JPS62252962A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS62252962A
JPS62252962A JP61031063A JP3106386A JPS62252962A JP S62252962 A JPS62252962 A JP S62252962A JP 61031063 A JP61031063 A JP 61031063A JP 3106386 A JP3106386 A JP 3106386A JP S62252962 A JPS62252962 A JP S62252962A
Authority
JP
Japan
Prior art keywords
region
type
bit line
conductivity type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61031063A
Other languages
Japanese (ja)
Inventor
Shigeo Uotani
魚谷 重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61031063A priority Critical patent/JPS62252962A/en
Publication of JPS62252962A publication Critical patent/JPS62252962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent erroneous operation cuased by the input of radiation such as alpha rays into a memory chip, by forming a P<+> type region, which has a concentration higher than that of a P<-> type substrate by an order of magnitude or more, directly beneath an N<+> region, which is connected to a bit line. CONSTITUTION:P<+> type impurities are selectively injected and diffused in a P<-> type semiconductor substrate 1. A P<+> region 9 for preventing inversion and parasitic phenomena is formed. At the same time, an element isolating and insulating film 8 is formed. Then, an N<+> region 6, a P<+> region 12, gate electrodes 2 and 3 and N<+> regions 5 and 7 are formed. Then, an interlayer insulating film 14 is laminated, and a contact hole 15 is formed by etching. Then, with the contact hole 15 as a mask, silica glass, which inludes P-type impurity ions such as boron and can be rotated and applied, is rotated and applied. Thereafter, a P<+> region 13 is formed by heat treatment. After interconnection is performed, a low-permittivity material is formed on the entire surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電荷の有無を記憶情報とする半導体記憶装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device that uses the presence or absence of electric charge as stored information.

〔従来の技術〕[Conventional technology]

従来のこの種の半導体装置の例として、256にダイナ
ミックMOSRAMのメモリセルの構成を第2図に示し
である。すなわち、この第2図において、1はP−型の
導電性をもつ半導体基板、2および3は第1層および第
2層のゲート電極、4はゲート絶縁膜、6は電荷蓄積領
域、7はビット線としてのN″領域8は素子間分離絶縁
膜、9は反転、寄生防止のためのP″領域10.11は
空乏層、14は層間絶縁膜、15はコンタクトホール、
16はワード線、17はコンデンサ電源である。
As an example of a conventional semiconductor device of this type, the structure of a dynamic MOSRAM memory cell 256 is shown in FIG. That is, in FIG. 2, 1 is a semiconductor substrate with P-type conductivity, 2 and 3 are gate electrodes of the first and second layers, 4 is a gate insulating film, 6 is a charge storage region, and 7 is a semiconductor substrate with P-type conductivity. N'' region 8 as a bit line is an inter-element isolation insulating film, 9 is inversion, P'' region 10 and 11 are depletion layers for parasitic prevention, 14 is an interlayer insulating film, 15 is a contact hole,
16 is a word line, and 17 is a capacitor power supply.

このような装置ではワード線の電位があがり、このワー
ド線に接続されているトランスファーゲートとしての第
2層のゲート電極3の電位がしきい値電圧よりも高くな
ると、このゲート電極3の直下にN°反転層のチャネル
が形成されて、両N゛領域6,7間が導通ずる。
In such a device, when the potential of the word line increases and the potential of the second layer gate electrode 3 as a transfer gate connected to this word line becomes higher than the threshold voltage, the voltage immediately below this gate electrode 3 increases. A channel of the N° inversion layer is formed, and conduction occurs between both N° regions 6 and 7.

そこで、今、メモリセルの記憶情報が“0”。Therefore, the information stored in the memory cell is now "0".

すなわちN″領域6に電子が蓄積されている状態の場合
には、このN“領域6とビット線としてのN″領域7と
が導通することによって、それまで中間電位に保持され
ていたこのN″領域7の電位が下がり、また反対にメモ
リセルの記憶情報が“1”すなわちN+領域6に電子が
蓄積されていない状態の場合には、この導通によって中
間電位にあったN″領域7の電位が上がることになる。
In other words, when electrons are accumulated in the N'' region 6, conduction occurs between the N'' region 6 and the N'' region 7, which serves as a bit line, so that this N'' region, which was previously held at an intermediate potential, When the potential of the `` region 7 decreases, and conversely, the stored information of the memory cell is ``1'', that is, when no electrons are stored in the N+ region 6, this conduction causes the potential of the N'' region 7, which was at an intermediate potential, to decrease. The potential will rise.

