JPS62179144A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS62179144A
JPS62179144A JP61020540A JP2054086A JPS62179144A JP S62179144 A JPS62179144 A JP S62179144A JP 61020540 A JP61020540 A JP 61020540A JP 2054086 A JP2054086 A JP 2054086A JP S62179144 A JPS62179144 A JP S62179144A
Authority
JP
Japan
Prior art keywords
region
type region
type
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61020540A
Other languages
Japanese (ja)
Inventor
▲魚▼谷 重雄
Shigeo Uotani
Masahiro Yoneda
昌弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61020540A priority Critical patent/JPS62179144A/en
Publication of JPS62179144A publication Critical patent/JPS62179144A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To prevent a semiconductor memory device from erroneous operation to be generated according to incidence into a memory chip of a radial rays such as alpha-rays, etc. by a method wherein a P<+> type region having concentration higher by one figure or more than a P<-> type substrate is formed directly under an N<+> type region to be connected to a bit line. CONSTITUTION:By forming a P<+> type region 13 having concentration higher than that of a P<-> type substrate 1 directly under an N<+> type region 7, width of a depletion layer 11 to be formed at the interference between the N<+> type region 7 and the P<+> type region 13 is narrowed, and thereby capacity of the N<+> type region 7 is enlarged. Because the N<+> type region 7 is formed right above the P<+> type region 113, electrons scattered from the P<-> type subtrate 1 recombine in the P<+> type region 13, and never reach the region 7. Moreover because a potential barrier is formed against electrons at the interface between the P<-> type substrate 1 and the P<+> type region 13, out of electrons scattered from the P<-> type substrate 1, electrons having small energy are not allowed to pass the barrier. Accordingly generation of a soft error can be checked.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電荷の有無を記憶情報とする半導体記憶装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device that uses the presence or absence of electric charge as stored information.

〔従来の技術〕[Conventional technology]

従来のこの種の半導体装置の例として、256にダイナ
ミックMO3RAMのメモリセルの構成を第2図に示し
である。すなわち、この第2図において、1はP−型の
導電性をもつ半導体基板、2および3は第1Nおよび第
2層のゲート電極、4はゲート絶縁膜、6はgi荷S積
領域、7はビット線としてのN″領域、8は素子間分離
絶縁膜、9は反転、寄生防止のためのP1領域、10.
11は空乏層、14は層間絶縁膜、15はコンタクトホ
ール、16はワード線、17はコンデンサ電源である。
As an example of a conventional semiconductor device of this type, the structure of a memory cell of a dynamic MO3RAM is shown in FIG. That is, in FIG. 2, 1 is a semiconductor substrate having P-type conductivity, 2 and 3 are gate electrodes of the first N and second layers, 4 is a gate insulating film, 6 is a gi charge S product region, and 7 is a semiconductor substrate having P-type conductivity. 8 is an N'' region as a bit line, 8 is an isolation insulating film between elements, 9 is an inversion and P1 region for preventing parasitic effects, 10.
11 is a depletion layer, 14 is an interlayer insulating film, 15 is a contact hole, 16 is a word line, and 17 is a capacitor power supply.

このような装置ではワード線の電位があがり、このワー
ド線に接続されているトランスファーゲートとしての第
2層のゲート電極3の電位がしきい値電圧よりも高くな
ると、このゲート電極3の直下にN0反転層のチャネル
が形成されて、両N”開城6.7間が導通する。
In such a device, when the potential of the word line increases and the potential of the second layer gate electrode 3 as a transfer gate connected to this word line becomes higher than the threshold voltage, the voltage immediately below this gate electrode 3 increases. A channel of the N0 inversion layer is formed, and conduction occurs between the two N'' openings 6.7.

そこで、今、メモリセルの記憶情報が“O”。Therefore, the information stored in the memory cell is now “O”.

