JPS61100967A - Thin-film transistor - Google Patents

Thin-film transistor

Info

Publication number
JPS61100967A
JPS61100967A JP22155784A JP22155784A JPS61100967A JP S61100967 A JPS61100967 A JP S61100967A JP 22155784 A JP22155784 A JP 22155784A JP 22155784 A JP22155784 A JP 22155784A JP S61100967 A JPS61100967 A JP S61100967A
Authority
JP
Japan
Prior art keywords
region
silicon layer
layer
crystal silicon
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22155784A
Other languages
Japanese (ja)
Other versions
JPH0612826B2 (en
Inventor
Yoshifumi Tsunekawa
吉文 恒川
Hiroyuki Oshima
弘之 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22155784A priority Critical patent/JPH0612826B2/en
Publication of JPS61100967A publication Critical patent/JPS61100967A/en
Publication of JPH0612826B2 publication Critical patent/JPH0612826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

PURPOSE:To lower a threshold current value, to increase an ON-OFF ratio and to enable response at high speed by thinning the film thickness of a channel region through the ion implantation of oxygen or nitrogen and forming structure in which the film thickness is made thinner than that of a source region and a drain region shaping contacts. CONSTITUTION:A nonsingular crystal silicon layer 9 is formed onto an insulating substrate 1, and etched to a required shape, the layer 9 is shaped so that a resist 10 is not left on a channel region 4, and the ions of oxygen, etc. are implanted. A resist mask is peeled, and a gate insulating film 5 is formed by thermally oxidizing the nonsingular crystal silicon layer 9. A gate electrode 6 is shaped, and a source region and a drain region 3 are formed through the implantation of impurity ions. An inter-layer insulating film 7 is shaped, a contact hole is formed, and a source electrode and a drain electrode 8 are shaped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜トランジス、りの構造に関するものであ
る@ 〔従来の技術〕 従来の薄膜トランジスタの構造は、特開昭59−223
65・特開昭59−96769の様に、動作層であるシ
リコン層の膜厚は、コンタクトホール形成時に問題がな
く、かつトランジスタ特性に、コンタクト抵抗等の寄生
抵抗が影響しない膜厚以上の均一膜厚であった。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the structure of a thin film transistor.
65. As in JP-A-59-96769, the thickness of the silicon layer that is the active layer is uniform enough to be at least as thick as there is no problem when forming contact holes, and that parasitic resistance such as contact resistance does not affect the transistor characteristics. The film thickness was

〔発明が解決しようとしている問題点〕しかし、前述の
従来技術では、薄膜トランジスタ(以下TXPTと記す
。)特性において、動作層が非単結晶シリコンであるこ
とからオン電流値が小さくオフ状態でのリーク電流が大
きいためオン/オフ比が小さくおさえられる、またしき
い値電圧が高く、応答速度が鈍いという問題点を有する
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, the characteristics of a thin film transistor (hereinafter referred to as TXPT) are that the on-current value is small and leakage occurs in the off-state because the active layer is made of non-monocrystalline silicon. Since the current is large, the on/off ratio is kept small, the threshold voltage is high, and the response speed is slow.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、動作半導体層である非単結晶シ
リコン層の少なくともチャネル領域の非単結晶シリコン
層膜厚は薄くし、ソース領域およびドレイン領域の少な
くともコンタクト形成領域は・コンタクトホール形成時
に、歩留り良く形成が可能で、フンタクト抵抗等の寄生
抵抗がトランジスタ特性に影響を与えない膜厚でTIF
Tを構成し、オフ電流値を下げ、オン電流値を上げオン
/オフ比を大きくシ、シきい値電圧を下げ、高速応答を
可能にするなど、良好なトランジスタ特性を有するTI
F’l’構造を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to reduce the thickness of the non-single-crystal silicon layer at least in the channel region of the non-single-crystal silicon layer, which is an active semiconductor layer, and to reduce the thickness of the non-single-crystal silicon layer in the source region. At least the contact formation region of the drain region and the drain region should be formed using TIF with a film thickness that can be formed with good yield when forming contact holes, and that parasitic resistance such as direct resistance does not affect transistor characteristics.
TI has good transistor characteristics, such as lowering the off-current value, increasing the on-current value, increasing the on/off ratio, lowering the threshold voltage, and enabling high-speed response.
It provides an F'l' structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のTIFTは、動作半導体層である非単結晶シリ
コン層中の少なくともチャネル領域に、イオン打込みに
より形成した絶縁層を有し、チャネル領域の非単結晶シ
リコン層膜厚は薄ぐ、外部配線とコンタクトを形成する
ソース領域およびドレイン領域の少なくともコンタクト
形成領域は、良好なフンタクトが可能であるように厚く
した構造を特徴とする。
The TIFT of the present invention has an insulating layer formed by ion implantation at least in the channel region of the non-single crystal silicon layer that is the active semiconductor layer, the non-single crystal silicon layer in the channel region is thin, and the external wiring At least the contact forming regions of the source region and the drain region that form a contact with the semiconductor device are characterized by a thick structure so as to enable good contact.

