JPS62245674A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62245674A
JPS62245674A JP8947186A JP8947186A JPS62245674A JP S62245674 A JPS62245674 A JP S62245674A JP 8947186 A JP8947186 A JP 8947186A JP 8947186 A JP8947186 A JP 8947186A JP S62245674 A JPS62245674 A JP S62245674A
Authority
JP
Japan
Prior art keywords
thin film
channel
semiconductor layer
semiconductor device
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8947186A
Other languages
Japanese (ja)
Inventor
Hajime Kurihara
一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8947186A priority Critical patent/JPS62245674A/en
Publication of JPS62245674A publication Critical patent/JPS62245674A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To manufacture a thin film transistor with high on-off ratio in fixed threshold value by a method wherein an impurity mixing process and a hydrogen mixing process are provided in a channel region of a thin film semiconductor layer. CONSTITUTION:A polysilicon thin film 11 is formed on an insulating substrate 12 such as quartz glass. At this time, specified impurity is thermal.diffused in the optimum concentration. First, the thin film 11 is thermal oxidized to form a gate layer 13, a gate electrode 14 forming the source and drain by ion implantation using the electrode 14 as a mask. Second, overall surface is covered with a CVD insulating film and after implanting H ions and annealing at 200-500 deg.C, a connecting hole and an interconnection 16 are made to be covered with a protective film 17 for completion. In such a constitution, even if the channel is mixed with sufficient H, the threshold value is fixed to assure the high on-off ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に、薄膜シリ
コン半導体層を有する薄膜トランジスタ(以下、TPT
と略す)で構成される半導体装置の特性向上に有効であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, particularly a thin film transistor (hereinafter referred to as TPT) having a thin silicon semiconductor layer.
It is effective in improving the characteristics of semiconductor devices constructed with

〔発明の櫃要〕[A chest of inventions]

本発明けTPTで構成される半導体装置の製造時に、薄
り半導体層の少なくともチャンネル領域に不純物を混入
せしめる工程と水素を混入せしめる工程を設はたことを
特徴とする。
The present invention is characterized in that a step of mixing an impurity into at least the channel region of the thin semiconductor layer and a step of mixing hydrogen are provided during manufacturing of the semiconductor device made of the TPT.

〔従来の技術及び発明が解決しようとする問題点〕従来
、TTFTのチャンネル領域の該半導体層はオフ電流(
ゲート・ソース間電圧(V+)8) /l(Q 、ソー
ス・ドレイン間電圧(VD=)を所定電圧印力p時のソ
ース・ドレイン間電流(Inll) )を最小とするた
め、真性型の半導体層、又は不純物の混入を行わないノ
ンドープの半導体層より形成されていた。
[Problems to be solved by the prior art and the invention] Conventionally, the semiconductor layer in the channel region of a TTFT has an off-state current (
In order to minimize the gate-source voltage (V+) 8) /l (Q, source-drain current (Inll) when a given voltage is applied to the source-drain voltage (VD=), It is formed of a semiconductor layer or a non-doped semiconductor layer that is not mixed with impurities.

しかし、単に骸チャンネル領斌に、水素の混入をせしめ
ると第3図(c)に示すように、オン電流VG8゜VD
8 !−所安中電圧した時のよりl! ?+:増加し、
トランジスタ特性が向上するh″−、スレショルド電圧
?l”−水素の混入号とともに動き、オフ電流を大幅に
増大せしめるため、水素を十分混入せしめ、トランジス
タ特性な向上させることができなかった。
However, if hydrogen is simply mixed into the channel, as shown in Figure 3(c), the on-current VG8°VD
8! -More than when the voltage is low! ? +: Increase,
The transistor characteristics improve with h''-, threshold voltage ?l''-hydrogen contamination increases significantly the off-state current, and therefore it has not been possible to sufficiently incorporate hydrogen to improve the transistor characteristics.

