JPS62254413A - Manufacture of radial anisotropic ring-form sintered magnet - Google Patents

Manufacture of radial anisotropic ring-form sintered magnet

Info

Publication number
JPS62254413A
JPS62254413A JP9881186A JP9881186A JPS62254413A JP S62254413 A JPS62254413 A JP S62254413A JP 9881186 A JP9881186 A JP 9881186A JP 9881186 A JP9881186 A JP 9881186A JP S62254413 A JPS62254413 A JP S62254413A
Authority
JP
Japan
Prior art keywords
magnet
sintered
ring
magnetic field
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9881186A
Other languages
Japanese (ja)
Inventor
Ryuichi Ozaki
隆一 尾崎
Yukihiko Shiobara
幸彦 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9881186A priority Critical patent/JPS62254413A/en
Publication of JPS62254413A publication Critical patent/JPS62254413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To form a high-performance and low-cost R-Fe-B radial magnet by applying a magnetic field in a specified direction to a kneaded substance which is put in a mold. CONSTITUTION:A magnet powder mainly consisting of R-Fe-B is mixed with an organic binder and kneading is done. A molded body obtained by injection molding of a kneaded substance in a magnetic field is sintered to form a sintered rare earth magnet M. A magnetic field is applied to the kneaded substance put in said ring-form cavity in a mold radially from the center of the ring-form cavity. Accordingly, a large radial sintered magnet M which is thin and has a large diameter (d) can be obtained without requiring the modulating process of the thickness (t) after sintering.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR−F$−B系うジアル異方注りンダ状焼結磁
石0製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an R-F$-B based radial anisotropically cast sintered magnet.

〔従来の技術〕[Conventional technology]

・  サマリウム(Sfi)を中心とする希土類とコバ
ル) (GO)を主成分とする従来の希土類磁石でラジ
アル異方性リング状磁石を作る場合、焼結法では異方性
方向と他O方向O間O線膨張係数0違vstlcよる焼
結収縮時0割れ、あるvhは着一時の衝撃による割れ・
欠は等の理由により特開昭59−140335号公報で
示されるような、圧縮成形法・射出成形法等、製造方法
には関係なく)jtJ造は困 難であり、耐衝撃性に優
れた樹脂結合法により製造されていた。
・When making a radially anisotropic ring-shaped magnet using a conventional rare earth magnet mainly composed of samarium (Sfi) and cobal (GO), the sintering method is used to create a radially anisotropic ring-shaped magnet, with anisotropic direction and other O direction. 0 cracking due to sintering shrinkage due to 0 difference in linear expansion coefficient vs.
Due to such reasons, it is difficult to make JtJ construction (regardless of the manufacturing method, such as compression molding or injection molding, as shown in Japanese Patent Application Laid-Open No. 140335/1983), and it is difficult to make JTJ construction, which has excellent impact resistance. Manufactured by resin bonding method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ラジアル異方性リング状樹脂結合型磁石の場合、非磁性
の樹脂を10〜40体積チ含んでいる九めそOa1気性
能は焼結磁石にくらべて鏝大エネルギー積(以下(BH
)mzと略す)で半分以下にまで低下するという問題点
がありた。こ〇九め磁気性能に優れ、また収縮時0割れ
、着磁時の割れ、欠けQ無IAIt−yε−B系焼結磁
石を用いたラジアル異方性リング状焼結磁石が登場して
きた。しかしながら、R−y、−B系焼結磁石は通常圧
縮成形で成形後、焼結するという製造工種(特開昭59
−46008号公報)からなって^るため、成形品の肉
厚が薄めリング状磁石などでは磁石粉末を型の中に充て
んする時充てんむらが生じ、焼結の時変形や歪が発生す
るという問題点があり、安定して製造するためには成形
体の肉厚を厚くシ、焼結後適当な厚さにまで加工する必
要がある丸め。
In the case of radial anisotropic ring-shaped resin-bonded magnets, which contain 10 to 40 volumes of non-magnetic resin, the performance is much higher than that of sintered magnets.
) mz) was reduced to less than half. Recently, radial anisotropic ring-shaped sintered magnets using IAIt-yε-B-based sintered magnets, which have excellent magnetic performance and are free from zero cracking during contraction, cracking during magnetization, and chipping, have appeared. However, Ry, -B based sintered magnets are manufactured using compression molding and then sintering (Japanese Patent Laid-Open No. 59
46008), the wall thickness of the molded product is thin, such as ring-shaped magnets, which causes uneven filling when filling the mold with magnet powder, which causes deformation and distortion during sintering. Rounding is problematic because in order to produce it stably, it is necessary to thicken the wall of the molded body and process it to an appropriate thickness after sintering.