そしてこのビット線の電位の変化を図示しないセンスア
ンプにより感知、増巾して取り出すと共に、同じ記憶情
報をリフレッシュして同一サイクル内に再度メモリセル
に書き込むようにしているのである。
This change in the potential of the bit line is sensed by a sense amplifier (not shown), amplified and taken out, and the same stored information is refreshed and written into the memory cell again within the same cycle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のメモリセルはこのように構成されており、電荷蓄
積領域ならびにビット線がN°令頁域あるいいはN゛反
転層で形成されているために、α線などの放射線がメモ
リチップ内に入射して生成される電子・正孔対の内、電
子がこれらの電荷蓄積領域やビット線に収集されて、本
来の記憶情報を反転させる。このため、誤動作(以下ソ
フトエラーと呼ぶ)を発生するという欠点があった。
Conventional memory cells are constructed in this way, and because the charge storage region and bit line are formed of an N degree page area or an N degree inversion layer, radiation such as alpha rays is not allowed to enter the memory chip. Of the electron-hole pairs generated upon incidence, electrons are collected in these charge storage regions and bit lines, inverting the original stored information. For this reason, there is a drawback that malfunctions (hereinafter referred to as soft errors) occur.

また前記欠点を解消するために、第3図に示すように電
荷蓄積領域としてのN″領域6の周囲にP型領域12を
形成してセル容量を増加させ、α線などの放射線で生成
される電子がこの電荷蓄積領域に収集されても誤動作し
ないように、臨界電荷量を大きくしてソフトエラーを防
止するようにしたものがあるが、ビット線としてのN″
領域7は電子の吸収に対して保護されておらず、また付
加的にこのN1領域7の周囲にP壁領域を設けると、せ
いぜい2〜3μmといった狭い間隔内にP壁領域が対向
されることになって寄生PNP )ランジスタ動作を生
じ、パストランジスタを安定に動作させることが困難に
なるものであった。
In addition, in order to eliminate the above-mentioned drawbacks, as shown in FIG. 3, a P-type region 12 is formed around the N'' region 6 as a charge storage region to increase the cell capacity, and the cell capacitance is increased. Some devices have been designed to prevent soft errors by increasing the critical charge amount in order to prevent malfunctions even if electrons collected in this charge storage region are used as bit lines.
Region 7 is not protected against absorption of electrons, and additionally providing a P-wall region around this N1 region 7 results in opposing P-wall regions within a narrow spacing of at most 2-3 μm. This results in a parasitic PNP transistor operation, making it difficult to operate the pass transistor stably.

この発明は上記のような従来の欠点を解消するためにな
されたもので、微細化構造にあってもトランジスタ特性
を損なわずに、単純な構造でα線などの放射線によるラ
フ1エラーを除去できるようにした半導体記憶装置を得
ることを目的とする。
This invention was made to eliminate the above-mentioned drawbacks of the conventional technology, and it is possible to eliminate rough 1 errors caused by radiation such as alpha rays with a simple structure without impairing transistor characteristics even in a miniaturized structure. An object of the present invention is to obtain a semiconductor memory device as described above.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体記憶装置は、第2のN゛導電型の
領域のうちビット線配線とコンタクトホールを介して接
続するN”?7I域の真下に、ポロン等のP型不純物を
含んだ回転塗布可能なシリカガラスを回転塗布し熱処理
することによりP−型半導体基板よりも1桁以上高い濃
度の第1のP″導電型高濃度領域を形成したものである
The semiconductor memory device according to the present invention includes a semiconductor memory device containing a P-type impurity such as poron directly below the N''?7I region which is connected to the bit line wiring through the contact hole in the second N-conductivity type region. A first P'' conductivity type high concentration region having a concentration higher than that of the P-type semiconductor substrate by one order of magnitude or more is formed by spin-coating coatable silica glass and heat-treating the coatable silica glass.

