JPS6231502B2 - - Google Patents

Info

Publication number
JPS6231502B2
JPS6231502B2 JP55004957A JP495780A JPS6231502B2 JP S6231502 B2 JPS6231502 B2 JP S6231502B2 JP 55004957 A JP55004957 A JP 55004957A JP 495780 A JP495780 A JP 495780A JP S6231502 B2 JPS6231502 B2 JP S6231502B2
Authority
JP
Japan
Prior art keywords
region
integrated circuit
semiconductor integrated
circuit device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55004957A
Other languages
Japanese (ja)
Other versions
JPS56101766A (en
Inventor
Yoshuki Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP495780A priority Critical patent/JPS56101766A/en
Publication of JPS56101766A publication Critical patent/JPS56101766A/en
Publication of JPS6231502B2 publication Critical patent/JPS6231502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0826Combination of vertical complementary transistors

Description

【発明の詳細な説明】 本発明は半導体集積回路の入力回路に形成され
寄生素子に基づく誤動作を防止する技術に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a technique for preventing malfunctions caused by parasitic elements formed in an input circuit of a semiconductor integrated circuit.

従来のバイポーラ形半導体集積回路装置として
第1図に示すものが知られている。同図において
1はP形半導体基板であり、2〜11は入力回路
ブロツクにおける各構成を示し、まず2は高不純
物濃度N+形埋込層、3はエピタキシヤル成長さ
せたN形層、4および4′は高不純物濃度のP+
拡散領域、5はシヨツトキバリアダイオード(以
下SBDと記す。)、6はN形層3に対するオーミツ
ク接続を得るために形成された高不純物濃度の
N+形拡散領域、7はSBD、8および8′は高不純
物濃度のP+形分離拡散領域、9,10,11は
金属層であり、9は上記N形層3に接してそこに
SBDを形成し、10はN+形拡散領域6にオーミ
ツクに接し、11は上記N形層3に接してそこに
SBDを形成する。また8′,8″および12〜19
はnpnトランジスタを形成するブロツクを示し、
その内まず12は高不純物濃度のN+形埋込層、
13はコレクタ層を形成するN形層で前記3と同
一工程でエピタキシヤル成長により形成される。
14は前記6と同時に形成された高不純物濃度の
N+形拡散領域であり、N形層13に対しオーミ
ツク接続をとるために形成される。15はエミツ
タを形成するための高不純物濃度のN+形拡散領
域であり、上記領域6,14と同時に形成され
る。16はベースを形成するための高不純物濃度
のP+形拡散領域であり、上記領域4,4′と同時
に形成される。また17はコレクタ電極、18は
エミツタ電極用金属層、19はベース電極用金属
層であり、上記領域17,18,19は前記領域
9,10,11と同時に形成される。なお20は
各金属層と半導体層とを絶縁するための絶縁膜で
ある。また8′と8″はトランジスタを他の素子か
ら分離するための高不純物濃度P+形拡散領域で
あり、上記入力回路ブロツクを分離するための
8,8′と連続しており同時に形成される。
2. Description of the Related Art A conventional bipolar semiconductor integrated circuit device shown in FIG. 1 is known. In the figure, 1 is a P-type semiconductor substrate, 2 to 11 indicate each structure in the input circuit block, first, 2 is a high impurity concentration N + type buried layer, 3 is an epitaxially grown N-type layer, and 4 is a P-type semiconductor substrate. 4' is a P + type diffusion region with a high impurity concentration, 5 is a shot barrier diode (hereinafter referred to as SBD), and 6 is a high impurity concentration diffusion region formed to obtain an ohmic connection to the N type layer 3.
N + type diffusion region, 7 is SBD, 8 and 8' are P + type isolation diffusion regions with high impurity concentration, 9, 10, 11 are metal layers, 9 is in contact with the above N type layer 3 and is attached thereto.
Forming an SBD, 10 is in ohmic contact with the N + type diffusion region 6, and 11 is in contact with the N type layer 3 and therein.
Form SBD. Also 8', 8'' and 12-19
indicates a block forming an npn transistor,
First of all, 12 are N + type buried layers with high impurity concentration,
Reference numeral 13 denotes an N-type layer forming a collector layer, which is formed by epitaxial growth in the same step as 3 above.
14 is a high impurity concentration film formed at the same time as 6 above.
This is an N + type diffusion region, and is formed to establish an ohmic connection to the N type layer 13. Reference numeral 15 designates an N + type diffusion region with a high impurity concentration for forming an emitter, and is formed at the same time as the regions 6 and 14 described above. Reference numeral 16 denotes a highly impurity-concentrated P + type diffusion region for forming a base, which is formed at the same time as the regions 4 and 4'. Further, 17 is a collector electrode, 18 is a metal layer for an emitter electrode, and 19 is a metal layer for a base electrode, and the regions 17, 18, and 19 are formed simultaneously with the regions 9, 10, and 11. Note that 20 is an insulating film for insulating each metal layer and the semiconductor layer. Also, 8' and 8'' are high impurity concentration P + type diffusion regions for isolating the transistor from other elements, and are continuous with and formed at the same time as 8 and 8' for isolating the input circuit block. .

