JP4549039B2 - Manufacturing method of semiconductor integrated circuit - Google Patents

Manufacturing method of semiconductor integrated circuit Download PDF

Info

Publication number
JP4549039B2
JP4549039B2 JP2003289821A JP2003289821A JP4549039B2 JP 4549039 B2 JP4549039 B2 JP 4549039B2 JP 2003289821 A JP2003289821 A JP 2003289821A JP 2003289821 A JP2003289821 A JP 2003289821A JP 4549039 B2 JP4549039 B2 JP 4549039B2
Authority
JP
Japan
Prior art keywords
film
silicon
silicon nitride
nitride film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003289821A
Other languages
Japanese (ja)
Other versions
JP2005064102A (en
Inventor
政明 佐藤
斉 松枝
洋介 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2003289821A priority Critical patent/JP4549039B2/en
Publication of JP2005064102A publication Critical patent/JP2005064102A/en
Application granted granted Critical
Publication of JP4549039B2 publication Critical patent/JP4549039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Description

本発明は、トランジスタなどの能動素子や受動素子を集積化した半導体集積回路の製造方法のうち、特にシリコン基板の隣接する素子領域の間に絶縁分離のための深溝を形成するとともにその素子領域の間の上面(深溝形成部上面)を絶縁膜で覆うことにより素子分離を行う半導体集積回路の製造方法に関するものである。   The present invention relates to a method of manufacturing a semiconductor integrated circuit in which active elements such as transistors and passive elements are integrated. In particular, a deep groove for insulation isolation is formed between adjacent element regions of a silicon substrate, and The present invention relates to a method for manufacturing a semiconductor integrated circuit in which element isolation is performed by covering an upper surface (upper surface of a deep groove forming portion) with an insulating film.

従来の主に高周波用として用いられるバイポーラあるいはBiCMOS半導体集積回路の半導体デバイス(以下素子領域と呼ぶ)間の電気的な素子分離のためには、シリコン基板上の素子領域を部分的に窒化シリコン膜で覆った後に熱酸化することにより、該窒化シリコン膜で覆われていなかった素子領域間に部分酸化シリコン膜を形成する、所謂部分シリコン酸化法(Local Oxidation of Silicon(LOCOS))と、素子領域の周囲に深溝を形成し、その深溝の内側壁を絶縁膜で覆った上、その深溝内にポリシリコン膜などを埋め込む、所謂深溝分離法(Deep Trench Isolation(DTI))が併用されることが多い。   In order to electrically isolate conventional semiconductor devices (hereinafter referred to as element regions) of bipolar or BiCMOS semiconductor integrated circuits mainly used for high frequency, the element region on the silicon substrate is partially made of a silicon nitride film. A so-called partial silicon oxide method (Local Oxidation of Silicon (LOCOS)) for forming a partial silicon oxide film between element regions not covered with the silicon nitride film by thermal oxidation after covering with the element region; A so-called deep trench isolation method (DTI) is used in which a deep groove is formed around the inner surface of the trench, an inner wall of the deep groove is covered with an insulating film, and a polysilicon film is embedded in the deep groove. Many.

この場合、LOCOS工程後にDTI工程を行う工程と、DTI工程後にLOCOS工程を行う工程が行われているので、両者の優劣を比較する。素子分離工程の後の工程でその上にポリシリコン電極を形成することを考慮すると、深溝に埋めたポリシリコン膜の上面は絶縁膜で覆う必要がある。簡単にはポリシリコン膜を埋め込み、全体をエッチバックした後にポリシリコン膜を酸化するのが良いが、LOCOS工程後にDTI工程を行う工程では、この酸化時間がLOCOS工程の酸化時間に加わるため熱処理時間が長くなり、素子分離工程の前に導入したシリコン基板内の不純物が拡散して、初期の目的の不純物分布からずれてしまう問題があった。   In this case, since the process of performing the DTI process after the LOCOS process and the process of performing the LOCOS process after the DTI process are performed, the superiority and inferiority of both are compared. Considering the formation of a polysilicon electrode on the element isolation step, it is necessary to cover the upper surface of the polysilicon film buried in the deep groove with an insulating film. In simple terms, it is preferable to oxidize the polysilicon film after embedding the polysilicon film and etching back the whole. However, in the process of performing the DTI process after the LOCOS process, the oxidation time is added to the oxidation time of the LOCOS process. However, there is a problem that impurities in the silicon substrate introduced before the element isolation step diffuse and deviate from the initial target impurity distribution.

これに対し、後者のDTI工程後にLOCOS工程を行う工程の場合、DTI工程では深溝内にポリシリコンを埋めてエッチバックするのみとし、LOCOS工程の酸化時にポリシリコン膜上部を酸化することで熱処理時間が短縮され、シリコン基板の不純物の再分布抑制に効果がある。   On the other hand, in the case of performing the LOCOS process after the latter DTI process, in the DTI process, only the polysilicon is buried in the deep groove and etched back, and the upper part of the polysilicon film is oxidized at the time of oxidation in the LOCOS process. This is effective in suppressing the redistribution of impurities in the silicon substrate.