〔作 用〕[For production]

本発明の上記構成によれば、チャネル領域の膜厚を薄く
シ、少なくともフンタクトを形成するソース領域および
ドレイン領域の膜厚は、フンタクトホール形成時に歩留
り低下に影響することなくかつ良好なコンタクト特性が
得られるような膜厚となるような構造としたので、しき
い値電圧の低下、オフ状態のリーク電流の減少、オン電
流の増加さらには、高速応答が実現できるものである口
〔実施例〕 第1図は、本発明の実施例におけるTIFTの構造図で
あって、第2図の従来のT?T構造と比較して、イオン
打込みにより形成される絶縁層2の厚さだけ、チャネル
領域4の非単結晶シリコン層の膜厚が薄くなっている。
According to the above structure of the present invention, the film thickness of the channel region can be made thin, and at least the film thickness of the source region and the drain region forming the contact hole can be made thin enough to have good contact characteristics without affecting the yield reduction when forming the contact hole. The structure has a film thickness that allows for a reduction in threshold voltage, a reduction in off-state leakage current, an increase in on-state current, and a high-speed response. ] FIG. 1 is a structural diagram of a TIFT according to an embodiment of the present invention, and is a structural diagram of a TIFT according to an embodiment of the present invention. Compared to the T structure, the thickness of the non-single crystal silicon layer in the channel region 4 is thinner by the thickness of the insulating layer 2 formed by ion implantation.

第3図には、本発明による?IFT構造を実現する為の
製造工程を示す。第3図を用いて、製造工程を説明する
FIG. 3 shows the results according to the present invention? The manufacturing process for realizing the IFT structure is shown. The manufacturing process will be explained using FIG. 3.

最初に、絶縁基板1上に、非単結晶シリコン層を、化学
気相成長法(以下OVDと記す・)等により形成し、必
要な形状にエツチングを行ない、イオン打込み用のマス
クを、レジスト10により少なくともチャネル領域4上
にはレジスト10が残らないように形成しイオン打込み
を行なう0このようにして第3図(α)の如くなる。イ
オン打込みには・酸素イオンあるいは窒素イオンの使用
が可能である。
First, a non-single-crystal silicon layer is formed on an insulating substrate 1 by chemical vapor deposition (hereinafter referred to as OVD), etched into a required shape, and a resist 10 is used as a mask for ion implantation. Therefore, the resist 10 is formed so that no resist 10 remains at least on the channel region 4, and ion implantation is performed.In this way, the result is as shown in FIG. 3(α). For ion implantation, oxygen ions or nitrogen ions can be used.

続いて、レジストマスクをハクリした後、非単結晶シリ
コン層9の熱酸化により、ゲート絶縁膜5を形成する@
この際、イオン打込みした層2のアニールも同時に行な
うことができる。
Subsequently, after peeling off the resist mask, the gate insulating film 5 is formed by thermal oxidation of the non-single crystal silicon layer 9.
At this time, the ion-implanted layer 2 can also be annealed at the same time.

続いて、不純物元素の熱拡散等で低抵抗化した非単結晶
シリコン層あるいは、ゲート配線抵抗が問題となる場合
には高融点金属またはそのシリサイド等を使用して、ゲ
ート電極6を形成し、不純物イオンの打ち込みにより、
ソース領域およびドレイン領域3を形成する。この際ゲ
ート電極6をマスクに打ち込むので、自己整合が可能と
なる。
Next, a gate electrode 6 is formed using a non-single crystal silicon layer whose resistance has been lowered by thermal diffusion of impurity elements, or a high melting point metal or its silicide if gate wiring resistance is a problem, By implanting impurity ions,
A source region and a drain region 3 are formed. At this time, since the gate electrode 6 is implanted into the mask, self-alignment becomes possible.

