JPS62235779A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62235779A
JPS62235779A JP8050386A JP8050386A JPS62235779A JP S62235779 A JPS62235779 A JP S62235779A JP 8050386 A JP8050386 A JP 8050386A JP 8050386 A JP8050386 A JP 8050386A JP S62235779 A JPS62235779 A JP S62235779A
Authority
JP
Japan
Prior art keywords
silicon layer
polycrystalline silicon
base
hole
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8050386A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuda
津田 博
Tadahiko Murata
村田 孔彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8050386A priority Critical patent/JPS62235779A/en
Publication of JPS62235779A publication Critical patent/JPS62235779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a semiconductor device which can be produced in higher yield even if an interval between electrodes is short by forming a polycrystalline silicon layer only in a hole formed in an insulating film formed on a semiconductor substrate to eliminate the contact of the silicon layer with the electrodes. CONSTITUTION:An insulating film 2 formed on a semiconductor substrate 1, holes 4, 5 formed at the film 2, and a polycrystalline silicon layer 9 formed only in the holes 5, 6 are contained. For example, a base diffused region 3 is formed at part of the substrate 1, a base hole 4 and an emitter hole 5 are formed at the film 2, and a polycrystalline silicon layer 9 is buried therein. The layer 8 buried in the hole 4 is implanted, for example, with the same impurity as the region 3 by an ion implanting method, and an impurity having an opposite conductivity type to the base is implanted to the layer 9 buried in the hole 5. An emitter region 7 and a base high density region 10 are formed by thermally diffusing from the layer 8 containing the impurity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に多結晶シリコン層を用
いる半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device using a polycrystalline silicon layer.

〔従来の技術〕[Conventional technology]

従来、高速動作?必要とする半導体装置において、不純
物を含む多結晶シリコン層からの固相拡散法を用いて製
造されているものがある。例えば超高速動作トランジス
タにおいて、ヒ素を含む多結晶シリコン層をエミッタの
拡散源に用い、超高速動作を有する半導体装置を得てお
り、不純物を含む多結晶シリコン層からの固相拡散法は
重要な技術となっている。
Conventional high-speed operation? Some semiconductor devices that require this are manufactured using a solid-phase diffusion method from a polycrystalline silicon layer containing impurities. For example, in ultra-high-speed operation transistors, a polycrystalline silicon layer containing arsenic is used as an emitter diffusion source to obtain a semiconductor device with ultra-high-speed operation, and the solid-phase diffusion method from a polycrystalline silicon layer containing impurities is important. It has become a technology.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述した不純物を含む多結晶シリコン層からの
固相拡散を用いるためには、多結晶シリコン層を形成す
る必要がある。
However, in order to use the solid phase diffusion from a polycrystalline silicon layer containing impurities as described above, it is necessary to form a polycrystalline silicon layer.

、従来の技術による多結晶シリコン層を用いたトランジ
スタの縦断面図を第2図に示す、第2図に示すようにシ
リコン基板1にシリコン酸化膜2が形成されており、ベ
ース拡散領域3.ベース開口部4.エミッ、り開口部5
が形成されている。また、エミッタには、ヒ素を含む多
結晶シリコン層6が図のようにシリコン酸化膜2の上に
迄拡がって形成されている。このヒ素を含む多結晶シリ
コン層からの熱拡散によりエミッタ領域7が形成され、
ベース開口部及びエミッタ開口部上の多結晶シリコン層
上に電極8が形成され、1〜ランジスタを構成している
FIG. 2 shows a vertical cross-sectional view of a conventional transistor using a polycrystalline silicon layer.As shown in FIG. 2, a silicon oxide film 2 is formed on a silicon substrate 1, and a base diffusion region 3. Base opening 4. Emitter opening 5
is formed. Further, in the emitter, a polycrystalline silicon layer 6 containing arsenic is formed extending over the silicon oxide film 2 as shown in the figure. Emitter region 7 is formed by thermal diffusion from this arsenic-containing polycrystalline silicon layer,
Electrodes 8 are formed on the polycrystalline silicon layer above the base opening and the emitter opening, and constitute transistors 1 to 1.