このような構成の半導体集積回路の動作につい
て説明する。まず10を半導体集積回路の入力端
子として用い、9を半導体集積回路に印加される
一番低い基準電位に接続する。したがつてこの場
合金属層9に電気的に接続されている領域4,
4′,8,1,8′,8″は全て基準電位となる。
また電極11は通常npnトランジスタのベース1
9に接続されている。ここで入力端子10に上記
基準電圧より低い電圧が印加された場合を考え
る。このとき流れる電流は基準電圧に接続された
電極9からSBD5を通じてN形層3→N+形拡散
領域6→電極10へと流れる。しかしP+形拡散
領域4とN形層3で形成される寄生のpnダイオ
ードはSBD5より通常順方向電圧は高いが、電極
9から電極10に流れる電流が大きくなるとその
一部(IR)は電極9→P+形拡散領域4→N形層
3→N+形拡散領域6→電極10の電流通路を流
れることになる。この電流(IR)は入力端子1
0に流れる電流が大きいほど大きくなる。一方こ
のような電流(IR)が流れる場合にはnpnトラ
ンジスタのコレクタ層13および12をコレクタ
とし、基板1または分離領域8′をベースとし、
埋込み層2およびN形層3をエミツタとして形成
される寄生的npnトランジスタの存在を考えなけ
ればならない。なぜならば上記電流(IR)はこ
の寄生npnトランジスタのベース電流となり寄生
npnトランジスタの電流増巾率を(βR)とする
と、電極17を通じて(IRβR)の電流が流れ、
このため本来OFF状態であるはずの隣接トラン
ジスタのコレクタ電極17の電位も降下してしま
い、特にコレクタ電極17に接続される負荷抵抗
が高い値である場合には電位の降下が著るしく、
回路が誤動作するという欠点があつた。
The operation of the semiconductor integrated circuit having such a configuration will be explained. First, 10 is used as an input terminal of the semiconductor integrated circuit, and 9 is connected to the lowest reference potential applied to the semiconductor integrated circuit. Therefore in this case the region 4, which is electrically connected to the metal layer 9,
4', 8, 1, 8', and 8'' are all reference potentials.
Also, the electrode 11 is usually the base 1 of the npn transistor.
Connected to 9. Let us now consider a case where a voltage lower than the reference voltage is applied to the input terminal 10. The current flowing at this time flows from the electrode 9 connected to the reference voltage through the SBD 5 from the N type layer 3 to the N + type diffusion region 6 to the electrode 10. However, the parasitic pn diode formed by the P + type diffusion region 4 and the N type layer 3 usually has a higher forward voltage than the SBD 5, but when the current flowing from the electrode 9 to the electrode 10 increases, a part of it (I R ) The current flows through the electrode 9 → P + type diffusion region 4 → N type layer 3 → N + type diffusion region 6 → electrode 10. This current (I R ) is the input terminal 1
The larger the current flowing through zero, the larger it becomes. On the other hand, when such a current (I R ) flows, the collector layers 13 and 12 of the npn transistor are used as collectors, the substrate 1 or isolation region 8' is used as a base,
The existence of a parasitic npn transistor formed using the buried layer 2 and the N-type layer 3 as emitters must be considered. This is because the above current (I R ) becomes the base current of this parasitic npn transistor.
If the current amplification rate of the npn transistor is (β R ), a current of (I R β R ) flows through the electrode 17,
For this reason, the potential of the collector electrode 17 of the adjacent transistor, which should originally be in an OFF state, also drops, and the drop in potential is particularly significant when the load resistance connected to the collector electrode 17 has a high value.
The drawback was that the circuit malfunctioned.

本発明は前記のような従来の欠点を除去するた
めになされたものであつて、上述した寄生npnト
ランジスタにおける電流増巾率(βR)を小さく
することにより寄生npnトランジスタにより隣接
するコレクタ層に流れる電流を減少させ、上述し
たような誤動作の生ずるのを防止することを目的
として成されたものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional art, and by reducing the current amplification rate (β R ) in the parasitic npn transistor described above, the parasitic npn transistor can be connected to the adjacent collector layer. This was done for the purpose of reducing the flowing current and preventing the above-mentioned malfunctions from occurring.

以下本発明の一実施例を第2図を用いて説明す
る。第2図中の1〜20は第1図のそれと同一で
あるので具体的説明は省略する。本発明において
重要なことは、基体となる第1導電形の第1領域
(図示の例では基板1)、その上表面に形成された
第2導電形の第2領域(N形層3および埋込み層
2)、これを分離する第1導電形で第1領域より
高不純物濃度の第3領域(分離拡散領域8,
8′,8″をもつ構造において、第3領域で囲まれ
た少なくとも1ケ所の第2領域の下表面に、これ
と接し、かつその下表面全面を覆うように、第1
導電形で第1領域より高不純物濃度の第4領域を
付加することである。本実施例では、この第4領
域として、分離拡散層8,8′で囲まれた部分の
第2領域下表面に、具体的には、分離拡散領域
8,8′の直下から埋込み層2の直下にかけて、
高不純物濃度のP+形拡散領域21を形成し、こ
れによつて、上述した寄生npnトランジスタにお
ける電流増幅率(βR)を小さくしている。
An embodiment of the present invention will be described below with reference to FIG. Since 1 to 20 in FIG. 2 are the same as those in FIG. 1, a detailed explanation will be omitted. What is important in the present invention is that the first region of the first conductivity type (substrate 1 in the illustrated example) serves as a base, and the second region of the second conductivity type (N-type layer 3 and buried layer 2), and a third region (separation diffusion region 8,
8', 8'', the first layer is in contact with the lower surface of at least one second region surrounded by the third region and covers the entire lower surface of the second region.
The method is to add a fourth region of conductivity type and higher impurity concentration than the first region. In this embodiment, as this fourth region, the buried layer 2 is formed on the lower surface of the second region surrounded by the separation diffusion layers 8, 8', from directly below the separation diffusion regions 8, 8'. Directly below,
A P + -type diffusion region 21 with a high impurity concentration is formed, thereby reducing the current amplification factor (β R ) in the above-mentioned parasitic npn transistor.

すなわち寄生npnトランジスタの電流増巾率
(βR)を減少する方法として寄生npnトランジス
タのベース領域を形成する領域8,8″,1等の
不純物濃度を高くすることにより(βR)を減少
させることができる。その点領域8,8′は前述
した様に本来濃度の高いP+形拡散領域であるた
め特に問題とはならないが、基板1は一般に高比
抵抗であるため従来のものにおいてはこの電流通
路が(βR)の大きさに大部分依存していたこと
になる。そこで本発明においては寄生npnトラン
ジスタの(βR)の大きさに大部分依存していた
領域に前述したように高不純物濃度のP+形拡散
領域21を設置することにより(βR)を減少さ
せることができるのである。
That is, as a method of reducing the current amplification rate (β R ) of the parasitic npn transistor, (β R ) is reduced by increasing the impurity concentration in regions 8, 8″, 1, etc. that form the base region of the parasitic npn transistor. However, since the regions 8 and 8' are essentially high-concentration P + type diffusion regions as described above, this is not a particular problem, but since the substrate 1 generally has a high specific resistance, This means that this current path was largely dependent on the magnitude of (β R ).Therefore, in the present invention, the region that was largely dependent on the magnitude of (β R ) of the parasitic npn transistor is (β R ) can be reduced by providing a P + type diffusion region 21 with a high impurity concentration.

なお上記実施例においては入力回路ブロツクと
npnトランジスタブロツク間に形成させる寄生
npnトランジスタの防止について説明したが、入
力回路に限らず寄生npnトランジスタが生じ回路
動作に悪影響を及ぼすおそれのあるところであれ
ばその他の部分に使用することもできる。
In the above embodiment, the input circuit block
Parasitics formed between npn transistor blocks
Although the prevention of npn transistors has been described, it can be used not only in input circuits but also in other parts where parasitic npn transistors may occur and adversely affect circuit operation.