このようにして、第[(C)の如くなる。In this way, the result becomes as shown in No. (C).

次に、相関絶縁膜7を形成し、コンタクトホールを形成
した後、A I!、 −S i 、 A ft −S 
i −Ou等電極材料によりソース電極およびドレイン
電極8を形成することにより、第3図(d)の如く構造
となるO 以上のようにして、本発明によるTPT構造の実現が可
能となる。
Next, after forming a correlation insulating film 7 and forming contact holes, A I! , -S i , A ft -S
By forming the source electrode and drain electrode 8 using an electrode material such as i-Ou, a structure as shown in FIG. 3(d) is obtained.As described above, it becomes possible to realize the TPT structure according to the present invention.

さらに、第3図(a)においては、イオン打込みのマス
ク10をレジストにより形成したが、このマスクをcv
n等で形成した酸化膜1形成した構造を第4図に示す。
Furthermore, in FIG. 3(a), the mask 10 for ion implantation was formed of resist, but this mask was
FIG. 4 shows a structure in which an oxide film 1 made of n or the like is formed.

マスクとして形成した酸化膜は層間絶縁膜の一部として
使用できる。さらに、界面状態がTPT特性に敏感に影
響する非単結晶シリコン層90表面が、レジスト10で
汚染されることなく構成できるので、トランジスタ特性
のバラツキが小さくなる。
The oxide film formed as a mask can be used as part of an interlayer insulating film. Furthermore, since the surface of the non-single crystal silicon layer 90, whose interface state sensitively affects the TPT characteristics, can be constructed without being contaminated by the resist 10, variations in transistor characteristics are reduced.

続いて、本発明による作用を詳しく説明すると、本発明
の上記構成によれば、チャネル領域の膜厚を薄くしたT
PT構造であるので、動作半導体層である非単結晶シリ
コン層中のチャネル領域において、ゲート電圧の増加に
より広がる空乏層は、低ゲート電圧で、チャネル領域を
満たすことになる。また、空乏層がチャネル領域を満た
すゲート電圧(以後VTと記す)以上のゲート電圧(以
後’VGと記す)を印加すれば、(7o−7T)なる電
圧は、非単結晶シリコンの7エルミレベルを曲げること
に使用され、反転層形成に使用される0一般にMOS)
ランジスタにおけるしきい値電圧(以後vthと記す。
Next, the effects of the present invention will be explained in detail. According to the above structure of the present invention, T
Because of the PT structure, the depletion layer that expands as the gate voltage increases in the channel region in the non-single crystal silicon layer that is the active semiconductor layer fills the channel region with a low gate voltage. In addition, if a gate voltage (hereinafter referred to as 'VG) higher than the gate voltage (hereinafter referred to as VT) at which the depletion layer fills the channel region is applied, the voltage (7o-7T) will be at the 7 Hermi level of non-single crystal silicon. used for bending and forming an inversion layer (generally MOS)
Threshold voltage (hereinafter referred to as vth) in a transistor.

)は次式で表わされる0Vth=Vyn−)−2−1φ
71−1−8・Na*Wa/CoxここでV PBはフ
ラットバンド電圧、φνは7工ルミ準位、qは電荷量、
Nsは不純物濃度、Waは空乏層厚、Ooxはゲート容
量である。
) is expressed by the following formula: 0Vth=Vyn-)-2-1φ
71-1-8・Na*Wa/Cox where V PB is the flat band voltage, φν is the 7-Eluminum level, q is the amount of charge,
Ns is the impurity concentration, Wa is the depletion layer thickness, and Oox is the gate capacitance.

上式のW8以外の変数の値が一定であるならば、’vt
hは、Wsを小さくすることで、減少することになる。
If the values of variables other than W8 in the above equation are constant, 'vt
h will decrease by decreasing Ws.

故に・本発明のTPT構造のように、Wsすなわち空乏
層厚を有限な非単結晶シリコン層を用いて、制御するこ
とにより、しきい値電圧を下げることが可能となる。
Therefore, as in the TPT structure of the present invention, by controlling Ws, that is, the thickness of the depletion layer using a finite non-single crystal silicon layer, it is possible to lower the threshold voltage.