しかしながら、前記のDTI工程後にLOCOS工程を行う工程を採用した場合、重大な問題を生じる場合があった。図3を用いてこの問題を説明する。図3(a)〜(c)は、DTI工程後にLOCOS工程を行う素子分離工程の断面を示す図である。図3(a)〜(c)において、11はシリコン基板、12A,12Cは酸化シリコン膜、13は部分酸化シリコン膜、14は窒化シリコン膜、15は深溝、16はポリシリコン膜、17は素子領域、18はビーズバーク(Bard's Beak)である。   However, when the process of performing the LOCOS process after the DTI process is employed, a serious problem may occur. This problem will be described with reference to FIG. 3A to 3C are views showing a cross section of an element isolation process in which a LOCOS process is performed after the DTI process. 3A to 3C, 11 is a silicon substrate, 12A and 12C are silicon oxide films, 13 is a partially oxidized silicon film, 14 is a silicon nitride film, 15 is a deep groove, 16 is a polysilicon film, and 17 is an element. Region 18 is a Bard's Beak.

まず、シリコン基板11に深溝15を形成し、その深溝15の内側壁を含む上面を酸化して酸化シリコン膜12A,12Cを形成した後、ポリシリコン膜を上面から堆積する。そして、表面側のポリシリコン膜をエッチバックして、深溝15内のみにポリシリコン膜16を残す。次に、窒化シリコン膜を堆積してからマスクで素子領域にのみ窒化シリコン膜14を残して他の窒化シリコン膜を除去すると、(図3(a))に示す構造となる。   First, the deep groove 15 is formed in the silicon substrate 11, the upper surface including the inner wall of the deep groove 15 is oxidized to form the silicon oxide films 12A and 12C, and then the polysilicon film is deposited from the upper surface. Then, the polysilicon film on the surface side is etched back to leave the polysilicon film 16 only in the deep groove 15. Next, when the silicon nitride film is deposited and then the other silicon nitride film is removed while leaving the silicon nitride film 14 only in the element region with a mask, the structure shown in FIG. 3A is obtained.

次に、高温の酸素、水素混合ガス中でシリコン基板11を酸化して、窒化シリコン膜14で覆われていなかった領域に部分酸化シリコン膜(LOCOS膜)13を形成する(図3(b))。最後に、窒化シリコン膜14およびその下の酸化シリコン膜12Aを除去すると、素子領域17が露出し他の素子領域から絶縁された素子分離構造が形成される(図3(c))。   Next, the silicon substrate 11 is oxidized in a high-temperature oxygen / hydrogen mixed gas to form a partial silicon oxide film (LOCOS film) 13 in a region not covered with the silicon nitride film 14 (FIG. 3B). ). Finally, when the silicon nitride film 14 and the underlying silicon oxide film 12A are removed, an element isolation structure is formed in which the element region 17 is exposed and insulated from the other element regions (FIG. 3C).

ここで、図3(b)のLOCOS膜の酸化時、表面に露出したシリコン基板11やポリシリコン膜16が酸化されるだけでなく、酸素は深溝15の内側壁に沿って該内側壁の酸化シリコン膜12C中を拡散するため、隣接したシリコン基板11やポリシリコン膜16が酸化され、酸化とともに所謂バーズビーク18がシリコン基板11に垂直に成長する。この酸化は体積の増加を伴うため、シリコン基板11に対し大きな力が加わることになる。この力は、バーズビーク18が大きいほど、あるいは酸化する温度が低いほど大きくなり、シリコン基板11にかかる力が限界に達すると、結晶欠陥を生じることになる(非特許文献1)。なお、深溝により素子領域を他から絶縁分離することについては、特許文献1〜3に記載がある。
Fヤン他著、「自己整合ダブルポリバイボーラ接合トランジスタにおけるコレクタ・エミッタ間漏洩の特性」、ジャーナル オブ エレクトロケミカルソサエティ、140巻、10号、3033−3037頁、1993年(F.Yang et al,“Characterization of Collector-Emitter Leakage in Self-Aligned Double-Poly Bipolar Junction Transistors”Journal of the Electrochemical Society,140,10,pp.3033-3037(1993))。 特開2002−190514号公報 特開2002−076109号公報 特開平06−232248号公報
Here, when the LOCOS film in FIG. 3B is oxidized, not only the silicon substrate 11 and the polysilicon film 16 exposed on the surface are oxidized, but oxygen is also oxidized along the inner wall of the deep groove 15. In order to diffuse through the silicon film 12C, the adjacent silicon substrate 11 and polysilicon film 16 are oxidized, and so-called bird's beaks 18 grow perpendicularly to the silicon substrate 11 along with the oxidation. Since this oxidation is accompanied by an increase in volume, a large force is applied to the silicon substrate 11. This force increases as the bird's beak 18 is larger or as the oxidation temperature is lower, and when the force applied to the silicon substrate 11 reaches a limit, a crystal defect is generated (Non-patent Document 1). In addition, Patent Documents 1 to 3 describe that the element region is insulated and separated from the other by the deep groove.
F. Yang et al., “Characteristics of Collector-Emitter Leakage in Self-Aligned Double Polybipolar Junction Transistors”, Journal of Electrochemical Society, Vol. 140, No. 10, pp. 3033-3037, 1993 (F. Yang et al, “Characterization of Collector-Emitter Leakage in Self-Aligned Double-Poly Bipolar Junction Transistors” Journal of the Electrochemical Society, 140, 10, pp. 3033-3037 (1993)). JP 2002-190514 A Japanese Patent Laid-Open No. 2002-076109 Japanese Patent Laid-Open No. 06-232248