〔発明の目的〕[Purpose of the invention]

本発明はかかる大小を除、去17、前記薄膜半導体層の
チャンネル長域に十分の水素を混入せしめても、スレシ
ョルド電圧が動かず、高いオン−オフ比が得られるTP
Tの半導体装置の製造方法を提供することを目的とした
ものである。
The present invention eliminates the above-mentioned size.17.Even if a sufficient amount of hydrogen is mixed into the channel length region of the thin film semiconductor layer, the threshold voltage does not change and a high on-off ratio can be obtained.
The purpose of this invention is to provide a method for manufacturing a semiconductor device of T.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はTPTで構成される半導体装置において、薄膜
半導体層の少なくともチャンネル領域に不純物を混入せ
しめる工程と水素を混入せしめる工程を有し、かかる欠
点を除去したものである。
The present invention eliminates such drawbacks in a semiconductor device composed of TPT, which includes a step of mixing an impurity into at least a channel region of a thin film semiconductor layer and a step of mixing hydrogen.

第3図に、従来のTPTのトランジスタ特性を示す。た
て軸はソース・ドレイン電流、よこ軸はソース・ゲート
電圧、ソース・ドレイン電圧(vpII)は5vで、チ
ャンネル長5μm、チャンネル巾10μmのNチャンネ
ルのTPT )ランジスタ特性を示したものである。B
けチャンネル領域の半導体層がノンドープのトランジス
タ特性sCは該TPTに水素と混入したもので、オン電
流、スレショルド電圧が急峻に立ち上るカ、トランジス
タ類性がデプレッション型f変り%特性の劣下が著しい
FIG. 3 shows the transistor characteristics of a conventional TPT. The vertical axis is the source-drain current, the horizontal axis is the source-gate voltage, and the source-drain voltage (vpII) is 5 V, showing the characteristics of an N-channel TPT transistor with a channel length of 5 μm and a channel width of 10 μm. B
The characteristics sC of a transistor in which the semiconductor layer in the channel region is not doped is that the TPT is mixed with hydrogen, and the on-current and threshold voltage rise sharply, and the transistor characteristics are depletion type and the % change characteristics are significantly deteriorated.

aelt、、pチャンネルTPTもスレッショルド電圧
がエンハンメントに動くことが押えられ同様の結果が得
られている。
Similar results have been obtained for the aelt, p-channel TPT, in which the threshold voltage is prevented from shifting toward enhancement.

〔実施例〕〔Example〕

以下1本発明について、実施例をもとに詳細な説明を行
う。
The present invention will be described in detail below based on examples.

箪1図(a>〜(ハに、本発明による実施例の半導体装
置の製造工St示す。まず、石英ガラス等の絶縁基板1
2上に、熱OVD法等によって、多結晶シリコン薄膜半
導体層11を形成する。このとき凱らかじめ、後工桿(
力の水素注入工程によるスレッショルド電圧の移動を見
込んで、該半導体層11に、NチャンネルTFTならば
ポロン、又はヒ素周期律表の第■族を、PチャンネルT
]l’Tならばリン等の周期律表第1族を混入せしめる
。混入せしめる方法として熱拡散法、イオンブランテー
シlン法、−1!たけ該半導体層11を形成時に、同時
にシボラン、アルシン、ホスフィン等を熱OVDによっ
て分解し混入せしめる方法があり、最適濃度けNチャン
ネルTPTでボロン、ヒ素hza−8〜1016原子P
IA1R”、pチャンネルTPTでリンめ1.10−7
〜1015原子V個3である(笛1図(α))。
Figures 1 (a) to (c) show a manufacturing process for a semiconductor device according to an embodiment of the present invention. First, an insulating substrate 1 made of quartz glass or the like is shown.
2, a polycrystalline silicon thin film semiconductor layer 11 is formed by a thermal OVD method or the like. At this time, Gai, Kajime, and Gokou (
In anticipation of the shift of the threshold voltage due to the hydrogen implantation process, poron in the case of an N-channel TFT or Group Ⅰ of the arsenic periodic table is added to the semiconductor layer 11, and a P-channel TFT is added to the semiconductor layer 11.
]l'T, Group 1 of the periodic table such as phosphorus is mixed. Methods for mixing include thermal diffusion method, ion blunting method, -1! When forming the semiconductor layer 11, there is a method in which ciborane, arsine, phosphine, etc. are decomposed and mixed at the same time by thermal OVD.
IA1R”, p channel TPT ring 1.10-7
~1015 V atoms 3 (Fig. 1 (α)).