コストの上昇、加工劣化による磁気性能0低下と^りた
問題点がある。
There are problems such as an increase in cost and a zero decrease in magnetic performance due to processing deterioration.

本発明はとυような問題点を解決するも0で。The present invention solves the problems as follows.

その目的とするところは焼結vko加工を必要としなめ
ラジアル異方性リング状焼結磁石O製造方法を提供する
ところにある。
The purpose is to provide a method for manufacturing a sintered radial anisotropic ring-shaped sintered magnet O that requires sintering VKO processing.

〔問題を解決するための手段〕[Means to solve the problem]

本発明Oラジアル異方性リング状焼結磁石O製造方法は
、R−シ$−Bt−主成分とする磁石粉末を有機バイン
ダーと混合及びaHを行な^、こO混練物を磁場中で射
出成形して得られた成形体を焼結する希土類焼結磁石の
製造方法において、金型中ct’)ング状キャビティ内
に充てんされた前記混練物に対し磁場をリング状中ヤビ
テイの中心から径方向へ印加することt−isとする。
The method for producing a radial anisotropic ring-shaped sintered magnet according to the present invention involves mixing magnet powder mainly composed of R-S$-Bt-with an organic binder and performing aH, and then stirring the O kneaded product in a magnetic field. In a method for manufacturing a rare earth sintered magnet in which a molded body obtained by injection molding is sintered, a magnetic field is applied to the kneaded material filled in a ring-shaped cavity in a mold from the center of a ring-shaped cavity. It is assumed that t-is is applied in the radial direction.

本発明に使用されるR−’IPg−B系磁石O希土類戊
分には、イツトリウム(7)を含むランタン(I6)か
らルテチウム(IJt&)までθ各元素の中01種およ
び2fi以上の組合せ、またC#−ジジム■ようなC#
−プラセオジウム(Pr)−ネオジウム(lid)から
なる混合希±を使用してもよい、そしてFe01it−
coやアルミニウム(ムりある6はニオブ(1&)のよ
うな元素でII換したものも含まれる。使用する有機バ
インダーは(熱町ma樹脂、滑剤、そして町星剤からな
り、BVム)ポリスチレン、ポリエチレンあるVkはポ
リビニルアルコールなどO熱町m性樹脂、滑剤としてス
テアリン酸亜鉛、ステアリン酸アルミニウムなどQ金属
セッケン、町履剤としてジエチルフタレート、ジブチル
フタレートなどを使用する。磁石粉末と有機バインダー
はパッチ式■混練礪ま九は連続混練FIAt−用いて十
分に混練し、この混練物は造粒機により造粒される。
The R-'IPg-B system magnet O rare earth element used in the present invention includes combinations of 01 and 2fi or more of θ elements from lanthanum (I6) containing yttrium (7) to lutetium (IJt&), Also, C#-jijim■ Like C#
- A mixed dilution consisting of praseodymium (Pr)-neodymium (lid) may be used, and Fe01it-
Co and aluminum (Muriar 6 also includes those converted to II with elements such as niobium (1&). The organic binder used is (consisting of Netsumachi ma resin, lubricant, and machisei agent, BV mu) polystyrene. , polyethylene Vk uses O-thermal resin such as polyvinyl alcohol, Q metal soap such as zinc stearate and aluminum stearate as a lubricant, diethyl phthalate, dibutyl phthalate, etc. as a slip agent.Magnetic powder and organic binder are used as a patch. The kneaded mixture of formula (1) is sufficiently kneaded using a continuous kneading FIAt-, and this kneaded product is granulated using a granulator.

こO造粒物は射出成形機に入れられ、ラジアル方向に山
加された磁場中で射出成形縁焼結される。
The O granules are placed in an injection molding machine and sintered at the edges of the injection molding in a magnetic field applied in the radial direction.