そこで、これを防ぐには、深溝15の内側壁の酸化シリコン膜12Cの膜厚を薄くしたり、酸化温度を上げるのが効果的である。しかし、深溝15の内側壁の酸化シリコン膜12Cの膜厚を薄くすることは、素子分離の耐圧を下げることになり、また分離容量を上昇させて高周波特性の劣化につながる。また、酸化温度を上げると、素子分離工程の前に導入したシリコン基板11内の不純物が拡散して初期の目的の不純物分布からずれてしまい、本来のこのプロセスの長所を減じる。   In order to prevent this, it is effective to reduce the thickness of the silicon oxide film 12C on the inner wall of the deep groove 15 or raise the oxidation temperature. However, reducing the thickness of the silicon oxide film 12C on the inner wall of the deep groove 15 lowers the breakdown voltage of element isolation, and increases the isolation capacitance, leading to deterioration of high frequency characteristics. Further, when the oxidation temperature is raised, impurities in the silicon substrate 11 introduced before the element isolation step diffuse and deviate from the initial target impurity distribution, thereby reducing the original advantages of this process.

本発明は、上述の課題を解決するためになされたもので、DTI工程後にLOCOS工程を行う工程の長所である熱処理時間が少なく不純物の再分布を抑えられるという特徴を損なうことなく結晶欠陥の発生を抑えることができる素子分離のための半導体集積回路の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and crystal defects can be generated without impairing the feature that the heat redistribution time, which is the advantage of performing the LOCOS process after the DTI process, is small and the redistribution of impurities can be suppressed. An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit for device isolation that can suppress the above-described problem.

請求項1にかかる発明の製造方法は、シリコン基板の隣接する素子領域の間に絶縁分離のための深溝を形成するとともに前記素子領域の間の上面に絶縁膜を形成することにより素子分離を行う半導体集積回路の製造方法において、前記シリコン基板上の前記素子領域を覆う第1窒化シリコン膜をマスクとして熱酸化により前記絶縁膜として必要な膜厚よりも少ない膜厚の第1部分酸化シリコン膜を前記シリコン基板上に形成するとともに、酸化シリコン膜を前記第1窒化シリコン膜上面に形成する第1工程と、該第1工程の後、前記第1窒化シリコン膜上面の前記酸化シリコン膜および前記第1部分酸化シリコン膜を覆うように第2窒化シリコン膜を形成する第2工程と、該第2工程の後、該第2窒化シリコン膜上に前記深溝の加工用のマスクを形成して前記第2窒化シリコン膜および前記シリコン基板をエッチングすることにより前記シリコン基板上に前記深溝を形成する第3工程と、該第3工程の後、前記深溝の内側壁に絶縁膜を形成してから前記深溝内をポリシリコン膜で埋める第4工程と、該第4工程の後、前記第1窒化シリコン膜上面の前記酸化シリコン膜をマスクとして、沸騰リン酸により前記第2窒化シリコン膜を除去する第5工程と、該第5工程の後、前記第1窒化シリコン膜をマスクとして、熱酸化により前記第1部分酸化シリコン膜上にさらにシリコン酸化膜を形成し前記絶縁膜として必要な膜厚の第2部分酸化シリコン膜を形成する第6工程と、該第6工程の後、前記第1窒化シリコン膜上面の前記酸化シリコン膜および前記第1窒化シリコン膜を除去する第7工程と、を具備することを特徴とする。 In the manufacturing method according to the first aspect of the present invention, element isolation is performed by forming a deep groove for insulation isolation between adjacent element regions of a silicon substrate and forming an insulating film on the upper surface between the element regions. the method for manufacturing a semiconductor integrated circuit, said by the thermal oxidation of the first silicon nitride film covering the element region as a mask the silicon substrate, the first partial oxidation silicon film of less thickness than the required thickness as the insulating film Is formed on the silicon substrate, and a silicon oxide film is formed on the upper surface of the first silicon nitride film . After the first step, the silicon oxide film on the upper surface of the first silicon nitride film and the A second step of forming a second silicon nitride film so as to cover the first partial silicon oxide film; and after the second step, a mask for processing the deep groove on the second silicon nitride film. Forming a click, by etching the second silicon nitride film and the silicon substrate, and a third step of forming the deep groove on the silicon substrate, after the third step, the inner wall of the deep grooves A fourth step of filling the deep groove with a polysilicon film after forming an insulating film; and after the fourth step, the first oxide film on the upper surface of the first silicon nitride film is used as a mask to form the first groove with boiling phosphoric acid . A fifth step of removing the silicon nitride film; and after the fifth step, a silicon oxide film is further formed on the first partial silicon oxide film by thermal oxidation using the first silicon nitride film as a mask, and the insulation dividing a sixth step of forming a second partial oxidation silicon film of the required thickness as film, after the sixth step, the silicon oxide film and the first silicon nitride film of the first silicon nitride film top Characterized by comprising a seventh step of, a.