また、オフ状態でのリーク電流を決定するのは蔦チャネ
ル領域の抵抗値である。オフ状態でのチャネル領域の非
単結晶シリコン層の比抵抗率をρBとし、チャネル幅を
W1チャネル長をL1チャネル領域の非単結晶シリコン
層の膜厚をWsとすれば・オフ状態でのチャネル抵抗R
Offは、Roff =ρ8・I+ / W−W sと
なる。したがって、オフ状態でのチャネル抵抗は、チャ
ネル領補の非単結晶シリコン層の膜厚を薄くすることで
、増加する。すなわち・本発明の如く構造にすることで
、オフ状態でのチャネル抵抗が増加し、オフ状態でのリ
ーク電流は減少する0 また、MOS)ランジスタの理論式より理解できるよう
にオン状態での電流すなわちオン電流は1(VG−7t
h)の関数であり、(vo−vth)の値の増加で・オ
ン電流は増加する。本発明のTIPT構造を実現するこ
とで、vthが下がるので、オン電流が増加することに
なる。したがって、オン電流が増加し、前述のごとくオ
フ電流は減少するので、トランジスタ応答特性に必要な
オン/オフ比が増加することになる。
Furthermore, it is the resistance value of the vine channel region that determines the leakage current in the off state. If the resistivity of the non-single crystal silicon layer in the channel region in the off state is ρB, the channel width is W1, the channel length is L1, the thickness of the non-single crystal silicon layer in the channel region is Ws, then the channel in the off state is Resistance R
Off is Roff=ρ8·I+/W−Ws. Therefore, the channel resistance in the off state increases by reducing the thickness of the non-single crystal silicon layer in the channel region. That is, by structuring as in the present invention, the channel resistance in the OFF state increases and the leakage current in the OFF state decreases.Also, as can be understood from the theoretical formula for a MOS transistor, the current in the ON state increases. In other words, the on-current is 1 (VG-7t
h), and as the value of (vo-vth) increases, the on-state current increases. By realizing the TIPT structure of the present invention, vth decreases, so on-current increases. Therefore, since the on-current increases and the off-current decreases as described above, the on/off ratio required for transistor response characteristics increases.

以上のことは、第5図に示す’1’FT特性の1例より
理解できる。さらに第5図より、本発明の構造にするこ
とで、特性の立ち上がりが急峻となり、より高速応答が
可能なTIPT特性となることが理解できる。第5図に
は例としてNチャネルTIF’l’の特性が示しである
が、PチャネルTIFTにおいても同様な特性が得られ
る。
The above can be understood from an example of the '1' FT characteristic shown in FIG. Further, from FIG. 5, it can be seen that by adopting the structure of the present invention, the rise of the characteristic becomes steeper, resulting in a TIPT characteristic that enables faster response. Although FIG. 5 shows the characteristics of an N-channel TIF'l' as an example, similar characteristics can be obtained in a P-channel TIFT.

加えて、本発明では、外部配線とのコンタクトにおいて
、動作半導体層のソース領域およびドレイン領域の少な
くともコンタクト形成領域は、量産工程においても、フ
ンタクトホールが歩留り良く形成でき、しかもコンタク
ト抵抗等寄生抵抗が、TIPT特性に影響しない膜厚と
しているので、それら要因に影響されることなく、前述
したような、高性能なT、F T特性が得られる。
In addition, in the present invention, in contact with external wiring, at least the contact formation regions of the source region and drain region of the active semiconductor layer can be formed with a high yield even in the mass production process, and parasitic resistance such as contact resistance can be formed. However, since the film thickness is set such that it does not affect the TIPT characteristics, the high performance T and FT characteristics described above can be obtained without being affected by these factors.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、酸素あるいは窒素の
イオン打込みにより形成される絶縁層により動作半導体
層である非単結晶シリコン層の少なくともチャネル領域
の膜厚を薄くシ、フンタクトを形成するソース領域およ
びドレイン領域の膜厚は、チャネル領域より厚くすると
いうTPT構造にすることにより、しきい値電流値がO
〜3vと低くなり、オフ電流が1ピコアンペア以下、オ
ン電流も10マイクロアンペア以上となり、オン/オフ
比でも7桁以上という、高性能なT’FT特性が得られ
る◎またNチャネルTIFTだけでなくPチャネルTN
Tについても同様に高性能な特性が、バランス良く得ら
れるので、片チャネルのデバイスだけでなく、各種0M
O8構造のデバイスへの応用が可能となる。
As described above, according to the present invention, the film thickness of at least the channel region of the non-single-crystal silicon layer, which is the active semiconductor layer, can be thinned by the insulating layer formed by ion implantation of oxygen or nitrogen, and the film thickness of the non-single crystal silicon layer, which is the active semiconductor layer, can be reduced. By adopting a TPT structure in which the film thickness of the region and drain region is thicker than that of the channel region, the threshold current value can be reduced to O.
~3V, the off current is less than 1 picoampere, the on current is more than 10 microamperes, and the on/off ratio is more than 7 digits, providing high-performance T'FT characteristics.In addition to N-channel TIFT, P channel TN
Similarly, high-performance characteristics can be obtained in a well-balanced manner for T, so it can be used not only for single channel devices but also for various 0M
Application to devices with O8 structure becomes possible.

