JPH01194453A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01194453A
JPH01194453A JP2081688A JP2081688A JPH01194453A JP H01194453 A JPH01194453 A JP H01194453A JP 2081688 A JP2081688 A JP 2081688A JP 2081688 A JP2081688 A JP 2081688A JP H01194453 A JPH01194453 A JP H01194453A
Authority
JP
Japan
Prior art keywords
stacked
diffused
source
type
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2081688A
Other languages
Japanese (ja)
Inventor
Tsunenori Yamauchi
経則 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2081688A priority Critical patent/JPH01194453A/en
Publication of JPH01194453A publication Critical patent/JPH01194453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enhance the functions and integration of a stacked source, drain MOS transistor by forming a p-n-p junction or an n-p-n junction of a second selectively epitaxial layer, a base region and an emitter diffused region. CONSTITUTION:After a thin oxide film is formed by thermally oxidizing on a P-type semiconductor substrate 1 formed with a field oxide film 2, polysilicon is grown. The polysilicon of a gate electrode 5 remains by gate etching, and the polysilicon except it is removed. The periphery of the polysilicon of the gate electrode is covered by thermally oxidizing with an SiO2. Then, a thin oxide film on the substrate is removed. Then, an epitaxial layer is grown by first selectively epitaxial growth, arsenic (As+) is diffused, thereby forming an N<+> type first selectively epitaxial layers 31, 43. Then, a second selectively epitaxial growth is conducted, As+ is diffused to form an N-type second selectively epitaxial layers 32, 42. After a third selectively epitaxial growth is conducted, boron (B<+>) is diffused at a source side to form a P-type base layer 33, and As<+> is diffused at a drain side to form an N<+> type contact layer 43. An N<+> type emitter diffused region 34 is formed by diffusing the As<+> at the source side.

Description

【発明の詳細な説明】 〔概要〕 半導体装置に係り、特にスタックドソースドレイン構造
を持つ半導体装置に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a stacked source/drain structure.

多機能化、高集積化を目的とし。Aiming for multi-functionality and high integration.

半導体基vi(1)上の所定領域に形成され周囲を絶縁
膜で囲まれたゲート電極(5)と、前記半導体基板上で
且つ前記絶縁膜に接し前記ゲート電極の両側に形成され
たエピタキシャル層からなるソース及びドレイン領域と
を有する半導体装置において、前記エピタキシャル層は
複数層が積層しているスタックドソース構造(3)及び
スタックドドレイン構造(4)を持ち、該スタックドソ
ース構造中或いは該スタックドドレイン構造中にp−n
−p接合若しくはn−p−n接合を含むことを特徴とす
る半導体装置をもって構成とする。
a gate electrode (5) formed in a predetermined region on the semiconductor substrate vi (1) and surrounded by an insulating film; and an epitaxial layer formed on the semiconductor substrate and in contact with the insulating film on both sides of the gate electrode. In a semiconductor device having source and drain regions consisting of p-n in stacked drain structure
- A semiconductor device characterized by including a p junction or an np junction.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置に係り、特にスタックドソースドレ
イン構造を持つ半導体装置に関する。
The present invention relates to a semiconductor device, and particularly to a semiconductor device having a stacked source/drain structure.

半導体装置に1よ高集積化が要求されており、更に多機
能化が望まれている。このため、かかる要求に応じる半
導体装置を開発する必要がある。
2. Description of the Related Art Semiconductor devices are required to be highly integrated, and even more multifunctional. Therefore, it is necessary to develop a semiconductor device that meets these demands.

〔従来の技術〕[Conventional technology]

MOS)ランジスタにおいて短チヤネル効果を防ぐため
、エピタキシャル層を用いたスタックドソースドレイン
構造のMO3I−ランジスタが開発されている。
In order to prevent short channel effects in MOS) transistors, MO3I transistors with a stacked source-drain structure using epitaxial layers have been developed.

第3図に従来例のスタックドソースドレインMOSトラ
ンジスタの構造を示す。フィールド酸化膜2の形成され
たp型半導体基板l上に絶縁膜で囲まれたポリSiのゲ
ート電極5が形成される。
FIG. 3 shows the structure of a conventional stacked source-drain MOS transistor. A poly-Si gate electrode 5 surrounded by an insulating film is formed on a p-type semiconductor substrate l on which a field oxide film 2 is formed.

次いで、絶縁膜の両側の基板上にソース及びドレイン領
域としてn+エピタキシャル層のスタックドソース構造
3及びスタックドドレイン構造4が形成される。次いで
、CVD法により絶縁膜(SiOz )を全面につけ、
ドレイン電極、ソース電極を形成する場所に窓開けして
からAIを蒸着し。
Next, a stacked source structure 3 and a stacked drain structure 4 of n+ epitaxial layers are formed as source and drain regions on the substrate on both sides of the insulating film. Next, an insulating film (SiOz) is applied to the entire surface using the CVD method.
After opening windows where the drain and source electrodes will be formed, AI is deposited.