次に、該半導体層11を熱酸化し、ゲート層13ゲート
電極14を形成する(第1図(b))。
Next, the semiconductor layer 11 is thermally oxidized to form a gate layer 13 and a gate electrode 14 (FIG. 1(b)).

次に、ゲート電極をマスクにインブ→ンテーシ四ン法(
ハ))によって、Pチャンネル、又はNチャンネルTP
Tのソース及びドレイン便域を形成する(第1図(6)
)。
Next, using the gate electrode as a mask, we performed an incubation method (
c)) P-channel or N-channel TP
Form the source and drain areas of T (Figure 1 (6)
).

次に、#CvD法等によって、相関絶縁膜15を形成し
、その後200℃〜500℃の温度雰囲気下で、水素プ
ラズマ中で、プラズマ処理を行い、水素を混入せしめる
か(b)、または、水!をインブランチ−シロン法によ
って注入(b)L 、その伊200℃〜500℃で熱処
理を行い、水素を混入せしめる(第1回頭)。その俵、
コンタクトホールな形成、配線16を行い(第1図(e
) )−最稜に侶護膜17を形成する(第1図(ハ)。
Next, the correlation insulating film 15 is formed by #CvD method or the like, and then plasma treatment is performed in hydrogen plasma in a temperature atmosphere of 200° C. to 500° C. to mix hydrogen (b), or water! (b) L is injected by the inbranch-Silon method, and then heat treated at 200°C to 500°C to mix hydrogen (first step). That bale,
Form contact holes and wires 16 (see Figure 1(e)
) - A protective film 17 is formed at the top edge (FIG. 1(c)).

〔発明の効果〕〔Effect of the invention〕

第3図に実施例のTPT )ランジスタ特性を示す。た
て軸h;ソースのドレイン電流(工Oa)、よこ軸力ソ
ース・ゲート電圧(VG) 、ソース・ドレイン電圧け
5V、チャンネル長5μ惜、チャンネル巾10μmのN
チャンネルTPTのトランジスタ特性(A)′Cあり、
第2図の従来のトランジスタに比してオン電流、オン、
オフ比ともに1ケタ以上特性bt向上する上、スレショ
ルド電圧の移動が皆無である優れ次トランジスタ特性を
示す。この効果けPチャンネルTPTも同様である。こ
のトランジスタを用いて、0MO8型のシフト・レジス
タを作製したところ、最大周波数10MHg以上のデー
タ転送が確認できた。このため本発・明11を′、用1
いれば、10M1(2以上の高速、高els比の固体撮
像装置や、ドライバー内蔵の液晶表示装置に応用で鎗有
用である。
FIG. 3 shows the TPT transistor characteristics of the example. Vertical axis h; source drain current (Oa), horizontal force source-gate voltage (VG), source-drain voltage 5V, channel length 5μm, channel width 10μm N
Transistor characteristics of channel TPT (A) with 'C,
Compared to the conventional transistor shown in Figure 2, the on-current,
In addition to improving both the off-ratio and the characteristic bt by more than one order of magnitude, it exhibits excellent next-order transistor characteristics with no shift in threshold voltage. The same applies to this effect P channel TPT. When a 0MO8 type shift register was fabricated using this transistor, data transfer at a maximum frequency of 10 MHg or higher was confirmed. Therefore, the present invention and invention 11 are
If possible, it would be useful in applications such as high-speed, high-ELS-ratio solid-state imaging devices of 10M1 (2 or higher) and liquid crystal display devices with built-in drivers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ハ))〜のは本発明の半導体装置の製造方法を
示す図。 第2図は実施例のTPTトランジスタ特性を示す図。 第3図は従来のTF’T )ランノスタ特性を示す図。 11・・・・・・薄膜半導体層 12・・・・・・絶縁基板 13・・・・・・ゲート■1 14・・・・・・ゲート電極 15・・・・・・相関絶縁嘆 16・・・・・・配線 17・・・・・・保護膜 b・・・・・・水素混入 A、 B、 O・・・・・・トランジスタ特性以  上
FIGS. 1(c) to 1(c) are diagrams showing a method for manufacturing a semiconductor device according to the present invention. FIG. 2 is a diagram showing the TPT transistor characteristics of the example. FIG. 3 is a diagram showing conventional TF'T) runnostar characteristics. 11... Thin film semiconductor layer 12... Insulating substrate 13... Gate ■1 14... Gate electrode 15... Correlation insulation layer 16. ...Wiring 17...Protective film b...Hydrogen contamination A, B, O...Transistor characteristics and above