本発明の製造方法を用いることにより、深溝と部分酸化シリコン膜を併用した素子分離構造の製造時に、結晶欠陥の発生抑制と不純物の再分布防止のトレードオフを克服できるので、製造条件の自由度が増し、より高性能な半導体集積回路の製造が可能になる。   By using the manufacturing method of the present invention, it is possible to overcome the trade-off between suppression of crystal defects and prevention of redistribution of impurities when manufacturing an element isolation structure using a deep groove and a partially oxidized silicon film. As a result, higher performance semiconductor integrated circuits can be manufactured.

本発明では、LOCOS酸化の一部を先に行い、その選択酸化に用いた第1窒化シリコン膜をそのまま残した状態で、第2窒化シリコン膜を形成し、それをマスクとして深溝を形成してその深溝の内側壁を酸化した後にその深溝内にポリシリコン膜を埋め込みエッチバックした後、第2窒化シリコン膜を除去する。この除去には、沸騰リン酸を用いるが、沸騰リン酸を最良の状態に保てば、この液中では酸化シリコン膜はほとんどエッチングされない。第1窒化シリコン膜表面には、最初のLOCOS酸化で薄い酸化シリコン膜が成長しているため、これがマスクとなって第2窒化シリコン膜が除去された後も第1窒化シリコン膜はエッチングされず表面に残る。そこで、これをマスクとして残りのLOCOS酸化を行って素子領域とならないシリコン基板上に所望の絶縁膜を得る。このとき深溝に埋めたポリシリコン膜も酸化されるのでポリシリコン膜の上面は絶縁膜で覆われ、次工程以降にこの上面に形成されるポリシリコン膜との間に電気的な絶縁ができる。   In the present invention, a part of the LOCOS oxidation is performed first, the second silicon nitride film is formed with the first silicon nitride film used for the selective oxidation being left as it is, and a deep groove is formed using the second silicon nitride film as a mask. After oxidizing the inner side wall of the deep groove, a polysilicon film is buried in the deep groove and etched back, and then the second silicon nitride film is removed. For this removal, boiling phosphoric acid is used. If the boiling phosphoric acid is kept in the best condition, the silicon oxide film is hardly etched in this solution. Since a thin silicon oxide film is grown on the surface of the first silicon nitride film by the first LOCOS oxidation, the first silicon nitride film is not etched even after the second silicon nitride film is removed using this as a mask. Remains on the surface. Therefore, the remaining LOCOS oxidation is performed using this as a mask to obtain a desired insulating film on a silicon substrate that does not become an element region. At this time, since the polysilicon film buried in the deep groove is also oxidized, the upper surface of the polysilicon film is covered with an insulating film, and electrical insulation can be performed between the polysilicon film formed on the upper surface after the next step.

この方法により、DTI工程での深溝のポリシリコン膜の酸化を含むLOCOS酸化(残りのLOCOS酸化)時間の長さを任意に設定できるので、所定のLOCOS酸化膜厚を維持しながら深溝の内側壁に縦方向に成長するバーズビークを結晶欠陥に至らない程度に抑えることができる。従って、深溝の内側壁の酸化膜厚を厚くすることが可能になり、あるいは、酸化温度を下げて不純物の再分布を抑えることが可能になる。   By this method, the length of LOCOS oxidation (remaining LOCOS oxidation) time including oxidation of the polysilicon film in the deep groove in the DTI process can be arbitrarily set, so that the inner wall of the deep groove is maintained while maintaining a predetermined LOCOS oxide film thickness. In addition, the bird's beak that grows in the vertical direction can be suppressed to a level that does not lead to crystal defects. Therefore, it is possible to increase the oxide film thickness of the inner wall of the deep groove, or to reduce the redistribution of impurities by lowering the oxidation temperature.

以下、図1および図2を参照して本発明の製造工程(素子分離工程)を詳細に説明する。図1(a)〜(c)、図2(d)〜(e)は本発明の実施例1の製造工程の一例の断面図である。図1(a)〜(c)、図2(d)〜(e)において、11はシリコン基板、12A,12B,12Cは酸化シリコン膜、13Aは第1部分酸化シリコン膜、13Bは第2部分酸化シリコン膜(最終部分酸化シリコン膜)、14Aは第1窒化シリコン膜、14Bは第2窒化シリコン膜、15は深溝、16はポリシリコン膜、17は素子領域である。   Hereinafter, the manufacturing process (element isolation process) of the present invention will be described in detail with reference to FIGS. 1 (a) to 1 (c) and FIGS. 2 (d) to 2 (e) are cross-sectional views showing an example of the manufacturing process of the first embodiment of the present invention. In FIGS. 1A to 1C and FIGS. 2D to 2E, 11 is a silicon substrate, 12A, 12B and 12C are silicon oxide films, 13A is a first partial silicon oxide film, and 13B is a second part. A silicon oxide film (final partial silicon oxide film), 14A is a first silicon nitride film, 14B is a second silicon nitride film, 15 is a deep groove, 16 is a polysilicon film, and 17 is an element region.