イオンミーリングによりドレイン電極6.ソース電極9
を形成する。
Drain electrode 6 by ion milling. Source electrode 9
form.

基板へのイオン拡散による通常のソースドレイン領域の
形成法では、拡散及びその後の工程でイオンがゲート下
へ拡散して短チヤネル効果が生じ。
In the conventional method of forming source/drain regions by ion diffusion into the substrate, ions diffuse under the gate during the diffusion and subsequent steps, resulting in a short channel effect.

その影響はゲート長が短くなるほど大きくなり高集積化
の障害となる。
The effect becomes larger as the gate length becomes shorter, and becomes an obstacle to higher integration.

スタックドソースドレイン構造は基板への拡散が非常に
小さいので、高集積化に伴う短チヤネル効果を防ぐ有効
な対策となるものである。
Since the stacked source/drain structure has very little diffusion into the substrate, it is an effective measure to prevent the short channel effect that accompanies higher integration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は従来構造のスタックドソースドレインMO3)
ランジスタを更に多機能化、高集積化した半導体装置を
提供することを目的とする。
The present invention uses a conventional stacked source/drain structure (MO3).
It is an object of the present invention to provide a semiconductor device in which a transistor has more functions and is highly integrated.

〔課題を解決するための手段〕[Means to solve the problem]

第1図に本発明の半導体装置を示す。図(a)は断面構
造例である。
FIG. 1 shows a semiconductor device of the present invention. Figure (a) is an example of a cross-sectional structure.

図(a)において、lは半導体基板、2はフィールド酸
化膜、3はスタックドソース構造、31は第1選択エビ
層、32は第2選択エビ層(ソース(S)兼コレクタ(
C)領域)、33はベース領域、34はエミッタ拡散領
域、4はスタックドドレイン構造、41は第1選択エビ
層、42は第2選択エビ層、43はコンタクト層、5は
ゲート(G)電極、6はドレイン(D)電極、7はベー
ス(B)電極、8はエミッタ(E)電極である。
In figure (a), l is a semiconductor substrate, 2 is a field oxide film, 3 is a stacked source structure, 31 is a first selective shrimp layer, and 32 is a second selective shrimp layer (source (S) and collector (
C) region), 33 is a base region, 34 is an emitter diffusion region, 4 is a stacked drain structure, 41 is a first selection layer, 42 is a second selection layer, 43 is a contact layer, 5 is a gate (G) The electrodes include a drain (D) electrode, 7 a base (B) electrode, and an emitter (E) electrode.

第1図(a)の構造例ではスタックドソース構造3中に
p−n−p接合若しくはn−p−n接合が形成されでお
り9図(b)はその等価回路である。
In the structural example of FIG. 1(a), a pnp junction or npn junction is formed in the stacked source structure 3, and FIG. 9(b) is an equivalent circuit thereof.

半導体基板(1)上の所定領域に形成され周囲を絶縁膜
で囲まれたゲート電極(5)と、前記半導体基板上で且
つ前記絶縁膜に接し前記ゲート電極の両側に形成された
エピタキシャル層からなるソース及びドレイン領域とを
有する半導体装置において、前記エピタキシャル層は複
数層が積層しているスタックドソース構造(3)及びス
タックドドレイン構造(4)を持ち、該スタックドソー
ス構造中或いは該スタックドドレイン構造中にp−n−
p接合若しくはn−p−n接合を含むことを特徴とする
半導体装置によって上記課題に対処できる。
A gate electrode (5) formed in a predetermined region on a semiconductor substrate (1) and surrounded by an insulating film, and an epitaxial layer formed on both sides of the gate electrode on the semiconductor substrate and in contact with the insulating film. In the semiconductor device having source and drain regions, the epitaxial layer has a stacked source structure (3) and a stacked drain structure (4) in which a plurality of layers are stacked, and the epitaxial layer has a stacked source structure (3) and a stacked drain structure (4) in which a plurality of layers are stacked, and p-n- in the drain structure
The above problem can be solved by a semiconductor device characterized by including a p-junction or an n-p-n junction.

〔作用〕[Effect]

第1図(a)において、第2選択エビ層32とベース領
域33とエミッタ拡散領域34でp−n−p接合若しく
はfi−p−n接合を形成する。
In FIG. 1(a), a p-n-p junction or a fi-p-n junction is formed by the second selective shrimp layer 32, the base region 33, and the emitter diffusion region 34.

このようにして、従来のスタックドソースドレイン構造
のMOS)ランジスタとほぼ等しいスペースにMOSト
ランジスタとバイポーラトランジスタの両方の機能を含
む半導体装置が実現できるので、多機能化及び高集積化
が達成される。
In this way, it is possible to realize a semiconductor device that includes the functions of both a MOS transistor and a bipolar transistor in approximately the same space as a conventional stacked source-drain structured MOS transistor, thereby achieving multifunctionality and high integration. .

〔実施例〕〔Example〕

第2図に本発明の半導体装置を実現するための製造工程
の例を示す。
FIG. 2 shows an example of a manufacturing process for realizing the semiconductor device of the present invention.

第2図(a)参照 (i)フィールド酸化膜2の形成されたp型半導体基板
1上に熱酸化により薄い酸化膜を形成した後、化学気相
成長(CVD)法によりポリSiを成長する。ゲートエ
ツチングによりゲート電極5のポリSiを残しそれ以外
のポリS i fc除去する。熱酸化によりゲート電極
のポリSiの周囲をSiO2で覆う。基板上の薄い酸化
膜を除去する。
See Figure 2 (a) (i) After forming a thin oxide film by thermal oxidation on the p-type semiconductor substrate 1 on which the field oxide film 2 has been formed, poly-Si is grown by chemical vapor deposition (CVD). . By gate etching, the poly Si of the gate electrode 5 is left and the other poly Si fc is removed. The periphery of the poly-Si of the gate electrode is covered with SiO2 by thermal oxidation. Remove the thin oxide film on the substrate.

第2図(b)参照 (ii)第1回目の選択エビ成長により、 2000人
厚のエビ層を成長し、砒素(As” )を拡散しn十型
の第1選択エビ層31.41を形成する。
Refer to Figure 2 (b) (ii) During the first selected shrimp growth, a 2,000-person thick shrimp layer was grown, and arsenic (As”) was diffused to form the n-type first selected shrimp layer 31.41. Form.

第2図(c)参照 (iii )第2回目の選択エビ成長を行い、 As+
を拡散してn型の第2選択エビ層32.42(厚さ50
00人)を形成する。エビ層32はソース(S)兼コレ
クタ(C)e!域となる。
See Figure 2 (c) (iii) Perform the second selective shrimp growth, and As +
is diffused to form an n-type second selection shrimp layer 32.42 (thickness 50
00 people). The shrimp layer 32 is a source (S) and collector (C) e! area.

第3回目の選択エビ成長を行った後、ソース側では硼素
(B+)を拡散してp型のベース層33(厚さ2000
人)を、ドレイン側ではAs+を拡散してn+型のコン
タクト層43 (厚さ2000人)を形成する。
After performing the third selective growth, boron (B+) is diffused on the source side to form a p-type base layer 33 (with a thickness of 2000 mm).
On the drain side, As+ is diffused to form an n+ type contact layer 43 (thickness: 2000).

ソース側にAs+の拡散によりn+型のエミッタ拡散領
域34 (厚さ1000人)を形成する。
An n+ type emitter diffusion region 34 (thickness: 1000 nm) is formed on the source side by diffusion of As+.

第2図(d)参照 (iv)CVD法により絶縁膜(SiO2)を全面につ
け、ドレイン電極、ベース電極、エミッタ電極を形成す
る場所に窓開けしてからAIを蒸着し、イオンミーリン
グによりドレイン電極6.ベース電極7.エミッタ電極
8を形成する。
See Figure 2 (d) (iv) Apply an insulating film (SiO2) to the entire surface using the CVD method, open windows at the locations where the drain electrode, base electrode, and emitter electrode will be formed, then evaporate AI, and use ion milling to form the drain electrode. 6. Base electrode7. An emitter electrode 8 is formed.

このようにして、従来のスタックドソースドレイン構造
のMOS)ランジスタの占める面積に。
In this way, the area occupied by a conventional stacked source-drain structure MOS transistor.

MOSトランジスタとバイポーラトランジスタを結合し
た半導体装置を形成することができる。
A semiconductor device combining a MOS transistor and a bipolar transistor can be formed.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に2本発明によれば、バイポーラトラン
ジスタ機能とMOS)ランジスタ機能を結合した多機能
を有し、しかも高集積の半導体装置が実現できる。
As described above, according to the present invention, it is possible to realize a highly integrated semiconductor device having multiple functions combining bipolar transistor function and MOS transistor function.