すなわちN″領域6に電子が蓄積されている状態の場合
には、このN″領域6とビット線としてのN″領域7と
が導通することによって、それまで中間電位に保持され
ていたこのN″領域7の電位が下がり、また反対にメモ
リセルの記憶情報が“1“すなわちN′″領域6に電子
が蓄積されていない状態の場合には、この導通によって
中間電位にあったN″領域7の電位が上がることになる
。そしてこのビット線の電位の変化を図示しないセンス
アンプにより感知、増巾して取り出すと共に、同じ記憶
情報をリフレッシュして同一サイクル内に再度メモリセ
ルに書き込むようにしているのである。
In other words, when electrons are accumulated in the N'' region 6, conduction occurs between the N'' region 6 and the N'' region 7, which serves as a bit line, so that this N'' region, which was previously held at an intermediate potential, When the potential of the ``region 7'' decreases and, conversely, the stored information of the memory cell is ``1'', that is, no electrons are stored in the N'' region 6, this conduction causes the N'' region, which was at an intermediate potential, to drop. The potential of 7 will rise. This change in the potential of the bit line is sensed by a sense amplifier (not shown), amplified and taken out, and the same stored information is refreshed and written into the memory cell again within the same cycle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のメモリセルはこのように構成されており、電荷蓄
積領域ならびにビット線がN″領域あるいいはN0反転
層で形成されているために、α線などの放射線がメモリ
チップ内に入射して生成される電子・正孔対の内、電子
がこれらの電荷蓄積領域やビット線に収集されて、本来
の記憶情報を反転させる。このため、誤動作(以下ソフ
トエラーと呼ぶ)を発生するという欠点があった。
Conventional memory cells are configured in this way, and since the charge storage region and bit line are formed of an N'' region or an N0 inversion layer, radiation such as alpha rays may enter the memory chip. Among the generated electron-hole pairs, electrons are collected in these charge storage regions and bit lines, inverting the original stored information.This has the disadvantage of causing malfunctions (hereinafter referred to as soft errors). was there.

また前記欠点を解消するために、第3図に示すように電
荷蓄積領域としてのN″領域6の周囲にP型領域12を
形成してセル容量を増加させ、α線などの放射線で生成
される電子がこの電荷蓄積領域に収集されても誤動作し
ないように、臨界電荷量を大きくしてソフトエラーを防
止するようにしたものがあるが、ビット線としてのN″
領域7は電子の吸収に対して保護されておらず、また付
加的にこのN″領域7の周囲にP壁領域を設けると、せ
いぜい2〜3μmといった狭い間隔内にP壁領域が対向
されることになって寄生PNPトランジスタ動作を生じ
、パストランジスタを安定に動作させることが困難にな
るものであった。
In addition, in order to eliminate the above-mentioned drawbacks, as shown in FIG. 3, a P-type region 12 is formed around the N'' region 6 as a charge storage region to increase the cell capacity, and the cell capacitance is increased. Some devices have been designed to prevent soft errors by increasing the critical charge amount in order to prevent malfunctions even if electrons collected in this charge storage region are used as bit lines.
Region 7 is not protected against absorption of electrons, and additionally providing a P wall region around this N'' region 7 results in opposing P wall regions within a narrow spacing of at most 2-3 μm. This results in parasitic PNP transistor operation, making it difficult to operate the pass transistor stably.

この発明は上記のような従来の欠点を解消するためにな
されたもので、微細化構造にあってもトランジスタ特性
を1員なわずに、単純な構造でα線などの放射線による
ソフトエラーを除去できるようにした半導体記憶装置を
得ることを目的とする。
This invention was made to eliminate the above-mentioned drawbacks of the conventional technology, and eliminates soft errors caused by radiation such as alpha rays with a simple structure without affecting transistor characteristics even in a miniaturized structure. The object of the present invention is to obtain a semiconductor memory device that can perform the following steps.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体記憶装置は、第2のN゛導電型の
領域のうちビット線配線とコンタクトホールを介して接
続するN″領域の真下にP−型半導体基板よりも1桁以
上高い濃度の第1のP゛導電型高濃度領域を形成したも
のである。
The semiconductor memory device according to the present invention has a concentration that is at least one order of magnitude higher than that of the P- type semiconductor substrate immediately below the N'' region connected to the bit line wiring through the contact hole in the second N'' conductivity type region. A first P conductivity type high concentration region is formed.