最初に、素子分離工程前までの工程を行ったシリコン基板11上に、薄い熱酸化シリコン膜12Aと第1窒化シリコン膜14Aを形成する。ここでは、熱酸化シリコン膜12Aの膜厚56nmの上に、SiH2Cl2とNH3ガスを用いた減圧化学的気相成長法により膜厚200nmの窒化シリコン膜を堆積した。次に素子領域の部分が残るようにマスクをかけて他の部分の窒化シリコン膜を除去することにより第1窒化シリコン膜14Aを残す。 First, a thin thermally oxidized silicon film 12A and a first silicon nitride film 14A are formed on the silicon substrate 11 that has been subjected to the steps before the element isolation step. Here, a silicon nitride film having a thickness of 200 nm was deposited on the thermally oxidized silicon film 12A by a reduced pressure chemical vapor deposition method using SiH 2 Cl 2 and NH 3 gas on the film thickness of 56 nm. Next, a mask is applied so as to leave a part of the element region, and the silicon nitride film in the other part is removed to leave the first silicon nitride film 14A.

その後、LOCOS熱酸化により、第1窒化シリコン膜14Aで覆われていない部分に第1部分酸化シリコン膜13Aを成長させる(第1工程)(図1(a))。この第1工程では、シリコン基板11上に最終的に必要な酸化シリコン膜厚の全部を形成するのではなく、途中で止める。ここでは、温度950℃、酸素、水素混合ガス中で、膜厚200nmの第1部分酸化シリコン膜13Aを成長させた。このとき、第1窒化シリコン膜14Aの表面も薄く酸化されて、第1窒化シリコン膜14Aは酸化シリコン膜12Bで覆われる。この酸化シリコン膜12Bの膜厚はシリコン上に成長する第1部分酸化シリコン膜13Aの膜厚の約3%程度であり、ここでは膜厚約6nmの酸化シリコン膜12Bが成長した。   Thereafter, the first partial silicon oxide film 13A is grown on the portion not covered with the first silicon nitride film 14A by LOCOS thermal oxidation (first step) (FIG. 1A). In the first step, the entire required silicon oxide film thickness is not formed on the silicon substrate 11 but stopped halfway. Here, the first partial silicon oxide film 13A having a thickness of 200 nm was grown in a mixed gas of oxygen and hydrogen at a temperature of 950 ° C. At this time, the surface of the first silicon nitride film 14A is also oxidized thinly, and the first silicon nitride film 14A is covered with the silicon oxide film 12B. The thickness of the silicon oxide film 12B is about 3% of the thickness of the first partial silicon oxide film 13A grown on the silicon. Here, the silicon oxide film 12B having a thickness of about 6 nm is grown.

次に、第2窒化シリコン膜14Bを形成する(第2工程)。この第2工程では、同じく化学的気相成長法を用い、膜厚100nmの第2窒化シリコン膜14Bを堆積した。この第2窒化シリコン膜14Bは、DTI工程の深溝エッチングのマスクとして使われるとともに、深溝エッチング後の深溝内側壁酸化時に深溝以外の表面の酸化を防止するために必要である。   Next, a second silicon nitride film 14B is formed (second step). In the second step, the second silicon nitride film 14B having a thickness of 100 nm was deposited using the same chemical vapor deposition method. This second silicon nitride film 14B is used as a mask for deep groove etching in the DTI process, and is necessary for preventing oxidation of the surface other than the deep groove during oxidation of the inner wall of the deep groove after the deep groove etching.

次に堆積した第2窒化シリコン膜14B上に深溝用のマスクをかけて第2窒化シリコン膜14Bをエッチングし、この第2窒化シリコン膜14Bをマスクとしてシリコン基板11をエッチングして深溝15を形成する(第3工程)。この第3工程では、深溝15の溝幅は800nmとし、第2窒化シリコン膜14Bは、CF4とCHF3をエッチングガスとした反応性イオンエッチング法でエッチングした。また、深溝15は、HBr、SiF4、O2の混合ガスを用いた反応性イオンエッチング法で、深さ5μmエッチングした。 Next, a deep groove mask is applied on the deposited second silicon nitride film 14B to etch the second silicon nitride film 14B, and the silicon substrate 11 is etched using the second silicon nitride film 14B as a mask to form deep grooves 15. (Third step). In this third step, the groove width of the deep groove 15 is 800 nm, and the second silicon nitride film 14B is etched by a reactive ion etching method using CF 4 and CHF 3 as etching gases. The deep groove 15 was etched by a depth of 5 μm by a reactive ion etching method using a mixed gas of HBr, SiF 4 and O 2 .