また本発明においてはN+埋込み層がないよう
な場合にも適用することができ、またP+形分離
拡散層をSiO2等の絶縁物に置換したいわゆる誘
電体分離形半導体集積回路装置にも適用すること
ができる。
The present invention can also be applied to cases where there is no N + buried layer, and can also be applied to so-called dielectrically isolated semiconductor integrated circuit devices in which the P + type isolation diffusion layer is replaced with an insulator such as SiO 2 . Can be applied.

以上のように本発明によれば、寄生npnトラン
ジスタ(βR)を小さくすることができるので、
例えば入力端子に基準電圧より低い電圧が印加さ
れてもそれに隣接するNPNトランジスタに流れ
る電流を低減し、よつて上記NPNトランジスタ
回路の誤動作を防止することができる。
As described above, according to the present invention, the parasitic npn transistor (β R ) can be made small.
For example, even if a voltage lower than the reference voltage is applied to the input terminal, the current flowing through the adjacent NPN transistor can be reduced, thereby preventing malfunction of the NPN transistor circuit.

さらに上記埋込み領域2と追加P+形拡散領域
で構成される低電圧化されたツエナーダイオード
により入力の過電圧保護としても動作させること
もできる。
Furthermore, the low-voltage Zener diode composed of the buried region 2 and the additional P + type diffusion region can also be operated as input overvoltage protection.

しかも本発明は半導体基板にN形層をエピタキ
シヤル成長する前(望ましくはN+形埋込み層を
形成する前)にP+形層を形成するための拡散あ
るいはイオン打込みを1工程追加するのみで上記
した大きな効果を得ることができ、極めて工業的
に有効である。
Moreover, the present invention requires only one additional step of diffusion or ion implantation to form a P + type layer before epitaxially growing an N type layer on a semiconductor substrate (preferably before forming an N + type buried layer). The above-mentioned great effects can be obtained and it is extremely industrially effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の集積回路装置における入力回路
部分および隣接npnトランジスタ部分を示す断面
図、第2図は本発明の集積回路装置の入力回路部
分および隣接npnトランジスタ部分の実施例を示
す断面図である。 1……P形半導体基板、2,12……N+形埋
込み層、3,13……N形層、4,4′,16…
…P+形拡散領域、5,7……シヨツトキーバリ
アダイオード(SBD)、6,14,15……N+
拡散領域、8,8′,8″,21……P+形分離拡
散領域、9,10,11,17,18,19……
金属層、20……絶縁膜。
FIG. 1 is a sectional view showing an input circuit portion and an adjacent npn transistor portion in a conventional integrated circuit device, and FIG. 2 is a sectional view showing an embodiment of an input circuit portion and an adjacent npn transistor portion of an integrated circuit device of the present invention. be. 1... P-type semiconductor substrate, 2, 12... N + type buried layer, 3, 13... N-type layer, 4, 4', 16...
...P + type diffusion region, 5,7...Shotkey barrier diode (SBD), 6,14,15...N + type diffusion region, 8,8',8'',21...P + type separation diffusion Area, 9, 10, 11, 17, 18, 19...
Metal layer, 20...insulating film.

Claims (1)