〔作用〕[Effect]

この発明においては、ビット線と接続されるN′″闘域
の真下にP−型基板より高い濃度のP″領域形成したか
ら、ビット線としてのN″領域の容量が太き(なり、ま
た、電子がP−型基板からビット線としてのN″領域に
拡散してくるのを防止でき、これによりソフトエラーの
発生を除去できる。
In this invention, since the P'' region with a higher concentration than the P- type substrate is formed directly under the N''' fighting region connected to the bit line, the capacitance of the N'' region as a bit line is large (and It is possible to prevent electrons from diffusing from the P-type substrate to the N'' region serving as a bit line, thereby eliminating the occurrence of soft errors.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の半導体記憶装置を示し、図
において、前記第2図および第3図と同一符号は同一ま
たは相当部分を示しており、13はビット線としてのN
″領域7の真下にこの領域より横方向に拡がらないよう
に注入、拡散形成した、P−型半導体基板1よりも1桁
以上高い濃度のP″領域ある。ここでP−?M度は10
13〜′6/cd、  P’濃度は10′4〜Ill/
crAである。
FIG. 1 shows a semiconductor memory device according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIGS. 2 and 3 indicate the same or corresponding parts, and 13 indicates N as a bit line.
Immediately below the ``region 7'' is a P'' region which is implanted and diffused so as not to spread laterally beyond this region and has a concentration higher than that of the P-type semiconductor substrate 1 by at least one order of magnitude. P- here? M degree is 10
13~'6/cd, P' concentration is 10'4~Ill/cd.
It is crA.

次にこの実施例装置の形成方法について説明する。まず
前記P−型の半導体基板lにP゛不純物を選択的に注入
、拡散して、反転、寄生防止のためのP″領域9を、ま
た同時に素子間分離絶縁膜8をそれぞれに形成したのち
、通常の形成手順で、N″領域6.P″領域12.ゲー
ト電極2.3゜N″領域5.7を形成する。その後、層
間絶縁膜14を積んでコンタクトホール15をエツチン
グによって開ける。
Next, a method of forming this embodiment device will be explained. First, a P'' impurity is selectively implanted and diffused into the P- type semiconductor substrate 1 to form a P'' region 9 for inversion and parasitic prevention, and at the same time, an element isolation insulating film 8 is formed respectively. , N'' region 6. by normal forming procedure. P″ region 12. Gate electrode 2.3°N″ region 5.7 is formed. Thereafter, an interlayer insulating film 14 is deposited and a contact hole 15 is opened by etching.

次に、このコンタクトホールをマスクにして、ボロン等
のP型不純分イオンを適当な加速電圧で注入し、その後
の熱処理によってp−1M域13を形成する。このとき
、P″領域13はこれがコンタクトホール部のN″領域
11より横方向に拡がらないようにコンタクトホールを
使って自己整合的に形成する。そして配線を行った後、
全面に低誘電材料のPSGからなる保護膜(図示せず)
を形成する。
Next, using this contact hole as a mask, P-type impurity ions such as boron are implanted at an appropriate acceleration voltage, and a p-1M region 13 is formed by subsequent heat treatment. At this time, the P'' region 13 is formed in a self-aligned manner using the contact hole so that it does not spread laterally beyond the N'' region 11 in the contact hole portion. And after wiring,
A protective film made of PSG, a low dielectric material, on the entire surface (not shown)
form.

次に作用効果について説明する。Next, the effects will be explained.

前述のソフトエラーは、チップ内にα線などの放射線が
入射したときに生成される電子・正札対の内、電子が電
荷蓄積領域やビット線としてのN゛領域5,6.7に収
集されて引き起こされる。す、なわち、チップ内に入射
したα線はエネルギを失って停止するまでに、その飛程
に沿って多数の電子・正孔対を生成し、空乏jglo、
11内で生成された電子・正孔対は、空乏層内部の電場
により直ちに分離され、電子はN″領域5.6.7に収
集され、正孔は基板1を通って流れ落ちる。またN“領
域6.7の内部で生成された電子・正孔対は再結合する
ために電子の増減には全く寄与せず、基板1の内部で生
成された電子・正孔対の拡散、によって空乏層10.1
1に達した電子のみがN゛領域6.7に収集されてソフ
トエラーを引き起し、他のものは基板1内で再結合され
ることになる。
The above-mentioned soft error occurs when the electrons are collected in the charge storage region or the N' regions 5, 6.7, which serve as bit lines, among the electron/genuine tag pair generated when radiation such as alpha rays enters the chip. caused by In other words, before the α rays that enter the chip lose energy and stop, they generate a large number of electron-hole pairs along their range, and the depletion jglo,
The electron-hole pairs generated in 11 are immediately separated by the electric field inside the depletion layer, the electrons are collected in the N'' region 5.6.7, and the holes flow down through the substrate 1. Since the electron/hole pairs generated inside the region 6.7 recombine, they do not contribute to the increase or decrease of electrons at all, and due to the diffusion of the electron/hole pairs generated inside the substrate 1, a depletion layer is created. 10.1
Only the electrons that reach 1 will be collected in the N' region 6.7 and cause a soft error, while the others will be recombined within the substrate 1.