その後、深溝15の電気的絶縁のため、深溝15の内側壁を酸化して酸化シリコン膜12Cで覆う。ここでは、温度950℃、酸素、水素混合ガス中で、膜厚100nmの酸化シリコン膜12Cを成長させた。そして、深溝15が埋まるようにポリシリコン膜を堆積する。このポリシリコン膜の膜厚は、深溝15が埋まるために最低でも深溝幅の半分より厚い必要があり、ここでは、溝幅と同じ、800nmのポリシリコン膜を、SiH4ガスを用いた減圧化学的気相成長法を用いて堆積した。さらに、このポリシリコン膜を全面エッチングし、深溝15内のみにポリシリコン膜16を残す(第4工程)(図1(b))。 Thereafter, in order to electrically insulate the deep groove 15, the inner wall of the deep groove 15 is oxidized and covered with the silicon oxide film 12C. Here, a silicon oxide film 12C having a film thickness of 100 nm was grown in a mixed gas of oxygen and hydrogen at a temperature of 950 ° C. Then, a polysilicon film is deposited so that the deep groove 15 is filled. The film thickness of this polysilicon film must be at least thicker than half the deep groove width in order to fill the deep groove 15, and here, the polysilicon film of 800 nm, which is the same as the groove width, is subjected to reduced pressure chemistry using SiH 4 gas. Deposited using a chemical vapor deposition method. Further, this entire polysilicon film is etched to leave the polysilicon film 16 only in the deep groove 15 (fourth step) (FIG. 1B).

ここでこのエッチングには、Cl2とO2の混合ガスを用いた反応性イオンエッチング法を用い、膜厚がエッチングされるより多いエッチング時間に設定することで、深溝15内のポリシリコン面の高さが最大でも最初に酸化した第1部分酸化シリコン膜13Aの上面と一致する様にした。このことにより、次の深溝内ポリシリコン膜16を含むLOCOS酸化後に、ポリシリコン膜16の上面の酸化シリコン膜が過度に第1部分酸化シリコン膜13Aの面より飛び出し、平坦性が悪化するのを防いだ。 Here, the reactive ion etching method using a mixed gas of Cl 2 and O 2 is used for this etching, and the film thickness is set to an etching time longer than that for etching, so that the polysilicon surface in the deep groove 15 is etched. Even if the height is maximum, it is made to coincide with the upper surface of the first partially oxidized silicon film 13A that is oxidized first. Thus, after the LOCOS oxidation including the next deep trench polysilicon film 16, the silicon oxide film on the upper surface of the polysilicon film 16 protrudes excessively from the surface of the first partial silicon oxide film 13A, and the flatness deteriorates. It was prevented.

次に、シリコン基板11の洗浄と希フッ酸処理をした後、沸騰リン酸液で第2窒化シリコン膜14Bを除去する(第5工程)。ここでは、第2窒化シリコン膜14Bが除去された後に第1窒化シリコン膜14Aが表面に表れるが、その表面は最初のLOCOS熱酸化時に薄く成長した酸化シリコン膜12Bで覆われている。沸騰リン酸ではその酸化シリコン膜12Bはほとんどエッチングされないので、沸騰リン酸液処理後も第1窒化シリコン膜14Aは除去されずに残る(図1(c))。ここでは、水分濃度を調整したリン酸液を用い温度150℃で30分エッチングした。このときの第2窒化シリコン膜14Bのエッチレートは4nm/分であり、この処理では第1窒化シリコン膜14Aは全くエッチングされなかつた。   Next, after cleaning the silicon substrate 11 and dilute hydrofluoric acid treatment, the second silicon nitride film 14B is removed with a boiling phosphoric acid solution (fifth step). Here, the first silicon nitride film 14A appears on the surface after the removal of the second silicon nitride film 14B, but the surface is covered with the silicon oxide film 12B that has grown thinly during the first LOCOS thermal oxidation. Since the silicon oxide film 12B is hardly etched by boiling phosphoric acid, the first silicon nitride film 14A remains without being removed even after the boiling phosphoric acid solution treatment (FIG. 1 (c)). Here, etching was performed at a temperature of 150 ° C. for 30 minutes using a phosphoric acid solution with adjusted water concentration. At this time, the etching rate of the second silicon nitride film 14B was 4 nm / min, and the first silicon nitride film 14A was not etched at all in this process.

次に、この第1窒化シリコン膜14Aをマスクとして、再度LOCOS熱酸化を行い、最終的に必要な膜厚の第2部分酸化シリコン膜13Bを得る(第6工程)(図2(d))。ここでは、温度950℃、酸素、水素混合ガス中で、さらに400nmの酸化シリコン膜を成長させ、最終的に600nmの第2部分酸化シリコン膜厚13Bを得た。   Next, using this first silicon nitride film 14A as a mask, LOCOS thermal oxidation is performed again to finally obtain a second partial silicon oxide film 13B having a required film thickness (sixth step) (FIG. 2 (d)). . Here, a 400 nm silicon oxide film was further grown in a mixed gas of oxygen and hydrogen at a temperature of 950 ° C., and finally a second partial silicon oxide film thickness 13B of 600 nm was obtained.

最後に、希フッ酸で第1窒化シリコン膜14A上の酸化シリコン膜12Bを除去した後、沸騰リン酸液でエッチングして、第1窒化シリコン膜14Aを除去して素子領域17を露出させ、素子分離工程を終える(第7工程)(図2(e))。   Finally, after removing the silicon oxide film 12B on the first silicon nitride film 14A with dilute hydrofluoric acid, etching is performed with boiling phosphoric acid solution to remove the first silicon nitride film 14A to expose the element region 17, The element isolation step is finished (seventh step) (FIG. 2 (e)).