しかし、超高速動作を必要とするトランジスタにおいて
は、エミッタ領域を小さくし、かつエミッタとベース開
口部間の距離も非常に接近させる必要がある。このよう
な時、ベース電極と多結晶シリコン層の距離も非常に接
近してくるため、次のような問題が発生した。1つは、
ベース電極と多結晶シリコン層とが接近して、エミッタ
ーベース間が短絡状態となるという間顕である。
However, in a transistor that requires ultra-high-speed operation, it is necessary to make the emitter region small and to make the distance between the emitter and the base opening very close. In such a case, the distance between the base electrode and the polycrystalline silicon layer becomes very close, resulting in the following problem. One is
This is a phenomenon in which the base electrode and the polycrystalline silicon layer become close to each other, creating a short circuit between the emitter and the base.

また、他の1つは、多結晶シリコン層の段差がベース電
極と非常に接近してくるため、電極形成時にこの段差の
影響をうけて、フォトレジストの形状が異常になるとい
う問題である。
Another problem is that since the step of the polycrystalline silicon layer comes very close to the base electrode, the shape of the photoresist becomes abnormal due to the influence of this step when forming the electrode.

この2つの問題のため電極スペースを1μm以下にする
ことは不可能であった。
Because of these two problems, it has been impossible to reduce the electrode space to 1 μm or less.

本発明の目的は、多結晶シリコン層と電極との接触が生
ぜず、従ってエミッターベース間の短絡を発生すること
なく、また、多結晶シリコン層の段差のため発生する電
極形成工程におけるフォトレジストの形状に悪影響を与
えることがなく、電極間隔の小さなものでも歩留りよく
生産できる半導体装置を提供することにある。
It is an object of the present invention to eliminate contact between the polycrystalline silicon layer and the electrode, thereby eliminating short circuits between emitter bases, and to avoid contact with the photoresist in the electrode formation process, which occurs due to steps in the polycrystalline silicon layer. It is an object of the present invention to provide a semiconductor device that does not adversely affect the shape and can be produced with a high yield even when the electrode spacing is small.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板上に形成された絶縁
膜と、該絶縁膜に設けられた開口部と、該開口部のみに
設けられた多結晶シリコン層とを含んで構成される。な
お、上記多結晶シリコンが不純物を含み、熱処理による
固相拡散により形成した半導体装置は効果的な装置とな
る。
A semiconductor device of the present invention includes an insulating film formed on a semiconductor substrate, an opening provided in the insulating film, and a polycrystalline silicon layer provided only in the opening. Note that a semiconductor device in which the polycrystalline silicon contains impurities and is formed by solid phase diffusion through heat treatment becomes an effective device.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例であるトランジスタの縦断
面図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a transistor that is an embodiment of the present invention.

第1図において1はシリコン基板、2はシリコン酸化膜
である。シリコン基板の一部にはベース拡散領域3が形
成され、シリコン酸化膜にはベース開口部4とエミッタ
開口部5が形成され、それぞれ多結晶シリコン層9が埋
込まれている。この多結晶シリコンは開口部のみに埋込
まれシリコン酸化膜上には存在しない。このベース開口
部に埋込まれた多結晶シリコン層は、例えばイオン注入
法によりベース拡散領域と同一の不純物(例えばホウ素
)が注入されており、一方エミッタ開口部に埋込まれた
多結晶シリコン層には、ベースと反対の導電型を有する
不純物(例えばヒ素)が注入されている。この不純物を
含む多結晶シリコン層からの熱拡散によりエミッタ領域
7、ベース高濃度領域10が形成され、電極8がこれら
の多結晶シリコン層と接触してトランジスタを構成して
いる。
In FIG. 1, 1 is a silicon substrate and 2 is a silicon oxide film. A base diffusion region 3 is formed in a part of the silicon substrate, and a base opening 4 and an emitter opening 5 are formed in the silicon oxide film, each of which is filled with a polycrystalline silicon layer 9. This polycrystalline silicon is buried only in the opening and does not exist on the silicon oxide film. The polycrystalline silicon layer buried in the base opening is implanted with the same impurity (for example, boron) as the base diffusion region, for example by ion implantation, while the polycrystalline silicon layer buried in the emitter opening An impurity (eg, arsenic) having a conductivity type opposite to that of the base is implanted into the base. Emitter region 7 and base high concentration region 10 are formed by thermal diffusion from the polycrystalline silicon layer containing impurities, and electrode 8 is in contact with these polycrystalline silicon layers to form a transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によるトランジスタは、多
結晶シリコン層をエミッタ又はベース開口部に埋込んだ
ため、電極と多結晶シリコン層との接触が生ぜず、エミ
ッターベース間の短絡は発生しない。
As described above, in the transistor according to the present invention, since the polycrystalline silicon layer is buried in the emitter or base opening, there is no contact between the electrode and the polycrystalline silicon layer, and no short circuit occurs between the emitter and the base.