従ってこの実施例においては、N″領域7の真下にP−
型基板1よりも高濃度のP″領域13を形成することに
よって、第1にN1領域7とP゛領域13の界面に形成
される空乏Fillの幅が小さくなってN″領域7の容
量が大きくなり、第2に、N3領域7がP″領域1゛3
の真上に形成されるために、P−型基板1から拡散して
きた電子はP″領域13内で再結合されて領域7に達せ
ず、第3に、P−型基板1とP″碩饋域3の界面に電子
に対するポテンシャルバリアが形成されるために、P−
基板1から拡散されてくる電子のうちのエネルギの小さ
なものの通過を許さない、そして第1の点により領域7
に読み出される0″、“1”に対応する電子数の差が大
きくなり、α線などの入射によって生成される電子に対
して余裕をもたせることができ、また第2および第3の
点によりN″領域7に拡散してくる電子を防ぐことがで
き、これによりソフトエラーの発生を除去し得るもので
ある。
Therefore, in this embodiment, P-
By forming the P'' region 13 with a higher concentration than the type substrate 1, firstly, the width of the depletion fill formed at the interface between the N1 region 7 and the P'' region 13 becomes smaller, and the capacitance of the N'' region 7 increases. secondly, N3 region 7 becomes P″ region 1゛3
Because the electrons diffused from the P-type substrate 1 are recombined within the P'' region 13 and do not reach the region 7, thirdly, the P-type substrate 1 and the P'' Since a potential barrier against electrons is formed at the interface of the space region 3, P-
Among the electrons diffused from the substrate 1, those with low energy are not allowed to pass through, and the first point creates a region 7.
The difference in the number of electrons corresponding to 0'' and ``1'' read out becomes large, and it is possible to provide a margin for electrons generated by the incidence of alpha rays, etc., and due to the second and third points, N ``It is possible to prevent electrons from diffusing into the region 7, thereby eliminating the occurrence of soft errors.

なお、前記実施例ではビット線としての領域のN゛層の
真下にP″領域形成したが、本発明はセンスアンプのN
eap域および周辺回路のN″領域うちコンタクトホー
ルを形成する部分についても同様に適用できる。
In the above embodiment, the P'' region was formed directly under the N layer of the bit line region, but the present invention
The same applies to the EAP region and the N'' region of the peripheral circuit where contact holes are to be formed.

また前記実施例ではダイナミック型の半導体装置につい
て説明したが、本発明はスタティック型のものについて
も同様に適用可能なほか、NチャンネルがPチャンネル
の場合にも、MOSデバイスでなくバイポーラデバイス
の場合にも各々適用できる。
Furthermore, although the above embodiment describes a dynamic type semiconductor device, the present invention is equally applicable to a static type semiconductor device, as well as when an N channel is a P channel, and when a bipolar device is used instead of a MOS device. can also be applied.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明にかかる半導体記憶装置によれ
ば、ビット線と接続されるN°型領領域真下にP−型基
板よりも1桁以上高い濃度のP゛型の領域を形成したの
で、α線などの放射線のメモリチップ内への入射によっ
て生ずる誤動作を防止できる効果がある。
As described above, according to the semiconductor memory device of the present invention, a P'-type region with a concentration higher than that of the P-type substrate by one order of magnitude or more is formed directly under the N°-type region connected to the bit line. This has the effect of preventing malfunctions caused by radiation such as α rays entering the memory chip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体記憶装置の構
成を示す断面図、第2図および第3図はそれぞれ従来の
各別個による半導体記憶装置の構成を示す断面図である
。 ■・・・P−型半導体基板、2.3・・・第1N、第2
層のゲート電極、6.7・・・N″領域8・・・素子間
分離絶縁膜、10.11・・・空乏層、13・・・P″
領域
FIG. 1 is a sectional view showing the structure of a semiconductor memory device according to an embodiment of the present invention, and FIGS. 2 and 3 are sectional views showing the structure of each conventional semiconductor memory device. ■... P- type semiconductor substrate, 2.3... 1st N, 2nd
gate electrode of layer, 6.7...N'' region 8... element isolation insulating film, 10.11... depletion layer, 13...P''
region

Claims (4)