なお、以上では、膜厚600nmの第2酸化シリコン膜13Bを得るために、200nmと400nmの2回に分割してLOCOS酸化を行ったが、この分割の割合は任意に変えることができる。この分割に関わるプロセス上の問題としては、深溝15内のポリシリコン膜16上の最終的な部分酸化シリコン膜の膜厚の確保と結晶欠陥とのトレードオフである。内側壁の酸化シリコン膜12Cの膜厚やLOCOS熱酸化時の温度の制約により結晶欠陥が懸念される場合は、最初のLOCOS熱酸化での第1部分酸化シリコン膜13Aの膜厚を増やせば良いが、その分、2回目のLOCOS熱酸化による膜厚が減って、深溝15のポリシリコン膜16上の第2部分酸化シリコン膜厚13Bが減少する。しかしながら、従来プロセスでのプロセス上の制約に比べ、制約が大幅に減ってプロセスの自由度が大きく増加する。   In the above, in order to obtain the second silicon oxide film 13B having a thickness of 600 nm, the LOCOS oxidation is performed by dividing into 200 nm and 400 nm twice, but the ratio of this division can be arbitrarily changed. A process problem related to this division is a tradeoff between securing the final thickness of the partial silicon oxide film on the polysilicon film 16 in the deep groove 15 and crystal defects. If there is a concern about crystal defects due to the film thickness of the silicon oxide film 12C on the inner wall or the temperature restriction during LOCOS thermal oxidation, the film thickness of the first partial silicon oxide film 13A in the first LOCOS thermal oxidation may be increased. However, the film thickness due to the second LOCOS thermal oxidation decreases, and the second partial silicon oxide film thickness 13B on the polysilicon film 16 in the deep groove 15 decreases. However, compared with the process restrictions of the conventional process, the restrictions are greatly reduced and the degree of freedom of the process is greatly increased.

(a)〜(c)は実施例1の素子分離工程を示す断面図である。(a)-(c) is sectional drawing which shows the element isolation process of Example 1. FIG. (d)〜(e)は実施例1の素子分離工程を示す断面図である。(d)-(e) is sectional drawing which shows the element isolation process of Example 1. FIG. (a)〜(c)は従来の素子分離工程を示す断面図である。(a)-(c) is sectional drawing which shows the conventional element isolation process.

符号の説明Explanation of symbols

11:シリコン基板
12A,12B,12C:酸化シリコン膜
13:部分酸化シリコン膜
13A:第1部分酸化シリコン膜
13B:第2部分酸化シリコン膜
14:窒化シリコン膜
14A:第1窒化シリコン膜
14B:第2窒化シリコン膜
15:深溝
16:ポリシリコン膜
17:素子領域
18:ビーズバーク
11: silicon substrates 12A, 12B, 12C: silicon oxide film 13: partial silicon oxide film 13A: first partial silicon oxide film 13B: second partial silicon oxide film 14: silicon nitride film 14A: first silicon nitride film 14B: first Silicon nitride film 15: Deep groove 16: Polysilicon film 17: Element region 18: Bead bark

Claims (1)

