness of about 3000 Å is formed on the surface of the Si substrate exposed inside the U groove.

【0010】次いで,基板上全面にポリシリコン膜8を
成長し,Si3N4 膜6をマスクにしてポリッシングを行
い,U溝内部にのみポリシリコン膜9を残す。次いで,
Si3N4 膜6をマスクにして,U溝上部のポリシリコン膜
を熱酸化してSiO2膜10を形成する。
Next, a polysilicon film 8 is grown on the entire surface of the substrate, polishing is performed using the Si 3 N 4 film 6 as a mask, and the polysilicon film 9 is left only inside the U groove. Then,
Using the Si 3 N 4 film 6 as a mask, the polysilicon film above the U groove is thermally oxidized to form a SiO 2 film 10.

【0011】図5(G) において,熱りん酸を用いて,Si
3N4 膜4を除去する。図5(H) において,基板上全面に
導電膜の下地絶縁膜としてCVD SiO2膜11を成長する。
In FIG. 5 (G), using hot phosphoric acid, Si
The 3 N 4 film 4 is removed. In FIG. 5 (H), a CVD SiO 2 film 11 is grown as a base insulating film of a conductive film on the entire surface of the substrate.

【0012】[0012]

【発明が解決しようとする課題】従来例では,1層目
導電膜下部の1層目絶縁膜(CVD SiO2膜11)と,フィ
ールド酸化膜形成時の耐酸化膜(Si3N4 膜4)と,U
溝形成時のポリッシングストッパおよびU溝の内部およ
び上部酸化時の耐酸化膜(Si3N4 膜6)とはそれぞれ別
個に形成されていた。
In the conventional example, the first insulating film (CVD SiO 2 film 11) under the first conductive film and the oxidation resistant film (Si 3 N 4 film 4) at the time of forming the field oxide film are formed. ), And U
The polishing stopper at the time of forming the groove and the inside of the U groove and the oxidation resistant film (Si 3 N 4 film 6) at the time of upper oxidation were formed separately.

【0013】従って,従来例では工程数が多く,また,
その分製造歩留と信頼性を落とし,コスト高となってい
た。本発明は高速集積回路の製造工程数を低減し,低コ
スト化を目的とする。
Therefore, the conventional example has many steps, and
The production yield and reliability were reduced accordingly, resulting in higher costs. It is an object of the present invention to reduce the number of manufacturing steps of a high speed integrated circuit and reduce the cost.

【0014】[0014]

【課題を解決するための手段】上記課題の解決は, 1)半導体基板上全面に耐ポリッシング性絶縁膜6を被
着し,素子分離領域に分離溝を形成する工程と,該分離
溝内を埋め込んで該半導体基板上に多結晶半導体膜また
は絶縁膜9を被着し,該耐ポリッシング性絶縁膜をポリ
ッシングストッパとして該多結晶半導体膜または絶縁膜
をポリッシングして該分離溝内に多結晶半導体膜または
絶縁膜を残す工程と,該耐ポリッシング性絶縁膜上に1
層目導電膜を形成する工程を有する半導体装置の製造方
法,あるいは 2)半導体基板の素子形成領域上に耐酸化性絶縁膜4を
形成し,該耐酸化性絶縁膜をマスクにして該半導体基板
上にフィールド酸化膜5を形成する工程と,該耐酸化性
絶縁膜上およびフィールド酸化膜上に1層目導電膜を形
成する工程を有する半導体装置の製造方法,あるいは 3)半導体基板の素子形成領域上に耐酸化性絶縁膜4を
形成し,該耐酸化性絶縁膜をマスクにして該半導体基板
上にフィールド酸化膜5を形成する工程と,該半導体基
板上全面に耐ポリッシング性絶縁膜6を被着し,素子分
離領域に分離溝を形成する工程と,該分離溝内を埋め込
んで該半導体基板上に多結晶半導体膜または絶縁膜9を
被着し,該耐ポリッシング性絶縁膜をポリッシングスト
ッパとして該多結晶半導体膜をポリッシングして該分離
溝内に多結晶半導体膜または絶縁膜を残す工程と,該耐
酸化性絶縁膜と該耐ポリッシング性絶縁膜の複合膜上に
1層目導電膜を形成する工程を有する半導体装置の製造
方法により達成される。
Means for Solving the Problems To solve the above-mentioned problems, 1) a step of depositing a polishing resistant insulating film 6 on the entire surface of a semiconductor substrate and forming an isolation groove in an element isolation region; A polycrystalline semiconductor film or an insulating film 9 is embedded and deposited on the semiconductor substrate, and the polycrystalline semiconductor film or the insulating film is polished by using the polishing-resistant insulating film as a polishing stopper to form a polycrystalline semiconductor in the separation groove. A step of leaving a film or an insulating film, and 1 on the polishing-resistant insulating film.
A method for manufacturing a semiconductor device, which includes a step of forming a second conductive film, or 2) forming an oxidation resistant insulating film 4 on an element formation region of a semiconductor substrate, and using the oxidation resistant insulating film as a mask, the semiconductor substrate A method of manufacturing a semiconductor device having a step of forming a field oxide film 5 thereon and a step of forming a first conductive film on the oxidation resistant insulating film and the field oxide film, or 3) element formation of a semiconductor substrate A step of forming an oxidation resistant insulating film 4 on the region and forming a field oxide film 5 on the semiconductor substrate using the oxidation resistant insulating film as a mask; and a polishing resistant insulating film 6 on the entire surface of the semiconductor substrate. And forming an isolation trench in the element isolation region, and filling the isolation trench with a polycrystalline semiconductor film or insulating film 9 on the semiconductor substrate and polishing the polishing-resistant insulating film. Stopper And then polishing the polycrystalline semiconductor film to leave the polycrystalline semiconductor film or the insulating film in the isolation trench, and conducting the first conductive layer on the composite film of the oxidation resistant insulating film and the polishing resistant insulating film. This is achieved by a method for manufacturing a semiconductor device, which has a step of forming a film.