加えて構造上、少なくともフンタクトを形成するソース
領域およびドレイン領域の膜厚を厚くしているので、量
産工程を考慮した場合にも、歩留り良くフンタクトホー
ル形成が可能となり、良好なコンタクト特性を実現する
という効果を有する。
In addition, due to the structure, the thickness of at least the source and drain regions that form the contact hole is thicker, so even when considering the mass production process, it is possible to form the contact hole with a high yield and achieve good contact characteristics. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜トランジスタの構造の一実施例を
示す主要断面図。 第2図は従来の薄膜トランジスタの構造を示す主要断面
図。 第5図(α)〜(d)は本発明の薄膜トランジスタを実
現するための製造工程図。 第4図は本発明の薄膜トランジスタの構造の一実施例を
示す主要断面図。 第5図は本発明の構造と従来の構造の薄膜トランジスタ
のトランジスタ特性を示す図◇1・・・絶縁基板 2・・・イオン打込み絶縁層 3・・・ソース領域およびドレイン領域4・・・チャネ
ル領域  5・・・ゲート絶縁層6・・・ゲート電極 
  7・・一層間絶縁層8・・・ソース電極およびドレ
イン領域9・・・非単結晶シリコン層 10・・−レジスト層 11・・・酸素イオンビームあるいは窒素イオンビーム 12・・・不純物イオンビーム 13・・・マスク絶縁層 第1図 第2図 0λン t&) 第3図 第4図
FIG. 1 is a main cross-sectional view showing one embodiment of the structure of a thin film transistor according to the present invention. FIG. 2 is a main cross-sectional view showing the structure of a conventional thin film transistor. FIGS. 5(α) to 5(d) are manufacturing process diagrams for realizing the thin film transistor of the present invention. FIG. 4 is a main cross-sectional view showing one embodiment of the structure of a thin film transistor of the present invention. FIG. 5 is a diagram showing the transistor characteristics of thin film transistors having the structure of the present invention and the conventional structure. 5... Gate insulating layer 6... Gate electrode
7... Interlayer insulating layer 8... Source electrode and drain region 9... Non-single crystal silicon layer 10...-Resist layer 11... Oxygen ion beam or nitrogen ion beam 12... Impurity ion beam 13 ...Mask insulating layer Fig. 1 Fig. 2 0λnt&) Fig. 3 Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板上のシリコン層を、動作半導体層に用い
た薄膜トランジスタにおいて、前記シリコン層に形成さ
れる少なくともチャネル領域に、選択的イオン打込みに
より形成した絶縁層を有し局所的に、前記チャネル領域
のシリコン層膜厚を薄くした構造を特徴とする薄膜トラ
ンジスタ。
(1) In a thin film transistor in which a silicon layer on an insulating substrate is used as an active semiconductor layer, an insulating layer formed by selective ion implantation is provided at least in a channel region formed in the silicon layer, and the insulating layer is locally formed in the channel region. A thin film transistor characterized by a structure in which the thickness of the silicon layer in the region is reduced.
(2)選択的イオン打込みにより形成した絶縁層が、前
記シリコンの酸化膜および窒化膜であることを特徴とす
る特許請求の範囲第1項記載の薄膜トランジスタ。
(2) The thin film transistor according to claim 1, wherein the insulating layer formed by selective ion implantation is an oxide film and a nitride film of the silicon.
(3)前記シリコン層に形成されるソース領域およびド
レイン領域と外部配線とのコンタクト形成領域の前記シ
リコン層の膜厚は、チャネル領域の膜厚より厚いことを
特徴とする特許請求の範囲第1項記載の薄膜トランジス
タ。
(3) The film thickness of the silicon layer in the contact formation region between the source region and the drain region formed in the silicon layer and the external wiring is thicker than the film thickness of the channel region. The thin film transistor described in Section 1.
JP22155784A 1984-10-22 1984-10-22 Method of manufacturing thin film transistor Expired - Lifetime JPH0612826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22155784A JPH0612826B2 (en) 1984-10-22 1984-10-22 Method of manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22155784A JPH0612826B2 (en) 1984-10-22 1984-10-22 Method of manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPS61100967A true JPS61100967A (en) 1986-05-19
JPH0612826B2 JPH0612826B2 (en) 1994-02-16