【特許請求の範囲】[Claims] (1)第1のP^−導電型の半導体基板上に、電荷蓄積
領域およびビット線としてのそれぞれ第2のN^+導電
型の各領域と、第1層および第2層のゲート電極とを形
成した半導体記憶装置において、前記第2のN^+導電
領域の内ビット線としての第2のN^+導電型領域の下
に設けられ、前記基板の濃度よりも1桁以上高い濃度の
第1のP^+導電型高濃度領域を備えたことを特徴とす
る半導体記憶装置。
(1) On a first P^- conductivity type semiconductor substrate, second N^+ conductivity type regions as a charge storage region and a bit line, and first and second layer gate electrodes are provided. In the semiconductor memory device in which the second N^+ conductive region is provided under the second N^+ conductive type region serving as a bit line, and has a concentration one or more orders of magnitude higher than the concentration of the substrate. A semiconductor memory device comprising a first P^+ conductivity type high concentration region.
(2)上記第1のP^+導電型高濃度領域は、上記半導
体基板上にビット線としての第2のN^+導電型領域を
形成した後、この領域上に、この領域とビット線との接
続をとるためのコンタクトホールを形成し、その後、こ
のコンタクトホールをマスクにしてボロン等のP型不純
分イオンをイオン注入し、熱処理して形成したものであ
ることを特徴とする特許請求の範囲第1項記載の半導体
記憶装置。
(2) The first P^+ conductivity type high concentration region is formed by forming a second N^+ conductivity type region as a bit line on the semiconductor substrate, and then forming a bit line on this region. A patent claim characterized in that it is formed by forming a contact hole for making a connection with the contact hole, then using this contact hole as a mask, ions of P-type impurity such as boron are implanted, and heat treatment is performed. The semiconductor memory device according to item 1.
(3)上記半導体基板はそのP^−濃度が10^1^3
^〜^1^6/cm^2であり、上記高濃度領域はその
P^+濃度が10^1^4^〜^1^■/cm^2であ
ることを特徴とする特許請求の範囲第1項または第2項
記載の半導体記憶装置。
(3) The above semiconductor substrate has a P^- concentration of 10^1^3
^~^1^6/cm^2, and the high concentration region has a P^+ concentration of 10^1^4^~^1^■/cm^2. The semiconductor memory device according to item 1 or 2.
(4)上記ゲート電極はその上方に低誘電材料のPSG
からなるパッシベーション膜を有することを特徴とする
特許請求の範囲第1項ないし第3項記載の半導体記憶装
置。
(4) The above gate electrode has PSG of low dielectric material above it.
4. A semiconductor memory device according to claim 1, further comprising a passivation film made of:
JP61020540A 1986-01-31 1986-01-31 Semiconductor memory device Pending JPS62179144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61020540A JPS62179144A (en) 1986-01-31 1986-01-31 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61020540A JPS62179144A (en) 1986-01-31 1986-01-31 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS62179144A true JPS62179144A (en) 1987-08-06

Family

ID=12029987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61020540A Pending JPS62179144A (en) 1986-01-31 1986-01-31 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS62179144A (en)

Similar Documents

Publication Publication Date Title
JP2634163B2 (en) Semiconductor storage device
US5030586A (en) Method for manufacturing semiconductor memory device having improved resistance to α particle induced soft errors
US4702797A (en) Method of manufacturing semiconductor memory device
JPH0131308B2 (en)
US5268321A (en) Method of making DRAM cell having improved radiation protection
JPS62145859A (en) Semiconductor memory
JPS62179144A (en) Semiconductor memory device
JP2550119B2 (en) Semiconductor memory device
US4702796A (en) Method for fabricting a semiconductor device
JPH01143350A (en) Semiconductor memory
JPS61224350A (en) Semiconductor memory device
JPS6298765A (en) Dynamic random access memory
JPS627153A (en) Semiconductor memory
JPS62252962A (en) Semiconductor memory
JPS61199657A (en) Semiconductor memory
JP2515033B2 (en) Method for manufacturing semiconductor static memory device
JPS62141758A (en) Semiconductor storage device
JPS63260065A (en) Semiconductor memory device and its manufacture
JPH08255839A (en) Complementary semiconductor integrated circuit device
KR900002887B1 (en) Semiconductor memory device
JPS583270A (en) Semiconductor memory
JPS62144353A (en) Semiconductor memory
JPS62141759A (en) Manufacture of semiconductor storage device
JPH022671A (en) Dynamic random access memory device
JPH03257863A (en) Semiconductor memory device