〔作用〕[Effect]

この発明においては、ビット線と接続されるN゛領域真
下にP−型基板より高い濃度のP″領域形成したから、
ビット線としてのN″領域容量が大きくなり、また、電
子がP−型基板からビット線としてのN″領域拡散して
くるのを防止でき、これによりソフトエラーの発生を除
去できる。
In this invention, a P'' region with a higher concentration than the P- type substrate is formed directly under the N'' region connected to the bit line.
The capacitance of the N'' region serving as a bit line increases, and it is possible to prevent electrons from diffusing from the P- type substrate to the N'' region serving as a bit line, thereby eliminating the occurrence of soft errors.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の半導体記憶装置を示し、図
において、前記第2図および第3図と同一符号は同一ま
たは相当部分を示しており、13はビット線としてのN
″領域7の真下にこの領域より横方向に拡がらないよう
に注入、拡散形成した、P−型半導体基板1よりも1桁
以上筒い濃度のP″領域ある。ここでP−濃度は10′
2〜′6/cn1.P″濃度1014〜18/−である
FIG. 1 shows a semiconductor memory device according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 2 and 3 indicate the same or corresponding parts, and 13 indicates N as a bit line.
Immediately below the ``region 7'' is a P'' region, which is implanted and diffused so as not to spread laterally beyond this region, and has a concentration that is at least one order of magnitude higher than that of the P-type semiconductor substrate 1. Here the P- concentration is 10'
2~'6/cn1. P'' concentration is 1014 to 18/-.

次にこの実施例装置の形成方法について説明する。まず
前記P−型の半導体基板1にP゛不純物を選択的に注入
、拡散して、反転、寄生防止のためのP″領域9を、ま
た同時に素子間分離絶縁膜8をそれぞれに形成したのぢ
、通常の形成手順で、N″領域6.P″領域12.ゲー
ト電極2,3゜N″領域5.7を形成する。その後、層
間絶縁膜14を積んでコンタクトホール15をエツチン
グによって開ける。
Next, a method of forming this embodiment device will be explained. First, P'' impurities were selectively implanted and diffused into the P- type semiconductor substrate 1 to form P'' regions 9 for inversion and parasitic prevention, and at the same time, element isolation insulating films 8 were formed respectively. 6. N″ area 6. P″ region 12. Gate electrodes 2, 3°N″ region 5.7 is formed. Thereafter, an interlayer insulating film 14 is deposited and a contact hole 15 is opened by etching.

次に、このコンタクトホールをマスクにして、ボロン等
のP型不純分イオンを含んだ回転塗布可能なシリカガラ
スを回転塗布しその後の熱処理によってP″頭域13を
形成する。このとき、P。
Next, using this contact hole as a mask, spin-coatable silica glass containing P-type impurity ions such as boron is spin-coated, and a P'' head region 13 is formed by subsequent heat treatment.

領域13はこれがコンタクトホール部のN + f、l
城11より横方向に拡がらないようにコンタクトホール
を使って自己整合的に形成する。そして配線を行った後
、全面に低誘電率の材料(例えばPSG)からなる保護
膜(図示せず)を形成する。
Region 13 is the contact hole portion N + f, l
It is formed in a self-aligned manner using contact holes so as not to spread laterally beyond the castle 11. After wiring, a protective film (not shown) made of a low dielectric constant material (for example, PSG) is formed over the entire surface.

次に作用効果について説明する。Next, the effects will be explained.

前述のソフトエラーは、チップ内にα線などの放射線が
入射したときに生成される電子・正孔対の内、電子が電
荷蓄積領域やビット線としてのN゛゛域5,6.7に収
集されて引き起こされる。すなわち、チップ内に入射し
たα線はエネルギを失って停止するまでに、その飛程に
沿って多数の電子・正孔対を生成し、空乏層10.11
内で生成された電子・正孔対は、空乏層内部の電場によ
り直ちに分離され、電子はN″領域5,6.7に収集さ
れ、正札は基板1を通って流れ落ちる。またN″領域6
.7の内部で生成された電子・正孔対は再結合するため
に電子の増減には全く寄与せず、基板1の内部で生成さ
れた電子・正孔対の拡散、によって空乏層10,11に
達した電子のみがN。
The above-mentioned soft error is caused by the fact that among the electron-hole pairs generated when radiation such as alpha rays enters the chip, electrons are collected in the charge storage region or the N゛゛ region 5, 6.7, which serves as the bit line. caused by being caused. In other words, before the α rays that enter the chip lose energy and stop, they generate many electron-hole pairs along their range, and the depletion layer 10.11
The electron-hole pairs generated within the depletion layer are immediately separated by the electric field inside the depletion layer, and the electrons are collected in the N'' region 5, 6.7, and the genuine tag flows down through the substrate 1.
.. Since the electron-hole pairs generated inside the substrate 1 recombine, they do not contribute to the increase or decrease of electrons at all, and the depletion layers 10, 11 are formed by diffusion of the electron-hole pairs generated inside the substrate 1. Only the electrons that have reached N.