シリコン基板の隣接する素子領域の間に絶縁分離のための深溝を形成するとともに前記素子領域の間の上面に絶縁膜を形成することにより素子分離を行う半導体集積回路の製造方法において、
前記シリコン基板上の前記素子領域を覆う第1窒化シリコン膜をマスクとして熱酸化により前記絶縁膜として必要な膜厚よりも少ない膜厚の第1部分酸化シリコン膜を前記シリコン基板上に形成するとともに、酸化シリコン膜を前記第1窒化シリコン膜上面に形成する第1工程と、
該第1工程の後、前記第1窒化シリコン膜上面の前記酸化シリコン膜および前記第1部分酸化シリコン膜を覆うように第2窒化シリコン膜を形成する第2工程と、
該第2工程の後、該第2窒化シリコン膜上に前記深溝の加工用のマスクを形成して前記第2窒化シリコン膜および前記シリコン基板をエッチングすることにより前記シリコン基板上に前記深溝を形成する第3工程と、
該第3工程の後、前記深溝の内側壁に絶縁膜を形成してから前記深溝内をポリシリコン膜で埋める第4工程と、
該第4工程の後、前記第1窒化シリコン膜上面の前記酸化シリコン膜をマスクとして、沸騰リン酸により前記第2窒化シリコン膜を除去する第5工程と、
該第5工程の後、前記第1窒化シリコン膜をマスクとして、熱酸化により前記第1部分酸化シリコン膜上にさらにシリコン酸化膜を形成し前記絶縁膜として必要な膜厚の第2部分酸化シリコン膜を形成する第6工程と、
該第6工程の後、前記第1窒化シリコン膜上面の前記酸化シリコン膜および前記第1窒化シリコン膜を除去する第7工程と、
を具備することを特徴とする半導体集積回路の製造方法。
In a method for manufacturing a semiconductor integrated circuit in which element isolation is performed by forming a deep groove for insulation isolation between adjacent element regions of a silicon substrate and forming an insulating film on an upper surface between the element regions.
By the thermal oxidation of the first silicon nitride film covering the element region as a mask on the silicon substrate, to form the insulating layer first portion silicon oxide film of less thickness than the required thickness as the silicon substrate And a first step of forming a silicon oxide film on the upper surface of the first silicon nitride film ;
After the first step, a second step of forming a second silicon nitride film so as to cover the silicon oxide film and the first partial silicon oxide film on the upper surface of the first silicon nitride film;
After the second step, to form a mask for processing of the deep groove on the second silicon nitride film, by etching the second silicon nitride film and the silicon substrate, the deep groove on the silicon substrate A third step of forming
After the third step, a fourth step of filling the deep groove with a polysilicon film after forming an insulating film on the inner wall of the deep groove;
After the fourth step, a fifth step of removing the second silicon nitride film with boiling phosphoric acid using the silicon oxide film on the upper surface of the first silicon nitride film as a mask ;
After the fifth step, by using the first silicon nitride film as a mask, a silicon oxide film is further formed on the first partial silicon oxide film by thermal oxidation, and a second partial silicon oxide film having a necessary thickness as the insulating film is formed. A sixth step of forming a film;
After the sixth step, a seventh step of removing the silicon oxide film and the first silicon nitride film on the upper surface of the first silicon nitride film ;
A method for manufacturing a semiconductor integrated circuit, comprising:
JP2003289821A 2003-08-08 2003-08-08 Manufacturing method of semiconductor integrated circuit Expired - Fee Related JP4549039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289821A JP4549039B2 (en) 2003-08-08 2003-08-08 Manufacturing method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289821A JP4549039B2 (en) 2003-08-08 2003-08-08 Manufacturing method of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2005064102A JP2005064102A (en) 2005-03-10
JP4549039B2 true JP4549039B2 (en) 2010-09-22

Family

ID=34368031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289821A Expired - Fee Related JP4549039B2 (en) 2003-08-08 2003-08-08 Manufacturing method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP4549039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821413B1 (en) 2011-09-26 2018-01-24 매그나칩 반도체 유한회사 An isolation structure, an semiconductor device comprising the isolation structure, and method for fabricating the isolation structure thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685051A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Manufacture of semiconductor device
JPH11243153A (en) * 1997-12-25 1999-09-07 Matsushita Electron Corp Manufacture of semiconductor device
JP2002190515A (en) * 2000-12-21 2002-07-05 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2003045957A (en) * 2001-05-18 2003-02-14 Samsung Electronics Co Ltd Method of isolating elements of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685051A (en) * 1992-08-31 1994-03-25 Fujitsu Ltd Manufacture of semiconductor device
JPH11243153A (en) * 1997-12-25 1999-09-07 Matsushita Electron Corp Manufacture of semiconductor device
JP2002190515A (en) * 2000-12-21 2002-07-05 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2003045957A (en) * 2001-05-18 2003-02-14 Samsung Electronics Co Ltd Method of isolating elements of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821413B1 (en) 2011-09-26 2018-01-24 매그나칩 반도체 유한회사 An isolation structure, an semiconductor device comprising the isolation structure, and method for fabricating the isolation structure thereof

Also Published As

Publication number Publication date
JP2005064102A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
TWI644395B (en) Semiconductor device and method of manufacturing same
KR100809841B1 (en) Semiconductor device with sti and its manufacture
KR100772109B1 (en) Method for forming isolation layer of semiconductor device
JP2004311487A (en) Method of manufacturing semiconductor device
KR20090008004A (en) Semiconductor device having sti structure and method for manufacturing the same
JP2006196843A (en) Semiconductor device and manufacturing method thereof
US20020127818A1 (en) Recess-free trench isolation structure and method of forming the same
JP2006108646A (en) Semiconductor device and method of manufacturing the same
KR100407567B1 (en) Trench Isolation Process Without Dent
KR20080095621A (en) Method of forming an isolation layer in semiconductor device
JPH11145273A (en) Manufacture of semiconductor device
JP2008294445A (en) Semiconductor element having sti structure, and method of manufacturing the same
JP4549039B2 (en) Manufacturing method of semiconductor integrated circuit
US6303467B1 (en) Method for manufacturing trench isolation
KR100353821B1 (en) method of fabricating semiconductor device using trench type isolation process
JP2003273207A (en) Method of manufacturing semiconductor device
JP2004152851A (en) Method of manufacturing semiconductor device
KR100500943B1 (en) Method for protecting moat in semiconductor device with selective silicon recess
KR20000044560A (en) Method for forming trench isolation film of semiconductor device
KR101026375B1 (en) Isolation of semiconductor device and forming method thereof
KR100277435B1 (en) How to Form Trench Isolation in Semiconductor Devices
JP3844239B2 (en) Manufacturing method of semiconductor device
JP2002100670A (en) Semiconductor device and its manufacturing method
KR100481909B1 (en) Method for forming an isolation layer in semiconductor device
KR19990055791A (en) Device Separation Method of Semiconductor Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4549039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees