JPS6223466B2 - - Google Patents
Info
- Publication number
- JPS6223466B2 JPS6223466B2 JP1813980A JP1813980A JPS6223466B2 JP S6223466 B2 JPS6223466 B2 JP S6223466B2 JP 1813980 A JP1813980 A JP 1813980A JP 1813980 A JP1813980 A JP 1813980A JP S6223466 B2 JPS6223466 B2 JP S6223466B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- type
- layer
- integrated circuit
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009792 diffusion process Methods 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 13
- 239000000969 carrier Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 230000003071 parasitic effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 238000002955 isolation Methods 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/07—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
- H01L27/0744—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
- H01L27/075—Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
- H01L27/0755—Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
- H01L27/0761—Vertical bipolar transistor in combination with diodes only
- H01L27/0766—Vertical bipolar transistor in combination with diodes only with Schottky diodes only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Element Separation (AREA)
- Bipolar Integrated Circuits (AREA)
Description
【発明の詳細な説明】
この発明は、半導体集積回路の入力回路の寄生
素子の作動による誤差を防止するための半導体集
積回路装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device for preventing errors due to the operation of parasitic elements in an input circuit of a semiconductor integrated circuit.
従来この種の装置として図に示すものがあつ
た。図において1はP形の基板、2は入力回路を
形成するブロツクの濃度の高いN+形埋込層、3
は、エピタキシヤル成長させたN形層、4及び
4′は濃度の高いp+型拡散領域、5は金属層9と
N形層3との間に生ずるシヨツトキバリアダイオ
ード(以下SBDと記す)、6はN形層3と金属層
10とのオーミツク接続を得るための濃度の高い
N+形拡散領域、7は金属層11とN形層3との
間に生じるSBD、8及び8′は濃度の高いP+形分
離拡散領域、12はnpnトランジスタを形成する
ブロツクの濃度の高いN+形埋込層、13はコレ
クタ層を形成するN形層で上記N+形埋込層3と
同一工程で成長させたエピタキシヤル層、14は
金属層17とN形層13をオーミツク接続するた
めの濃度の高いN+形拡散領域、15はエミツタ
を形成するための濃度の高いN+形拡散領域、1
6はベースを形成するための濃度の高いP+形拡
散領域、18はエミツタ電極用金属層、19はベ
ース電極用金属層、8″及び前記8′はトランジス
タを分離するための濃度の高いP+形拡散領域、
20は金属層の半導体層を絶縁するための絶縁膜
である。なお、通常領域2と12は同一工程、領
域8,8′,8″は同一工程、領域4,4′,16
は同一工程、領域6,14,15は同一工程、領
域9,10,11,17,18,19は同一工程
でそれぞれ形成される。 A conventional device of this type is shown in the figure. In the figure, 1 is a P-type substrate, 2 is an N + type buried layer with a high concentration of blocks forming the input circuit, and 3 is a P-type substrate.
is an epitaxially grown N-type layer, 4 and 4' are high concentration p + type diffusion regions, and 5 is a shot barrier diode (hereinafter referred to as SBD) generated between the metal layer 9 and the N-type layer 3. , 6 are highly concentrated to obtain an ohmic connection between the N-type layer 3 and the metal layer 10.
N + type diffusion region, 7 is SBD generated between metal layer 11 and N type layer 3, 8 and 8' are high concentration P + type isolation diffusion regions, 12 is high concentration of block forming the npn transistor An N + type buried layer, 13 is an N type layer forming a collector layer and is an epitaxial layer grown in the same process as the N + type buried layer 3, and 14 is an ohmic connection between the metal layer 17 and the N type layer 13. 15 is a highly concentrated N + type diffusion region for forming an emitter, 1
6 is a high-concentration P + type diffusion region for forming a base, 18 is a metal layer for an emitter electrode, 19 is a metal layer for a base electrode, 8'' and 8' are high-concentration P + type diffusion regions for separating transistors. + shaped diffusion area,
20 is an insulating film for insulating the semiconductor layer of the metal layer. Note that areas 2 and 12 are normally processed in the same process, areas 8, 8', and 8'' are processed in the same process, and areas 4, 4', and 16 are processed in the same process.
are formed in the same process, regions 6, 14, and 15 are formed in the same process, and areas 9, 10, 11, 17, 18, and 19 are formed in the same process.
次に動作について説明する。金属層10は入力
端子として用い、金属層9は半導体集積回路に印
加される一番低い電位に接続される。今この電位
を基準電位とするしたがつて、金属層9から電気
的に接続されている領域4,4′,1,8′,8″
はすべて基準電位となる。金属層11は通常npn
トランジスタのベース19に接続されている。 Next, the operation will be explained. Metal layer 10 is used as an input terminal, and metal layer 9 is connected to the lowest potential applied to the semiconductor integrated circuit. Since this potential is now set as the reference potential, the regions 4, 4', 1, 8', 8'' electrically connected to the metal layer 9
are all reference potentials. Metal layer 11 is usually npn
It is connected to the base 19 of the transistor.
ここで入力端子10に基準電位が印加された場
合を考える。このとき流れる電流は基準電位に接
続された電極9からSBD5を通じて領域3→6→
10と流れる。しかし、領域4と3で形成される
寄生のpnダイオードはSBDより通常順方向電圧
は高いが、電極9から10に流れる電流の一部は
IRは、領域9→4→3→6→10の電流通路を
流れることになる。この電流は入力端子10に流
れる電流が大きいほど大きくなる。一方、図にお
いてN形層であるエピタキシヤル層13及びN+
形埋込層12をコレクタとし、P+形分離拡散領
域8′及びp形の基板1をベースとし、更にN形
層3及びN+形埋込層2をエミツタとする寄生の
npnトランジスタが構成される。 Here, consider a case where a reference potential is applied to the input terminal 10. At this time, the current flowing from the electrode 9 connected to the reference potential passes through the SBD 5 from the region 3 → 6 →
It flows as 10. However, although the parasitic pn diode formed by regions 4 and 3 typically has a higher forward voltage than the SBD, a portion of the current flowing from electrodes 9 to 10
IR flows through the current path of regions 9→4→3→6→10. This current increases as the current flowing through the input terminal 10 increases. On the other hand, in the figure, the epitaxial layer 13, which is an N-type layer, and the N +
A parasitic structure with the type buried layer 12 as the collector, the P + type isolation diffusion region 8' and the p type substrate 1 as the base, and the N type layer 3 and the N + type buried layer 2 as emitters.
An npn transistor is configured.
このとき、金属層9はP+形拡散領域4、N+形
分離拡散領域8、P形の基板1及びP+形分離拡
散領域8′に電気的に接続されており、一般には
基準電位となつている。 At this time, the metal layer 9 is electrically connected to the P + type diffusion region 4, the N + type isolation diffusion region 8, the P type substrate 1, and the P + type isolation diffusion region 8', and is generally at a reference potential. It's summery.
したがつて、金属層9から入力端子10に流れ
る電流の一部IRは、特にP形の基板1からN形
層3に流れ、上記寄生のnpnトランジスタのベー
ス電流となる。 Therefore, part of the current IR flowing from the metal layer 9 to the input terminal 10 flows particularly from the P-type substrate 1 to the N-type layer 3, and becomes the base current of the parasitic npn transistor.
ここで、上記寄生のnpnトランジスタの電流増
幅率の大きい部分は、N形層13をコレクタ、P
形の基板1をベース、N形層3をエミツタとする
部分と考えられる。 Here, the portion where the current amplification factor of the parasitic npn transistor is large is that the N-type layer 13 is the collector and the P-type layer 13 is the collector.
It is considered that the N-type substrate 1 is the base and the N-type layer 3 is the emitter.
実際上、P+形拡散領域8′はP形の基板1内に
0、数μ乃至2μ程度延びているが、上記寄生の
npnトランジスタの電流増幅率をβRとすると、
IRβRの電流はコレクタ電極17に接続される負
荷抵抗が大きい場合、コレクタの電圧降下が大き
くなり、回路の誤動作が生ずるおそれがある。 In reality, the P + -type diffusion region 8' extends within the P-type substrate 1 by approximately 0.0, several microns to 2 microns, but the above-mentioned parasitic
If the current amplification factor of the npn transistor is β R , then
If the load resistance connected to the collector electrode 17 is large, the current of IRβ R will cause a large collector voltage drop, which may cause malfunction of the circuit.
例えば、コレクタ電極17に接続される負荷抵
抗が20KΩとすると、IRβR×20〔KΩ〕の電圧
降下が約3.5Vとなり、IRβRは約175μAとな
る。 For example, if the load resistance connected to the collector electrode 17 is 20KΩ, the voltage drop of IRβ R ×20 [KΩ] will be about 3.5V, and IRβ R will be about 175μA.
これより、コレクタ電極17に20KΩの負荷抵
抗が接続されている場合、例えP+形拡散領域
8′がP形の基板1内に多少延びていても、IRβ
Rが175μA程度で回路の誤動作が生じるおそれが
ある。 From this, when a load resistance of 20KΩ is connected to the collector electrode 17, even if the P + type diffusion region 8' extends somewhat into the P type substrate 1, the IRβ
If R is about 175μA, there is a risk of circuit malfunction.
このように、従来ではコレクタ電極17に接続
される負荷抵抗が大きい場合、上記寄生のnpnト
ランジスタの影響を受けて回路の誤動作が生じる
おそれがあつた。βRを小さくするには、基板1
を高不純物濃度にすることにより可能であるが、
基板1とN+拡散層2,12の逆耐圧の低下や寄
生容量の増加等の欠点が生じる。また、素子間の
距離を長くしβRを小さくする方法もあるが、半
導体集積回路パターン設計上の大きな制約となり
チツプサイズの増大等の欠点が生じる。 As described above, conventionally, when the load resistance connected to the collector electrode 17 is large, there is a risk that the circuit may malfunction due to the influence of the parasitic npn transistor. To reduce βR, the substrate 1
This is possible by increasing the impurity concentration, but
There are disadvantages such as a decrease in reverse breakdown voltage between the substrate 1 and the N + diffusion layers 2 and 12 and an increase in parasitic capacitance. There is also a method of reducing βR by increasing the distance between elements, but this poses a major constraint on semiconductor integrated circuit pattern design and has drawbacks such as an increase in chip size.
この発明は、前記の様な従来の欠点を除去する
ためになされたもので前記耐圧の低下や寄生容量
の増大という欠点を除きβRを小さくすることに
より寄生npnトランジスタにより隣接するコレク
タ層に流れる電流を減少させ誤動作を防止できる
半導体集積回路装置を提供することを目的として
いる。 This invention was made in order to eliminate the above-mentioned drawbacks of the conventional art, and by reducing βR, the current flowing into the adjacent collector layer due to the parasitic npn transistor is eliminated. It is an object of the present invention to provide a semiconductor integrated circuit device that can reduce the noise and prevent malfunctions.
以下、この発明についての一実施例を図につい
て説明する。図において、P形基板1に、1Ωcm
以上の比抵抗のSiウエハを用い全拡散終了後、金
を裏面から拡散し基板1の少数キヤリアのライフ
タイムを10-6秒以下にする。 An embodiment of the present invention will be described below with reference to the drawings. In the figure, 1Ωcm is applied to the P-type substrate 1.
After the completion of all diffusion using a Si wafer with the above resistivity, gold is diffused from the back side to make the lifetime of minority carriers on the substrate 1 10 -6 seconds or less.
例えば、基板1に金を拡散しない場合10Ωcmの
比抵抗の基板での少数キヤリアの拡散長は約155
μmであるが、金を拡散し少数キヤリアのライフ
タイムを10-6秒にすることにより少数キヤリアの
拡散長は約54μとなり約1/3に減少する。このた
め素子間の距離を従来の1/3に短かくしても従来
のものと同程度のβRとなる。金拡散量を増加さ
せることにより少数キヤリアのライフタイムを容
易に短かくすることができる。 For example, when gold is not diffused into substrate 1, the diffusion length of minority carriers in a substrate with a resistivity of 10 Ωcm is approximately 155
μm, but by diffusing gold and reducing the lifetime of minority carriers to 10 −6 seconds, the diffusion length of minority carriers becomes approximately 54 μm, which is reduced to approximately 1/3. Therefore, even if the distance between the elements is shortened to one third of that of the conventional one, βR will be the same as that of the conventional one. By increasing the amount of gold diffusion, the lifetime of minority carriers can be easily shortened.
なお、上記実施例では金拡散を用いライフタイ
ムキラーとしているが、例えば銅や鉄等の重金属
でも同様の効果をもつ、また、N+埋込層2,1
2がない場合でも適用することができ、さらに
P+形分離層8,8′,8″をSiO2等の絶縁物に置
換してもよい。金拡散は寄生npn又はpnpトラン
ジスタが動作するベース部分に選択的に拡散して
も同様の効果を奏する。 In the above embodiment, gold diffusion is used as a lifetime killer, but heavy metals such as copper and iron can also have the same effect.
It can be applied even if 2 is not available, and
The P + type isolation layers 8, 8', 8'' may be replaced with an insulator such as SiO 2.The same effect can be achieved even if gold is selectively diffused into the base portion where the parasitic NPN or PNP transistor operates. play.
以上の様にこの発明によれば、従来のウエハプ
ロセスの全拡散終了後にウエハ全体に金拡散を行
うだけで実現できるため装置が安価にできるとと
もに基板の比抵抗を小さくし、基板とコレクタの
耐圧の低下や、寄生容量の増大をともなわずβR
を自由に小さくできる効果がある。 As described above, according to the present invention, this can be achieved by simply diffusing gold over the entire wafer after completion of all diffusion in the conventional wafer process, making the equipment inexpensive, reducing the specific resistance of the substrate, and reducing the breakdown voltage of the substrate and collector. βR without a decrease in
This has the effect of allowing you to freely reduce the size.