【特許請求の範囲】 1 半導体集積回路装置の基体となる第1導電形
の第1領域と、第1領域の上表面に形成された第
2導電形の第2領域と、第2領域の上表面から第
1領域に達し上記第2領域を複数に分離するため
の第1導電形で上記第1領域より高不純物濃度の
第3領域とをもつ半導体集積回路装置において、
上記第3領域で囲まれた少なくとも1ケ所の第2
領域の下表面に、上記第2領域と接し、かつ上記
第2領域下面全面を覆うように第1導電形で上記
第1領域より高不純物濃度の第4領域を付加して
成ることを特徴とする半導体集積回路装置。 2 第2領域が、第3領域に囲まれた部分に形成
された高不純物濃度の埋込み層と、低不純物濃度
のエピタキシヤル成長層とによつて構成され、上
記第4領域が上記埋込み層の下面および上記エピ
タキシヤル成長層下面部を覆い、前記第3領域に
接するように形成して成ることを特徴とする特許
請求の範囲第1項記載の半導体集積回路装置。 3 第3領域で囲まれ、かつ下面が第4領域で覆
われた第2領域内に上記第3領域に電気的に接す
る第1導電形の第5領域が形成され、上記第5領
域とは電気的に接続され、かつ上記第2領域とは
シヨツトキバリアを構成する電極が接続されて成
ることを特徴とする特許請求の範囲第1項記載の
半導体集積回路装置。
[Scope of Claims] 1. A first region of a first conductivity type serving as a base of a semiconductor integrated circuit device, a second region of a second conductivity type formed on the upper surface of the first region, and a region above the second region. A semiconductor integrated circuit device having a third region of a first conductivity type and having a higher impurity concentration than the first region, which reaches the first region from the surface and separates the second region into a plurality of regions.
At least one second area surrounded by the third area
A fourth region of the first conductivity type and having a higher impurity concentration than the first region is added to the lower surface of the region, in contact with the second region and covering the entire lower surface of the second region. Semiconductor integrated circuit device. 2 The second region is composed of a buried layer with a high impurity concentration formed in a portion surrounded by the third region and an epitaxial growth layer with a low impurity concentration, and the fourth region is formed in a portion surrounded by the buried layer. 2. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is formed to cover a lower surface and a lower surface portion of the epitaxial growth layer and to be in contact with the third region. 3 A fifth region of the first conductivity type that is electrically in contact with the third region is formed in the second region surrounded by the third region and whose lower surface is covered with the fourth region, and is different from the fifth region. 2. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is electrically connected to the second region and is connected to an electrode constituting a shot barrier.
JP495780A 1980-01-18 1980-01-18 Semiconductor integrated circuit Granted JPS56101766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP495780A JPS56101766A (en) 1980-01-18 1980-01-18 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP495780A JPS56101766A (en) 1980-01-18 1980-01-18 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS56101766A JPS56101766A (en) 1981-08-14
JPS6231502B2 true JPS6231502B2 (en) 1987-07-08

Family

ID=11598053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP495780A Granted JPS56101766A (en) 1980-01-18 1980-01-18 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS56101766A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676450B1 (en) * 1984-01-06 1991-06-25 Quick bail opening system for fishing reel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879585A (en) * 1972-01-24 1973-10-25
JPS497766A (en) * 1972-05-11 1974-01-23
JPS4933557A (en) * 1972-07-26 1974-03-28
JPS51123579A (en) * 1975-04-22 1976-10-28 Toshiba Corp Semiconductor integrating circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879585A (en) * 1972-01-24 1973-10-25
JPS497766A (en) * 1972-05-11 1974-01-23
JPS4933557A (en) * 1972-07-26 1974-03-28
JPS51123579A (en) * 1975-04-22 1976-10-28 Toshiba Corp Semiconductor integrating circuit

Also Published As

Publication number Publication date
JPS56101766A (en) 1981-08-14

Similar Documents

Publication Publication Date Title
US6590273B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
US4117507A (en) Diode formed in integrated-circuit structure
JP3146579B2 (en) Programmable overvoltage protection circuit
US4825274A (en) Bi-CMOS semiconductor device immune to latch-up
EP0103306B1 (en) Semiconductor protective device
US20020079555A1 (en) Semiconductor integrated circuit device and manufacturing method thereof
US7888226B2 (en) Method of fabricating power semiconductor device for suppressing substrate recirculation current
JPH07297373A (en) Integrated driver circuit device for inductive load element
JP2000183341A (en) Semiconductor device and semiconductor circuit using the same
JPH10303409A (en) Protective component for telephone circuit interface
JPH025532A (en) P-m-p vertical isolated collector transistor
US6815799B2 (en) Semiconductor integrated circuit device
JPS6231502B2 (en)
JP2680848B2 (en) Semiconductor memory device
JP2683302B2 (en) Semiconductor device
JPS6359262B2 (en)
EP0607474B1 (en) Semiconductor integrated circuit with layer for isolating elements in substrate
JPS6223466B2 (en)
EP0813247B1 (en) A separate protective transistor to reduce injected current from one PN-junction-isolated island to another
JPH06350032A (en) Wiring structure of semiconductor device
JP2901275B2 (en) Semiconductor integrated circuit device
JPS6223465B2 (en)
JPS6364058B2 (en)
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JP2665820B2 (en) Lateral transistor