本発明によれば、従来のバイポーラCMOSトランジス
タと同じ機能を存する半導体装置を従来の約70%の面
積上に形成でき、デバイスの高集積化、高速化に寄与す
るところが大きい。
According to the present invention, a semiconductor device having the same function as a conventional bipolar CMOS transistor can be formed on about 70% of the area of the conventional device, which greatly contributes to higher integration and higher speed of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置。 第2図は製造工程。 第3図は従来例 である。 図において。 1は半導体基板。 2はフィールド酸化膜。 3はスタックドソース構造。 4はスタックドドレイン構造。 5はゲート電極。 6はドレイン電極。 7はベース電極。 8はエミッタ電極。 9はソース電極。 31.41は第1選択エビ層。 32.42は第2選択エビ層。 33はベース領域。 34はエミッタ拡散領域。 43はコンタクト層 耐ピ盲う旗ふ成ヒインリ B      今 イ価同玲 本発明つ半導体装」 発 1 ス 々 (b) 糎、呈L  、L才呈 第2図 けf)1) 1屹j貴−ユ二 才1 第2図(マf)2) FIG. 1 shows a semiconductor device of the present invention. Figure 2 shows the manufacturing process. Figure 3 is a conventional example It is. In the figure. 1 is a semiconductor substrate. 2 is a field oxide film. 3 is a stacked source structure. 4 is a stacked drain structure. 5 is a gate electrode. 6 is the drain electrode. 7 is the base electrode. 8 is the emitter electrode. 9 is the source electrode. 31.41 is the first choice shrimp layer. 32.42 is the second choice shrimp layer. 33 is the base area. 34 is an emitter diffusion region. 43 is a contact layer Anti-blind flag is raised B Now Ika Dorei ``Semiconductor device according to the present invention'' Source 1 each (b) 糎、附                       ,L Figure 2 f)1) 1 屹j Takashi Yuji 1 year old Figure 2 (Ma f) 2)

Claims (1)

【特許請求の範囲】[Claims]  半導体基板(1)上の所定領域に形成され周囲を絶縁
膜で囲まれたゲート電極(5)と、前記半導体基板上で
且つ前記絶縁膜に接し前記ゲート電極の両側に形成され
たエピタキシャル層からなるソース及びドレイン領域と
を有する半導体装置において、前記エピタキシャル層は
複数層が積層しているスタックドソース構造(3)及び
スタックドドレイン構造(4)を持ち、該スタックドソ
ース構造中或いは該スタックドドレイン構造中にp−n
−p接合若しくはn−p−n接合を含むことを特徴とす
る半導体装置。
A gate electrode (5) formed in a predetermined region on a semiconductor substrate (1) and surrounded by an insulating film, and an epitaxial layer formed on both sides of the gate electrode on the semiconductor substrate and in contact with the insulating film. In the semiconductor device having source and drain regions, the epitaxial layer has a stacked source structure (3) and a stacked drain structure (4) in which a plurality of layers are stacked, and the epitaxial layer has a stacked source structure (3) and a stacked drain structure (4) in which a plurality of layers are stacked, and p-n in the drain structure
- A semiconductor device characterized by including a p junction or an np junction.
JP2081688A 1988-01-29 1988-01-29 Semiconductor device Pending JPH01194453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081688A JPH01194453A (en) 1988-01-29 1988-01-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081688A JPH01194453A (en) 1988-01-29 1988-01-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01194453A true JPH01194453A (en) 1989-08-04

Family

ID=12037557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081688A Pending JPH01194453A (en) 1988-01-29 1988-01-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01194453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153777A (en) * 2014-02-10 2015-08-24 富士電機株式会社 Semiconductor device, control ic for switching power supply, and switching power supply device
US10520037B2 (en) 2014-07-25 2019-12-31 S.P.M. Flow Control, Inc. Support for reciprocating pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153777A (en) * 2014-02-10 2015-08-24 富士電機株式会社 Semiconductor device, control ic for switching power supply, and switching power supply device
US10520037B2 (en) 2014-07-25 2019-12-31 S.P.M. Flow Control, Inc. Support for reciprocating pump

Similar Documents

Publication Publication Date Title
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPS62155552A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JPH01194453A (en) Semiconductor device
JPS6028141B2 (en) Manufacturing method for semiconductor devices
JPS61194764A (en) Manufacture of semiconductor device
JP3211998B2 (en) Semiconductor device manufacturing method
JPS6244862B2 (en)
JPH0365024B2 (en)
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH0474463A (en) Manufacture of semiconductor device
JPS6376470A (en) Manufacture of semiconductor device
JPH04267554A (en) Bi-mos semiconductor device and manufacture thereof
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPH04346263A (en) Manufacture of bi-cmos semiconductor device
JPH0579186B2 (en)
JPH0369157A (en) Manufacture of semiconductor device
JPH03235362A (en) Manufacture of semiconductor device
JPS63177555A (en) Manufacture of semiconductor device
JPS5965465A (en) Manufacture of semiconductor device
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPH03159167A (en) Manufacture of semiconductor integrated circuit
JPS61234065A (en) Manufacture of semiconductor device
JPS61207050A (en) Manufacture of semiconductor device