領域6,7に収集されてソフトエラーを引き起し、他の
ものは基板1内で再結合されることになる。
These will be collected in areas 6, 7 and cause soft errors, while others will be recombined within the substrate 1.

従ってこの実施例においては、N″領域7の真下にP−
型基板1よりも高濃度のp+bi域13全13すること
によって、第1にN″領域7とPゝ領域13の界面に形
成される空乏層11の幅が小さくなってN″領域7の容
量が大きくなり、第2に、N+bp域7がP“領域13
の真上に形成されるために、P−型基板1から拡散して
きた電子はP″領域13内で再結合されて領域7に達せ
ず、第3に、P−型基板1とP″領域13の界面に電子
に対するポテンシャルバリアが形成されるために、P−
基板1から拡散されてくる電子のうちのエネルギの小さ
なものの通過を許さない。そして第1の点により領域7
に読み出される“0”、“1”に対応する電子数の差が
大きくなり、α線などの入射によって生成される電子に
対して余裕をもたせることができ、また第2および第3
の点によりN′″領域7に拡散してくる電子を防ぐこと
ができ、これによりソフトエラーの発生を除去し得るも
のである。
Therefore, in this embodiment, P-
By forming the p+bi region 13 with a higher concentration than that of the type substrate 1, firstly, the width of the depletion layer 11 formed at the interface between the N'' region 7 and the P'' region 13 becomes smaller, and the capacitance of the N'' region 7 decreases. becomes large, and secondly, the N+bp region 7 becomes the P" region 13.
Because the electrons diffused from the P-type substrate 1 are recombined within the P'' region 13 and do not reach the region 7, thirdly, the P-type substrate 1 and the P'' region Since a potential barrier against electrons is formed at the interface of P-
Of the electrons diffused from the substrate 1, those with low energy are not allowed to pass through. And by the first point, area 7
The difference in the number of electrons corresponding to "0" and "1" read out in the second and third
This makes it possible to prevent electrons from diffusing into the N'' region 7, thereby eliminating the occurrence of soft errors.

なお、前記実施例ではビット線としての領域のN1層の
真下にP+g域を形成したが、本発明はセンスアンプの
N″領域よび周辺回路のN″領域うちコンタクトホール
を形成する部分についても同様に適用できる。
In the above embodiment, the P+g region was formed directly under the N1 layer in the bit line region, but the present invention also applies to the N'' region of the sense amplifier and the portion where the contact hole is formed in the N'' region of the peripheral circuit. Applicable to

また前記実施例ではダイナミック型の半導体装置につい
て説明したが、本発明はスタティック型のものについて
も同様に適用可能なほか、NチャンネルがPチャンネル
の場合にも、MOSデバイスでなくバイポーラデバイス
の場合にも各々適用できる。
Furthermore, although the above embodiment describes a dynamic type semiconductor device, the present invention is equally applicable to a static type semiconductor device, as well as when an N channel is a P channel, and when a bipolar device is used instead of a MOS device. can also be applied.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明にかかる半導体記憶装置によれ
ば、ビット線と接続されるN゛型領領域真下にP−型基
板よりも1桁以上高い濃度のP。
As described above, according to the semiconductor memory device of the present invention, the concentration of P is at least one order of magnitude higher than that of the P- type substrate directly under the N-type region connected to the bit line.

型の領域を形成したので、α線などの放射線のメモリチ
ップ内への入射によって生ずる誤動作を防止できる効果
がある。
Since the mold area is formed, malfunctions caused by radiation such as α rays entering the memory chip can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体記憶装置の構
成を示す断面図、第2図および第3図はそれぞれ従来の
各別例による半導体記憶装置の構成を示す断面図である
。 l・・・P−型半導体基板、2,3・・・第1層、第2
層のゲート電極、6,7・・・N″領域8・・・素子間
分離絶縁膜、10.11・・・空乏層、13・・・P−
領域。
FIG. 1 is a cross-sectional view showing the structure of a semiconductor memory device according to an embodiment of the present invention, and FIGS. 2 and 3 are cross-sectional views showing the structure of semiconductor memory devices according to various conventional examples. l...P-type semiconductor substrate, 2, 3... first layer, second
Gate electrode of layer, 6, 7...N'' region 8... Inter-element isolation insulating film, 10.11... Depletion layer, 13... P-
region.