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板又は絶縁層上に、薄膜半導体層、ゲート
絶縁層、ソース及びドレイン電極を形成せしめる半導体
装置の製造方法において、該薄膜半導体層のチャンネル
領域に不純物を混入せしめる工程と水素を混入せしめる
工程を有する事を特徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device in which a thin film semiconductor layer, a gate insulating layer, and source and drain electrodes are formed on an insulating substrate or an insulating layer, a step of mixing an impurity into a channel region of the thin film semiconductor layer and a step of mixing hydrogen. 1. A method for manufacturing a semiconductor device, comprising a step of increasing
JP8947186A 1986-04-18 1986-04-18 Manufacture of semiconductor device Pending JPS62245674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8947186A JPS62245674A (en) 1986-04-18 1986-04-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8947186A JPS62245674A (en) 1986-04-18 1986-04-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62245674A true JPS62245674A (en) 1987-10-26

Family

ID=13971634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8947186A Pending JPS62245674A (en) 1986-04-18 1986-04-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62245674A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222545A (en) * 1989-02-23 1990-09-05 Semiconductor Energy Lab Co Ltd Manufacture of thin film transistor
JPH02224341A (en) * 1989-02-27 1990-09-06 Semiconductor Energy Lab Co Ltd Formation of thin film transistor
EP0884773A2 (en) * 1997-06-09 1998-12-16 Nec Corporation Method of making an MIS transistor
US6232621B1 (en) 1993-02-15 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222545A (en) * 1989-02-23 1990-09-05 Semiconductor Energy Lab Co Ltd Manufacture of thin film transistor
JPH02224341A (en) * 1989-02-27 1990-09-06 Semiconductor Energy Lab Co Ltd Formation of thin film transistor
US6232621B1 (en) 1993-02-15 2001-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6413842B2 (en) * 1993-02-15 2002-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7952097B2 (en) 1993-02-15 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
EP0884773A2 (en) * 1997-06-09 1998-12-16 Nec Corporation Method of making an MIS transistor
EP0884773A3 (en) * 1997-06-09 2000-01-12 Nec Corporation Method of making an MIS transistor

Similar Documents

Publication Publication Date Title
EP0271247A2 (en) A MOS field effect transistor and a process for fabricating the same
ATE39034T1 (en) MANUFACTURE OF STACKED MOS DEVICES.
KR970054529A (en) Manufacturing Method of Semiconductor Device
KR100268120B1 (en) Semiconductor device and method for manufacturing same
JPS62245674A (en) Manufacture of semiconductor device
JPH10154814A (en) Active matrix substrate and manufacture thereof
KR100328126B1 (en) Method for Fabricating a Trench Gate Poly-Si Thin Film Transistor
JPH0350771A (en) Semiconductor device
JPH08255903A (en) Semiconductor device and fabrication thereof
JP2001111055A (en) Thin-film transistor and its manufacturing method
JPS61150278A (en) Thin film transistor
JPS63142677A (en) Insulated-gate field-effect transistor
JPS61100967A (en) Thin-film transistor
KR960026968A (en) Thin film transistor with double gate and manufacturing method
JP3014138B2 (en) Semiconductor device
TW200417035A (en) TFT structure with LDD region and manufacturing process of the same
KR0174998B1 (en) MOS device and its manufacturing method
KR100214069B1 (en) Method of fabricating a field effect transistor for semiconductor device
KR940000989B1 (en) Manufacturing method of fet using super thin film poly-silicon
JPS63177470A (en) Manufacture of insulated-gate field-effect transistor
JPH0837307A (en) Manufacture of semiconductor device and liquid crystal display
JPH08255915A (en) Liquid crystal display
KR970003682A (en) MOS transistor manufacturing method with low doped drain structure
JPH11135801A (en) Manufacture of thin-film transistor
JPH04144123A (en) Manufacture of semiconductor device