焼結雰囲気はアルゴン(ムr〕ガス、水素(Hs)  
ガスそして真空であれば何れでもよい。
Sintering atmosphere is argon (Mr) gas, hydrogen (Hs)
Any gas or vacuum may be used.

〔実施例−1〕 3111図に本発明の製造方法を表わす工程図を示す1
組成比がC61ael’rs、*Nd64Dy14Fs
+HGo lo”sで表わされる鋳造インゴットt−低
周波溶解炉を用^Afガス中で作成する。こ0鋳造イン
ゴツトはロッドミルで粗粉砕後、ボールミルを用いてモ
均粒径が約5μsKなるまで微粉砕を行なう、得られた
粉末は、范1表で示す櫟な配合比で有機バインダーと混
合され、嬉2表に示す成形条件で射出成形する。成形体
はその後5XlO″″’ (Torr) O真空中で6
00℃×8時間脱バインダー処理を行な^、さらにAj
ガス中で1060℃×2時間焼結後急冷する。
[Example-1] Figure 3111 shows a process diagram showing the manufacturing method of the present invention.
Composition ratio is C61ael'rs, *Nd64Dy14Fs
A cast ingot represented by +HGo lo's is prepared in a low frequency melting furnace in a low frequency melting furnace.The cast ingot is coarsely ground in a rod mill, and then finely ground in a ball mill until the average particle size becomes approximately 5 μsK. The powder obtained after pulverization is mixed with an organic binder at the proper blending ratio shown in Table 1, and injection molded under the molding conditions shown in Table 2. 6 in vacuum
Perform binder removal treatment at 00°C for 8 hours, and then
After sintering in gas at 1060°C for 2 hours, it is rapidly cooled.

嬉1表 第   2   表 得られたφ18×φ15xt3(scg)の焼結体から
試験片を切り出し、49KOtQ磁場で/くルス着磁を
行ない、振動試料型磁力計で測定した結果t−g3表に
示す、比較列は従来O樹脂結合型ラジアル異方ala石
を同様に切り出して測定したも0である。
A test piece was cut out from the obtained sintered body of φ18×φ15xt3 (scg), and it was magnetized in a 49KOtQ magnetic field and measured with a vibrating sample magnetometer.The results are shown in Table t-g3. The comparison column shown is 0 when a conventional O-resin bonded radial anisotropic ala stone was similarly cut out and measured.

第3表 tl/X3表より本発明nは、比較列にくらべて2倍以
上0高い性能を有して^ることか判る。
From Table 3, tl/X3, it can be seen that the invention n has a performance that is more than twice as high as that of the comparison series.

〔実施列−2〕 従来Qプレス成形を用いた製造方法の工程図をwX2図
に示す1組成比で”#6.1”dl&、lFg−ムJl
aMb4Bmからなる鋳造インゴット1に低周波溶解炉
を用iムrガス中で作成する。こO鋳造インゴットを用
iて酵1図及び@2図Oa造方法に従い磁石t−作る。
[Implementation row-2] The process diagram of the manufacturing method using conventional Q press molding is shown in the wX2 diagram.
A cast ingot 1 made of aMb4Bm is prepared in a low frequency melting furnace in IR gas. Using this O casting ingot, a magnet T- is made according to the fermentation method shown in Figures 1 and 2.

成形体の形状はφ12 Xφ7 X t 4.5 (w
)シよびφ23Xφ19 X t 4.5 (IJ)の
2種類とする1本発明0製造条件は実施列1と同じであ
り、比較列○製造条件は5μmまで粉砕後との微粉末に
ステアリン酸亜鉛1.5重量係添加、混紡−造粒を行な
い、そOll O(KO+++ ) Oa揚場中2.5
 totlΔ−で成形し。
The shape of the molded body is φ12 x φ7 x t 4.5 (w
) and φ23Xφ19 1.5 weight ratio was added, blended spinning and granulation were carried out, and Oll O (KO+++) Oa 2.5
Molded with totlΔ-.

得られ九成形体を400℃×2時間脱バインダーを行な
い、1060′cX3時間焼結して急冷する。
The resulting molded body was debindered at 400° C. for 2 hours, sintered at 1060° C. for 3 hours, and rapidly cooled.