また、多結晶シリコン層がシリコ酸化股上に無いため、
段差はなく、電極工程でのフォトレジストの形状に何の
影響も与えない。
In addition, since there is no polycrystalline silicon layer on the silicon oxide layer,
There are no steps, and there is no effect on the shape of the photoresist during the electrode process.

このため、特に電極間隔の小さなトランジスタや集積回
路の歩留りを大幅に向上することができた。
For this reason, it has been possible to significantly improve the yield of transistors and integrated circuits with particularly small electrode spacing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の縦断面図、第2図は従来
の高速動作トランジスタの一例の縦断面図である。 1・・・シリコン基板、2・・・シリコン酸化膜、3・
・・ベース拡散領域、4・・・ベース開口部、5・・・
エミッタ開口部、6・・・不純物を含む多結晶シリコン
層、7・・・エミッタ拡散領域、8・・・電極、9・・
・不純物を含む多結晶シリコン層、10・・・ベース高
濃度拡散領域。
FIG. 1 is a vertical cross-sectional view of an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of an example of a conventional high-speed operation transistor. 1... Silicon substrate, 2... Silicon oxide film, 3.
...Base diffusion region, 4...Base opening, 5...
Emitter opening, 6... Polycrystalline silicon layer containing impurities, 7... Emitter diffusion region, 8... Electrode, 9...
- Polycrystalline silicon layer containing impurities, 10...base high concentration diffusion region.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に形成された絶縁膜と、該絶縁膜に
設けられた開口部と、該開口部のみに設けられた多結晶
シリコン層とを含むことを特徴とする半導体装置。
(1) A semiconductor device comprising an insulating film formed on a semiconductor substrate, an opening provided in the insulating film, and a polycrystalline silicon layer provided only in the opening.
(2)多結晶シリコン層が不純物を含有した多結晶シリ
コン層である特許請求の範囲第(1)項記載の半導体装
置。
(2) The semiconductor device according to claim (1), wherein the polycrystalline silicon layer is a polycrystalline silicon layer containing impurities.
(3)多結晶シリコン層は不純物を含有し、かつ熱処理
されたものである特許請求の範囲第(1)項記載の半導
体装置。
(3) The semiconductor device according to claim (1), wherein the polycrystalline silicon layer contains impurities and is heat-treated.
JP8050386A 1986-04-07 1986-04-07 Semiconductor device Pending JPS62235779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8050386A JPS62235779A (en) 1986-04-07 1986-04-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8050386A JPS62235779A (en) 1986-04-07 1986-04-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62235779A true JPS62235779A (en) 1987-10-15

Family

ID=13720113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8050386A Pending JPS62235779A (en) 1986-04-07 1986-04-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62235779A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICAL DISCLOSURE BULLETIN=1980 *

Similar Documents

Publication Publication Date Title
JPH0758121A (en) Semiconductor device and its manufacture
JPS62235779A (en) Semiconductor device
JP2890509B2 (en) Method for manufacturing semiconductor device
JPS6123665B2 (en)
JP2511993B2 (en) Method for manufacturing semiconductor device
KR100299612B1 (en) Device isolation method of semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPH07326625A (en) Manufacture of semiconductor integrated circuit device, and semiconductor integrated circuit device
JPS63144567A (en) Manufacture of semiconductor device
JPS60235447A (en) Semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPH01194453A (en) Semiconductor device
JPH04152531A (en) Manufacture of semiconductor device
JPH02159035A (en) Integrated circuit device
JPH05335329A (en) Semiconductor device and its manufacture
JPS6332918A (en) Manufacture of semiconductor device
JPH02180022A (en) Manufacture of semiconductor device
JPH0479334A (en) Production of semiconductor device
JPH01117362A (en) Manufacture of semiconductor integrated circuit device
JPS60241249A (en) Semiconductor device
JPS61245572A (en) Semiconductor device
JPH01217972A (en) Semiconductor integrated circuit
JPH02163961A (en) Semiconductor device and its manufacture
JPS61100963A (en) Manufacture of semiconductor device