【0015】[0015]

【作用】本発明者は上記の下地絶縁膜(CVD SiO2膜1
1)をの絶縁膜(Si3N4 膜4),あるいはの絶縁膜
(Si3N4 膜6),あるいはとの重ね合わせで兼用し
ても支障をきたさないことを確認して,工程数の低減化
を図れるようにした。
The present inventor has found that the above-described base insulating film (CVD SiO 2 film 1
It is confirmed that there is no problem even if the insulating film (Si 3 N 4 film 4) of 1) or the insulating film (Si 3 N 4 film 6) of 2) is used together, and there is no problem. It is possible to reduce

【0016】[0016]

【実施例】図1は本発明の実施例1の断面図である。上
記の絶縁膜をの絶縁膜で兼用する例である。
EXAMPLE 1 FIG. 1 is a sectional view of Example 1 of the present invention. In this example, the above insulating film is also used as the insulating film.

【0017】従来例の図5(F) のSi3N4 膜6を除去しな
いで残し,図5(H) のCVD SiO2膜11の代わりに用いてい
る。図2(A) 〜(C) は本発明の実施例2の断面図であ
る。
The Si 3 N 4 film 6 of FIG. 5 (F) of the conventional example is left without being removed and is used in place of the CVD SiO 2 film 11 of FIG. 5 (H). 2 (A) to 2 (C) are sectional views of a second embodiment of the present invention.

【0018】上記の絶縁膜をの絶縁膜で兼用する例
である。従来例の図4(B) のSi3N4 膜4を除去しないで
残し,図4(D) のポリッシングストッバのSi3N4 膜6お
よび図4(H) のCVD SiO2膜11の代わりに用いる。
In this example, the above insulating film is also used as the insulating film. The Si 3 N 4 film 4 of the conventional example shown in FIG. 4 (B) is left without being removed, and the Si 3 N 4 film 6 of the polishing stubber of FIG. 4 (D) and the CVD SiO 2 film 11 of FIG. 4 (H) are removed. Use instead.

【0019】図2(A) において,素子形成領域上にSi3N
4 膜4を形成し,Si3N4 膜4をマスクにして,熱酸化を
行いフィールド酸化膜5を形成する。基板上全面にPSG
膜7を成長し,その上にU溝形成部を開口したレジスト
膜8を形成する。
In FIG. 2 (A), Si 3 N is formed on the device formation region.
The 4 film 4 is formed, and thermal oxidation is performed using the Si 3 N 4 film 4 as a mask to form the field oxide film 5. PSG all over the board
A film 7 is grown, and a resist film 8 having a U groove forming portion opened is formed on the film 7.

【0020】図2(B) において,レジスト膜8およびPS
G 膜7をマスクにしてフィールド酸化膜5および n-
-Si 層3をエッチングしてU溝を形成する。次いで, レ
ジスト膜8とPSG 膜7を除去する。
In FIG. 2B, the resist film 8 and PS
Using the G film 7 as a mask, the field oxide film 5 and n
-Si layer 3 is etched to form a U-groove. Then, the resist film 8 and the PSG film 7 are removed.