得られた磁石を振動試料型磁力針で測定し、この磁気比
能と磁石O良品率をWX4表に示す、良品はラジアル磁
石O外径、内径において、径の最大直と最小[0差が2
%以内の製品を云う1本発明の第    4    表 a遣方法によれば比較列に対して磁気性能ではほぼ同じ
であるが、良品率では格段に優れておりコス)l低減化
に非常に役立つとめえる。
The obtained magnet was measured with a vibrating sample type magnetic needle, and the magnetic specific capacity and magnet O non-defective rate are shown in Table WX4. 2
According to the method of presentation in Table 4 of the present invention, which refers to products within 1%, magnetic performance is almost the same as in the comparison column, but the quality of products is much better, and it is very useful for reducing costs. I can stop.

〔実tIA列−3〕 第1図および第2図で示される2り■製造方法を用いて
% C−榊P−シ・Md−m”yl、al@Co饅B−
の組成からなるラジアル異方性リング状焼結磁石を作成
する。 1iB5c)形状扛φ20Xφ18Xt4(I
u)C’リング状である。従来の製造方法では焼結状態
で肉厚1 (M ) Oリング磁石は歩留りが甑めて悪
く実用化にならな^ため、φ21Xφ18Xt4(藺)
O磁石から、外周を研削して作成した。こ02つ0磁石
Qal気特性を115表に示す。
[Actual tIA sequence-3] Using the two manufacturing methods shown in Figures 1 and 2, % C-Sakaki P-C Md-m”yl, al@Co饥B-
A radially anisotropic ring-shaped sintered magnet with the composition is created. 1iB5c) Shape φ20Xφ18Xt4(I
u) It is C' ring shaped. In the conventional manufacturing method, O-ring magnets with a wall thickness of 1 (M) in the sintered state have poor yields and cannot be put into practical use.
It was created by grinding the outer periphery of an O magnet. The Qal characteristics of this 020 magnet are shown in Table 115.

眞5表 比較列Ogi気特性0低下は加工劣化によるものと考え
られ、後加工が不要で精密な寸法精度O焼結体が得られ
る本発明法は性能的にもコスト的にも優れているといえ
る。
Table 5 Comparison row The decrease in Ogi properties to 0 is thought to be due to processing deterioration, and the method of the present invention, which does not require post-processing and can obtain a sintered body with precise dimensional accuracy, is superior in terms of performance and cost. It can be said.

〔実施列4〕 本発明及び従来の製造方法を用いて第3図に見られるラ
ジアル磁石を作成する。リングの外径d=24(闘)高
さh−4(m ) O寸法のとき、肉厚10直を減少さ
せて焼結磁石の製造が可能な限界I[を求めた。また同
様に、t=1.5 (sa) 、ルー 4 (w ) 
10寸寸法とき、do[を増加させて焼結磁石の製造が
可能な限界値を求めた。製造方法別OL及びdC)咳を
第6表に示す、尚、製造条件は成形製O形状・大きさを
除き実施列2と同じとする9本発明の製造方法に従来の
プレス成形ではlE6表 得られなかった薄肉かつ径の大き^ラジアル焼結磁石を
焼結後O加工を必要としないで得ることができる。
[Run 4] The radial magnet shown in FIG. 3 is made using the present invention and conventional manufacturing methods. When the outer diameter of the ring is d = 24 (mm) and the height is h - 4 (m), the limit I [that allows the manufacture of a sintered magnet by reducing the wall thickness of 10 squares was determined. Similarly, t=1.5 (sa), Roux 4 (w)
When the size was 10, the limit value at which a sintered magnet could be manufactured was determined by increasing do[. OL and dC) Cough by manufacturing method are shown in Table 6.The manufacturing conditions are the same as in Example 2 except for the shape and size of the molded O.9For the manufacturing method of the present invention and conventional press molding, Table 1E6 It is possible to obtain thin-walled and large-diameter radial sintered magnets without requiring O processing after sintering.