Claims (3)

【特許請求の範囲】[Claims] (1)第1のP^−導電型の半導体基板上に、電荷蓄積
領域およびビット線としてのそれぞれ第2のN^+導電
型の各領域、及び第1層、第2層のゲート電極とを形成
し、 上記半導体基板上にビット線としての第2のN^+導電
型領域を形成し、 この領域上にこの領域とビット線との接続をとるための
コンタクトホールを形成し、 この上にボロン等のP型不純分を含んだ回転塗布可能な
シリカガラスを回転塗布し、 その後熱処理することにより前記第2のN^+導電型領
域の内のビット線としての第2のN^+導電型領域の下
に、前記基板の温度よりも1桁以上高い温度の第1のP
^+導電型高濃度領域を形成したことを特徴とする半導
体記憶装置。
(1) On a first P^- conductivity type semiconductor substrate, second N^+ conductivity type regions as a charge storage region and a bit line, and gate electrodes in the first layer and second layer. forming a second N^+ conductivity type region as a bit line on the semiconductor substrate; forming a contact hole on this region for connecting this region with the bit line; The second N^+ as a bit line in the second N^+ conductivity type region is formed by spin-coating silica glass containing a P-type impurity such as boron, which can be spin-coated, and then heat-treating the second N^+ conductivity type region. Under the conductivity type region, a first P whose temperature is one order of magnitude or more higher than the temperature of the substrate.
A semiconductor memory device characterized by forming a high concentration region of ^+ conductivity type.
(2)上記半導体基板はそのP^−濃度が10^1^3
^〜^1/cm^3であり、上記高濃度領域はそのP^
+濃度が10^1^4^〜^1^8/cm^3であるこ
とを特徴とする特許請求の範囲第1項記載の半導体記憶
装置。
(2) The above semiconductor substrate has a P^- concentration of 10^1^3
^~^1/cm^3, and the above high concentration region is that P^
2. The semiconductor memory device according to claim 1, wherein the + concentration is 10^1^4^ to^1^8/cm^3.
(3)上記ゲート電極はその上方に低誘電率の材料から
なるパッシベーション膜を有することを特徴とする特許
請求の範囲第1項または第2項記載の半導体記憶装置。
(3) The semiconductor memory device according to claim 1 or 2, wherein the gate electrode has a passivation film made of a material with a low dielectric constant above the gate electrode.
JP61031063A 1986-02-14 1986-02-14 Semiconductor memory Pending JPS62252962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61031063A JPS62252962A (en) 1986-02-14 1986-02-14 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61031063A JPS62252962A (en) 1986-02-14 1986-02-14 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS62252962A true JPS62252962A (en) 1987-11-04

Family

ID=12321007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61031063A Pending JPS62252962A (en) 1986-02-14 1986-02-14 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS62252962A (en)

Similar Documents

Publication Publication Date Title
JPS6316658A (en) Semiconductor storage device
JP2892683B2 (en) Semiconductor memory device and method of manufacturing the same
US4702797A (en) Method of manufacturing semiconductor memory device
JPS6262065B2 (en)
US5268321A (en) Method of making DRAM cell having improved radiation protection
JPH0131308B2 (en)
JPS62145859A (en) Semiconductor memory
JPH08274189A (en) Semiconductor device and its manufacture
JP2550119B2 (en) Semiconductor memory device
US4702796A (en) Method for fabricting a semiconductor device
JPS6322069B2 (en)
JPS62252962A (en) Semiconductor memory
JPS627153A (en) Semiconductor memory
JPH01143350A (en) Semiconductor memory
JPH02144964A (en) Semiconductor integrated circuit device and its manufacture
JP2515033B2 (en) Method for manufacturing semiconductor static memory device
JPH0652782B2 (en) Semiconductor integrated circuit device
JPH02116162A (en) Semiconductor storage device
JPS62141758A (en) Semiconductor storage device
JPS62179144A (en) Semiconductor memory device
JPS61139059A (en) Semiconductor integrated circuit device
KR900002887B1 (en) Semiconductor memory device
JPH08255839A (en) Complementary semiconductor integrated circuit device
KR900002915B1 (en) Semiconductor memory device
JPH0584673B2 (en)