【0021】図2(C) において,基板上全面にポリシリ
コン膜9を成長し,Si3N4 膜4をマスクにしてポリッシ
ングを行い,U溝内部にのみポリシリコン膜9を残す。
次いで,Si3N4 膜6をマスクにして,U溝上部のポリシ
リコン膜9を熱酸化してSiO2膜10を形成する。
In FIG. 2C, a polysilicon film 9 is grown on the entire surface of the substrate, polishing is performed using the Si 3 N 4 film 4 as a mask, and the polysilicon film 9 is left only inside the U groove.
Next, the Si 3 N 4 film 6 is used as a mask to thermally oxidize the polysilicon film 9 above the U groove to form a SiO 2 film 10.

【0022】導電膜下部の下地絶縁膜として残っている
Si3N4 膜4を用いる。なお, この実施例ではフィールド
酸化膜形成用のSi3N4 膜4を, 従来例のCVDSiO2膜11の
代わりに用いるものであるから, 素子分離は必ずしもU
溝を形成しなくてもよい。
Remains as a base insulating film under the conductive film
The Si 3 N 4 film 4 is used. In this embodiment, since the Si 3 N 4 film 4 for forming the field oxide film is used instead of the CVD SiO 2 film 11 of the conventional example, the element isolation is not necessarily U.
The groove may not be formed.

【0023】図3(A) 〜(C) は本発明の実施例3の断面
図である。上記の絶縁膜をとの複合絶縁膜で兼用
する例である。従来例の図4(B) のSi3N4 膜4を除去し
ないで残し,その上に図4(D) のポリッシングストッパ
のSi3N4 膜6を成長し,Si3N4 膜4とSi3N4 膜6の複合
膜を図4(H) のCVD SiO2膜11の代わりに用いる。
3 (A) to 3 (C) are sectional views of a third embodiment of the present invention. This is an example in which the above insulating film is also used as a composite insulating film. Leaving without removing the Si 3 N 4 film 4 of FIG conventional example 4 (B), growing the Si 3 N 4 film 6 polishing stopper of FIG. 4 (D) thereon, and the Si 3 N 4 film 4 A composite film of Si 3 N 4 film 6 is used instead of the CVD SiO 2 film 11 of FIG. 4 (H).

【0024】図3(A) において,素子形成領域上にSi3N
4 膜4を形成し,Si3N4 膜4をマスクにして,熱酸化を
行いフィールド酸化膜5を形成する。基板上全面にポリ
ッシングストッバのSi3N4 膜6とPSG 膜7を順に成長
し,その上にU溝形成部を開口したレジスト膜8を形成
する。
In FIG. 3 (A), Si 3 N is formed on the device formation region.
The 4 film 4 is formed, and thermal oxidation is performed using the Si 3 N 4 film 4 as a mask to form the field oxide film 5. A Si 3 N 4 film 6 of PSA and a PSG film 7 are sequentially grown on the entire surface of the substrate, and a resist film 8 having a U groove forming portion opened is formed on the Si 3 N 4 film 6 and the PSG film 7.

【0025】図3(B) において,レジスト膜8およびPS
G 膜7をマスクにしてフィールド酸化膜5および n-Si
層3をエッチングしてU溝を形成する。次いで, レジス
ト膜8とPSG 膜7を除去する。
In FIG. 3B, the resist film 8 and PS
Field oxide film 5 and n-Si using G film 7 as a mask
Layer 3 is etched to form U-grooves. Then, the resist film 8 and the PSG film 7 are removed.

【0026】図3(C) において,基板上全面にポリシリ
コン膜9を成長し,Si3N4 膜6をマスクにしてポリッシ
ングを行い,U溝内部にのみポリシリコン膜9を残す。
次いで,Si3N4 膜6,4をマスクにして,U溝上部のポ
リシリコン膜9を熱酸化してSiO2膜10を形成する。
In FIG. 3C, a polysilicon film 9 is grown on the entire surface of the substrate, polishing is performed by using the Si 3 N 4 film 6 as a mask, and the polysilicon film 9 is left only inside the U groove.
Then, using the Si 3 N 4 films 6 and 4 as a mask, the polysilicon film 9 above the U groove is thermally oxidized to form a SiO 2 film 10.

【0027】図5(H) のCVD SiO2膜11の代わりに, 導電
膜下部の下地絶縁膜として残っているSi3N4 膜6とSi3N
4 膜4の複合膜を用いる。これらの実施例の工程の後,
例えば本発明者が出願した特開昭62-183558 号公報に記
載された工程により素子形成領域に高速バイポーラトラ
ンジスタを形成する。あるいはMOS FET を形成してもよ
い。
Instead of the CVD SiO 2 film 11 of FIG. 5H, the Si 3 N 4 film 6 and the Si 3 N 4 remaining as the underlying insulating film under the conductive film are formed.
A composite membrane of 4 membranes 4 is used. After the steps of these examples,
For example, a high speed bipolar transistor is formed in the element forming region by the process described in Japanese Patent Application Laid-Open No. 62-183558 filed by the present inventor. Alternatively, a MOS FET may be formed.

【0028】上記の実施例に用いたポリシリコン膜9の
代わりに,CVD SiO2膜等の絶縁膜を用いることも可能で
ある。
It is also possible to use an insulating film such as a CVD SiO 2 film in place of the polysilicon film 9 used in the above embodiment.

【0029】[0029]

【発明の効果】本発明によれば,高速集積回路の製造工
程数を低減し,低コスト化を実現することができた。
According to the present invention, the number of manufacturing steps of a high speed integrated circuit can be reduced and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】 本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】 本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】 従来例の断面図(1)FIG. 4 is a sectional view of a conventional example (1)

【図5】 従来例の断面図(2)FIG. 5 is a sectional view of a conventional example (2)

【符号の説明】[Explanation of symbols]

1 半導体基板でp-Si基板 2 埋め込みコレクタ層で n+ -Si 層 3 素子形成層でn-Siエピタキシャル層 4 耐酸化性絶縁膜でSi3N4 膜 5 フィールド酸化膜で熱酸化SiO2膜 6 耐ポリッシング性絶縁膜でSi3N4 膜 7 PSG 膜 8 レジスト膜 9 ポリシリコン膜または絶縁膜でCVD SiO2膜 10 ポリシリコンの酸化膜 11 導電膜の下地絶縁膜でCVD SiO21 Semiconductor substrate p-Si substrate 2 Embedded collector layer n + -Si layer 3 Element formation layer n-Si epitaxial layer 4 Oxidation resistant insulating film Si 3 N 4 film 5 Field oxide film thermally oxidized SiO 2 film 6 Polishing resistant insulating film 7 Si 3 N 4 film 7 PSG film 8 Resist film 9 Polysilicon film or insulating film CVD SiO 2 film 10 Polysilicon oxide film 11 Underlayer insulating film CVD SiO 2 film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上全面に耐ポリッシング性絶
縁膜(6) を被着し,素子分離領域に分離溝を形成する工
程と,該分離溝内を埋め込んで該半導体基板上に多結晶
半導体膜または絶縁膜(9) を被着し,該耐ポリッシング
性絶縁膜をポリッシングストッパとして該多結晶半導体
膜または絶縁膜をポリッシングして該分離溝内に多結晶
半導体膜または絶縁膜を残す工程と,該耐ポリッシング
性絶縁膜上に1層目導電膜を形成する工程を有すること
を特徴とする半導体装置の製造方法。
1. A process of depositing a polishing resistant insulating film (6) on the entire surface of a semiconductor substrate to form an isolation groove in an element isolation region, and filling the inside of the isolation groove with a polycrystalline semiconductor on the semiconductor substrate. A step of depositing a film or an insulating film (9), polishing the polycrystalline semiconductor film or the insulating film by using the polishing resistant insulating film as a polishing stopper, and leaving the polycrystalline semiconductor film or the insulating film in the separation groove; A method for manufacturing a semiconductor device, comprising a step of forming a first conductive film on the polishing resistant insulating film.
【請求項2】 半導体基板の素子形成領域上に耐酸化性
絶縁膜(4)を形成し,該耐酸化性絶縁膜をマスクにして
該半導体基板上にフィールド酸化膜(5) を形成する工程
と,該耐酸化性絶縁膜上およびフィールド酸化膜上に1
層目導電膜を形成する工程を有することを特徴とする半
導体装置の製造方法。
2. A step of forming an oxidation resistant insulating film (4) on an element formation region of a semiconductor substrate and forming a field oxide film (5) on the semiconductor substrate using the oxidation resistant insulating film as a mask. And 1 on the oxidation resistant insulating film and the field oxide film.
A method of manufacturing a semiconductor device, comprising a step of forming a second conductive film.
【請求項3】 半導体基板の素子形成領域上に耐酸化性
絶縁膜(4)を形成し,該耐酸化性絶縁膜をマスクにして
該半導体基板上にフィールド酸化膜(5) を形成する工程
と,該半導体基板上全面に耐ポリッシング性絶縁膜(6)
を被着し,素子分離領域に分離溝を形成する工程と,該
分離溝内を埋め込んで該半導体基板上に多結晶半導体膜
または絶縁膜(9) を被着し,該耐ポリッシング性絶縁膜
をポリッシングストッパとして該多結晶半導体膜をポリ
ッシングして該分離溝内に多結晶半導体膜または絶縁膜
を残す工程と,該耐酸化性絶縁膜と該耐ポリッシング性
絶縁膜の複合膜上に1層目導電膜を形成する工程を有す
ることを特徴とする半導体装置の製造方法。
3. A step of forming an oxidation resistant insulating film (4) on an element formation region of a semiconductor substrate, and forming a field oxide film (5) on the semiconductor substrate using the oxidation resistant insulating film as a mask. And a polishing-resistant insulating film (6) on the entire surface of the semiconductor substrate.
And forming an isolation groove in the element isolation region, and filling the inside of the isolation groove with a polycrystalline semiconductor film or an insulating film (9) on the semiconductor substrate to form the polishing resistant insulating film. Polishing the polycrystalline semiconductor film as a stopper to leave the polycrystalline semiconductor film or the insulating film in the isolation trench, and one layer on the composite film of the oxidation resistant insulating film and the polishing resistant insulating film. A method of manufacturing a semiconductor device, comprising the step of forming an eye conductive film.
JP23066792A 1992-08-31 1992-08-31 Manufacture of semiconductor device Withdrawn JPH0685051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23066792A JPH0685051A (en) 1992-08-31 1992-08-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23066792A JPH0685051A (en) 1992-08-31 1992-08-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0685051A true JPH0685051A (en) 1994-03-25