〔発明Q効果〕[Invention Q effect]

以上述べてきたように本発明によれば、R−11P$−
B系うジアル異方性リング状焼結磁石の製造方法として
射出成形法を用^ることKより、高性能かつ低コストの
ラジアル磁石O製造が可能となるという効果を有する。
As described above, according to the present invention, R-11P$-
The use of injection molding as a manufacturing method for B-based radial anisotropic ring-shaped sintered magnets has the effect of making it possible to manufacture high-performance, low-cost radial magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法を示す図。 第2図は従来O1+j造方法を示す図。 第3図は実施列で作成したラジアル異方性リング状焼結
ラジアル磁石を示す図。 d−・・外径 1−・・肉厚 h・・・高さ 以   上 出願人 セイコーエプソン株式会社 第1図 第2図
FIG. 1 is a diagram showing the manufacturing method of the present invention. FIG. 2 is a diagram showing a conventional O1+j manufacturing method. FIG. 3 is a diagram showing a radial anisotropic ring-shaped sintered radial magnet prepared in the practical row. d-...Outer diameter 1-...Thickness h...Height or more Applicant: Seiko Epson Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  希土類(R)、鉄(Fe)及びホウ素(B)を主成分
とする磁石粉末を有機バインダーと混合及び混練を行な
い、この混練物を磁場中で射出成形して得られた成形体
を焼結する希土類焼結磁石の製造方法において、金型中
のリング状キャビティ内に充てんされた前記混練物に対
し磁場をリング状キャビティの中心から径方向に印加す
ることを特徴とするラジアル異方性リング状焼結磁石の
製造方法。
Magnet powder containing rare earth (R), iron (Fe), and boron (B) as main components is mixed and kneaded with an organic binder, and the kneaded product is injection molded in a magnetic field, and the resulting molded body is sintered. A radial anisotropic ring characterized in that a method for manufacturing a rare earth sintered magnet comprises applying a magnetic field to the kneaded material filled in a ring-shaped cavity in a mold in a radial direction from the center of the ring-shaped cavity. A method for manufacturing a shaped sintered magnet.
JP9881186A 1986-04-28 1986-04-28 Manufacture of radial anisotropic ring-form sintered magnet Pending JPS62254413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9881186A JPS62254413A (en) 1986-04-28 1986-04-28 Manufacture of radial anisotropic ring-form sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9881186A JPS62254413A (en) 1986-04-28 1986-04-28 Manufacture of radial anisotropic ring-form sintered magnet

Publications (1)

Publication Number Publication Date
JPS62254413A true JPS62254413A (en) 1987-11-06

Family

ID=14229713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9881186A Pending JPS62254413A (en) 1986-04-28 1986-04-28 Manufacture of radial anisotropic ring-form sintered magnet

Country Status (1)

Country Link
JP (1) JPS62254413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984270B2 (en) * 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984270B2 (en) * 2001-10-31 2006-01-10 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7618496B2 (en) 2001-10-31 2009-11-17 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
US7948135B2 (en) 2001-10-31 2011-05-24 Shin-Etsu Chemical Co., Ltd. Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor

Similar Documents

Publication Publication Date Title
KR100452787B1 (en) Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet
JPS61289605A (en) Manufacture of rare earth-boron permanent magnet
JPS59211549A (en) Adhered rare earth element-iron magnet
US4063970A (en) Method of making permanent magnets
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JP2911017B2 (en) Manufacturing method of radial anisotropic rare earth sintered magnet
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPS62254413A (en) Manufacture of radial anisotropic ring-form sintered magnet
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPH07122414A (en) Rare earth permanent magnet and manufacture thereof
Chang et al. The influence of sintering aids on the texture and remanence of Nd-Fe-B magnet alloys
JPH10199717A (en) Anisotropic magnet and its manufacturing method
KR930011237B1 (en) Re-magnetic materials
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JP2696100B2 (en) Manufacturing method of magnetic anisotropic sintered magnet
KR970009409B1 (en) Permanent magnet material processing method
JPH0278204A (en) High-polymer composite-type rare-earth magnet and its manufacture
JPS58199802A (en) Permanent magnet material
JPH053124B2 (en)
JP2000297306A (en) Production of magnetic powder
JPH03110804A (en) Manufacture of nd-fe-b bonded magnet
JPH07230907A (en) Manufacture of polymer compound type rare earth magnet material
JPH0245901A (en) Powder for polymer composite type rare earth magnet
JPS63306603A (en) Material composition of permanent magnet