図は、本発明を説明するための半導体集積回路
装置の入力回路部分及び隣接npnトランジスタ部
分を示す断面図である。
図において、1は第1領域、3,13は第2領
域、8,8′,8″は第3領域である。
The figure is a cross-sectional view showing an input circuit portion and an adjacent npn transistor portion of a semiconductor integrated circuit device for explaining the present invention. In the figure, 1 is a first area, 3 and 13 are second areas, and 8, 8', and 8'' are third areas.
Claims (1)
の第1領域と、この第1領域の上表面に形成され
た第2導電形の第2領域と、この第2領域の上表
面から上記第1領域に達し、上記第2領域を複数
に分離するための第1導電形の第3領域と、上記
第2領域の上表面に形成された複数の金属一半導
体ダイオードとを含み、上記金属一半導体ダイオ
ードの少なくとも1つの陽極が、上記第1領域及
び第3領域と電気的に接続され、かつ、上記第2
領域に拡散により形成した第2領域をコレクタと
するnpnトランジスタのベース−コレクタ間に上
記金属一半導体ダイオードを接続した構成からな
る半導体集積回路装置において、少なくとも上記
第1領域は、少数キヤリアのライフタイムが10-6
秒以下となる様なライフタイムキラーを含むこと
を特徴とする半導体集積回路装置。1 A first region of a first conductivity type that serves as a base of a semiconductor integrated circuit device, a second region of a second conductivity type formed on the upper surface of this first region, and a region from the upper surface of this second region to the above-mentioned a third region of the first conductivity type for separating the second region into a plurality of regions; and a plurality of metal-semiconductor diodes formed on the upper surface of the second region; At least one anode of the semiconductor diode is electrically connected to the first region and the third region, and
In a semiconductor integrated circuit device having a configuration in which the metal-semiconductor diode is connected between the base and collector of an NPN transistor whose collector is a second region formed by diffusion in the region, at least the first region has a lifetime of minority carriers. is 10 -6
A semiconductor integrated circuit device characterized by including a lifetime killer of less than a second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1813980A JPS56115555A (en) | 1980-02-16 | 1980-02-16 | Semiconductor integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1813980A JPS56115555A (en) | 1980-02-16 | 1980-02-16 | Semiconductor integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56115555A JPS56115555A (en) | 1981-09-10 |
JPS6223466B2 true JPS6223466B2 (en) | 1987-05-22 |
Family
ID=11963262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1813980A Granted JPS56115555A (en) | 1980-02-16 | 1980-02-16 | Semiconductor integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56115555A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02102605U (en) * | 1989-02-02 | 1990-08-15 | ||
JPH02224378A (en) * | 1989-02-27 | 1990-09-06 | Hamamatsu Photonics Kk | Light emitting element |
-
1980
- 1980-02-16 JP JP1813980A patent/JPS56115555A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02102605U (en) * | 1989-02-02 | 1990-08-15 | ||
JPH02224378A (en) * | 1989-02-27 | 1990-09-06 | Hamamatsu Photonics Kk | Light emitting element |
Also Published As
Publication number | Publication date |
---|---|
JPS56115555A (en) | 1981-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4117507A (en) | Diode formed in integrated-circuit structure | |
US4543593A (en) | Semiconductor protective device | |
US4500900A (en) | Emitter ballast resistor configuration | |
JPS5852347B2 (en) | High voltage semiconductor device | |
JP4460272B2 (en) | Power transistor and semiconductor integrated circuit using the same | |
JPS6223466B2 (en) | ||
JP3459532B2 (en) | Semiconductor integrated circuit and method of manufacturing the same | |
JPS6359262B2 (en) | ||
JPS6327865B2 (en) | ||
JPS6223465B2 (en) | ||
JP2901275B2 (en) | Semiconductor integrated circuit device | |
JP3128958B2 (en) | Semiconductor integrated circuit | |
JPH0629466A (en) | Semiconductor integrated circuit | |
JPS6231502B2 (en) | ||
JPS5845830B2 (en) | Integrated circuits and their manufacturing methods | |
JPS6331110B2 (en) | ||
JPH0558256B2 (en) | ||
JPS61208260A (en) | Semiconductor device | |
JPS6116569A (en) | Semiconductor integrated circuit device | |
JPH0432754Y2 (en) | ||
JPH0474478A (en) | Diode | |
JPS5931051A (en) | High-withstand voltage semiconductor device | |
JPH0585054U (en) | Multi-conductor layer structure for monolithic semiconductor integrated circuit devices | |
JPH02154464A (en) | Schottky barrier diode | |
JPH0322693B2 (en) |