Family

ID=16911416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23066792A Withdrawn JPH0685051A (en) 1992-08-31 1992-08-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0685051A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027983A (en) * 1994-06-02 2000-02-22 Hitachi, Ltd. Method of manufacturing trench isolate semiconductor integrated circuit device
US6566226B2 (en) 1998-12-25 2003-05-20 Fujitsu Limited Semiconductor device and fabrication process thereof, method of forming a device isolation structure
JP2005064102A (en) * 2003-08-08 2005-03-10 New Japan Radio Co Ltd Method for manufacturing semiconductor integrated circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027983A (en) * 1994-06-02 2000-02-22 Hitachi, Ltd. Method of manufacturing trench isolate semiconductor integrated circuit device
US6432799B1 (en) 1994-06-02 2002-08-13 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device
US6649487B2 (en) 1994-06-02 2003-11-18 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device
US6566226B2 (en) 1998-12-25 2003-05-20 Fujitsu Limited Semiconductor device and fabrication process thereof, method of forming a device isolation structure
JP2005064102A (en) * 2003-08-08 2005-03-10 New Japan Radio Co Ltd Method for manufacturing semiconductor integrated circuit
JP4549039B2 (en) * 2003-08-08 2010-09-22 新日本無線株式会社 Manufacturing method of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US5476813A (en) Method of manufacturing a bonded semiconductor substrate and a dielectric isolated bipolar transistor
US6900094B2 (en) Method of selective removal of SiGe alloys
JP2913785B2 (en) Method for manufacturing semiconductor device
JPH0449777B2 (en)
US5397731A (en) Method of manufacturing semiconductor integrated circuit device
KR940009361B1 (en) Complicated type ic element
JPH0685051A (en) Manufacture of semiconductor device
JP2741393B2 (en) Semiconductor device
JPH10125773A (en) Manufacture of semiconductor device
JPH0974189A (en) Manufacture of semiconductor device
JP2812013B2 (en) Method for manufacturing semiconductor device
JPH03153031A (en) Manufacture of semiconductor device
KR100204418B1 (en) Method for forming an element isolation in a semiconductor device
JPH0661343A (en) Manufacture of semiconductor device
JPH0420266B2 (en)
JPH05235157A (en) Manufacture of semiconductor device
JPH0223630A (en) Manufacture of semiconductor device
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPH0917856A (en) Manufacture of semiconductor device
JP3402843B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS61214536A (en) Manufacture of semiconductor device
JPH04336447A (en) Fabrication of semiconductor device
JPS58130555A (en) Semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS60128633A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102