Family

ID=16768586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22155784A Expired - Lifetime JPH0612826B2 (en) 1984-10-22 1984-10-22 Method of manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JPH0612826B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136167A (en) * 1991-09-20 1993-06-01 Mitsubishi Electric Corp Thin film transistor and its manufacture
US5821563A (en) * 1990-12-25 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device free from reverse leakage and throw leakage
US6153910A (en) * 1994-06-22 2000-11-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with nitrogen implanted channel region
US6214684B1 (en) * 1995-09-29 2001-04-10 Canon Kabushiki Kaisha Method of forming a semiconductor device using an excimer laser to selectively form the gate insulator
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821563A (en) * 1990-12-25 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device free from reverse leakage and throw leakage
US6838698B1 (en) 1990-12-25 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having source/channel or drain/channel boundary regions
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
US7375375B2 (en) 1990-12-25 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH05136167A (en) * 1991-09-20 1993-06-01 Mitsubishi Electric Corp Thin film transistor and its manufacture
US5281828A (en) * 1991-09-20 1994-01-25 Mitsubishi Denki Kabushiki Kaisha Thin film transistor with reduced leakage current
US5436184A (en) * 1991-09-20 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Thin film transistor and manufacturing method thereof
US6153910A (en) * 1994-06-22 2000-11-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with nitrogen implanted channel region
US6380036B1 (en) 1994-06-22 2002-04-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6214684B1 (en) * 1995-09-29 2001-04-10 Canon Kabushiki Kaisha Method of forming a semiconductor device using an excimer laser to selectively form the gate insulator

Also Published As

Publication number Publication date
JPH0612826B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US5320974A (en) Method for making semiconductor transistor device by implanting punch through stoppers
US5371024A (en) Semiconductor device and process for manufacturing the same
US4463492A (en) Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state
US5898203A (en) Semiconductor device having solid phase diffusion sources
US4395726A (en) Semiconductor device of silicon on sapphire structure having FETs with different thickness polycrystalline silicon films
US6163053A (en) Semiconductor device having opposite-polarity region under channel
US4891326A (en) Semiconductor device and a process for manufacturing the same
JPH02237160A (en) Semiconductor device
US6596593B2 (en) Method of manufacturing semiconductor device employing oxygen implantation
US6451676B2 (en) Method for setting the threshold voltage of a MOS transistor
JPS61100967A (en) Thin-film transistor
JPH08330590A (en) Insulated gate field-effect transistor structure and its manufacture
JPH09135029A (en) Mis semiconductor device and manufacturing method therefor
US4196507A (en) Method of fabricating MNOS transistors having implanted channels
JPH05198804A (en) Semiconductor device and manufacturing method thereof
JPH05218417A (en) Integrated circuit transistor structure and manufacture thereof
JPS5868979A (en) Semiconductor device
JP2611363B2 (en) Insulated gate field effect transistor and method of manufacturing the same
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JP2513634B2 (en) Method for manufacturing semiconductor device
JPH05335503A (en) Manufacture of semiconductor device
JP2796655B2 (en) Semiconductor device and manufacturing method thereof
JPH09252130A (en) Semiconductor device and its manufacturing method
KR910009742B1 (en) High voltage semiconductor device and its manufacturing method
JPH05235290A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term