JPS6223060B2 - - Google Patents

Info

Publication number
JPS6223060B2
JPS6223060B2 JP55188090A JP18809080A JPS6223060B2 JP S6223060 B2 JPS6223060 B2 JP S6223060B2 JP 55188090 A JP55188090 A JP 55188090A JP 18809080 A JP18809080 A JP 18809080A JP S6223060 B2 JPS6223060 B2 JP S6223060B2
Authority
JP
Japan
Prior art keywords
alloy
crystals
mold
columnar
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55188090A
Other languages
Japanese (ja)
Other versions
JPS57114628A (en
Inventor
Itaru Okonogi
Tatsuya Shimoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP55188090A priority Critical patent/JPS57114628A/en
Publication of JPS57114628A publication Critical patent/JPS57114628A/en
Publication of JPS6223060B2 publication Critical patent/JPS6223060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、R2Co17型結晶を用いた析出型磁石
に関するものである。さらに詳しく述べれば、希
土類金属Rと、Co,Cu,FeおよびZrからなる遷
移金属TMとの比が原子比で1:7.0〜9.0である
合金を溶解・鋳造するに当つて、鋳造時溶湯を鋳
型の底から注入することによつて合金インゴツト
全体にわたつて柱状晶を現出させる永久磁石の製
造方法に係るものである。 R(TM)7.0〜9.0合金を溶解鋳造するにあたつ
て、鋳型に注湯する場合、溶湯を静かにさせて、
流し込むことにより、インゴツトのマクロ組織を
柱状晶にしたことを特徴とする。 本発明の目的は、磁気性能を高め且つバラツキ
を小さくすることであり、さらに他の目的は量産
性を高めることにある。 我々は、特願昭55−3226号でSm―Co―Cu―
Fe―Zr系で合金インゴツトを柱状晶にすると、
等軸晶およびチル晶に較べて、この合金を使用し
た磁石の磁気性能が格段とよくなることを示し
た。製法を全く同じにして、等軸晶合金と柱状晶
合金にしてチル晶合金を磁石にしてみると、柱状
晶合金が、飽和磁化4πIs、保磁力iHc、bHcあ
るいはヒステリシスループの角形性と、全ての性
能にわたつてすぐれていることが分つた。逆に等
軸晶合金および等軸チル晶合金が性能的に一番劣
つている。柱状チル晶合金からは、これらのもの
の中間の値の磁石ができる。柱状晶合金は、結晶
が揃つているので磁石にした時の一軸方向への配
向性がよくなる。また、該合金は、熱処理によつ
てできる析出物が他のものに比べ均一になると考
えられる。このためヒステリシスの角形性がよく
なる。また析出物の結晶構造、形態も等軸晶のも
のに比べiHcをよく高める方法に形成されると考
えられる。 等軸晶の生因については、以前はよく知られて
いなかつたが、現在では鋳型とか冷却された湯面
で形成された結晶が遊離して自由晶となり、この
自由晶が等軸晶体を形成することが明らかになつ
ている(A.Ohno,T.Motegi and H.Soda:
Trans ISIJ.11(1971)18)。 又注湯の時鋳型内の湯の動きが柱状晶の形成に
大変重要なことがわかつて来た。本発明は、前述
したように、インゴツトの柱状化晶化の促進を、
容易に得られることにある。そのため本発明法
は、湯を鋳型の底から、鋳型内に注入することに
ある。この場合、溶湯は静かに鋳型内部に注が
れ、湯面に乱れた波動を生じない。従つて鋳壁に
できた結晶は遊離せず鋳壁面から、結晶が成長し
易い。このことによつて、柱状晶はインゴツト内
部まで、成長するのである。本発明法は、ごく少
ないチル晶と大部分を柱状晶とし一部等軸晶で、
柱状晶とチル晶を含むマクロ組織は、全体の50%
以上が好ましい。本発明における合金の組成は、
Sm,Y,La,Ce,Prの1種又は2種以上からな
る希土類金属Rを重量比で21〜28%含有し、残部
がCo,Cu,FeおよびZrからなる遷移金属TMか
らなり、RとTMの比が1:7.0〜9.0である
R2TM17系合金である。もちろんRTM5合金を用
いても、磁気性能を高めることが出来る。さらに
本発明法は合金インゴツトの結晶をそのまま用い
て作る樹脂結合型磁石に適用するものである。 実施例 1 合金インゴツトの組成をSm
(Co0.61Cu0.07Fe0.3Zr0.028.3になるよう、高周波
炉で溶解した。 第1図は従来法における溶湯の注湯法で、1の
鋳型(S15C金型)に、湯温1550℃で上部3から
注いだ。この時湯面2は、波動が激しく起る。こ
うして冷却凝固したインゴツトのマクロ組織は第
2図に示した様に鋳壁表面付近に柱状晶が認めら
れるが、多くは等軸晶である。柱状晶占積率は約
20%と少なかつた。一方本発明法の鋳造法を第3
図に示す。 前記組成合金になるよう秤量調整した原料を高
周波炉で溶解した。この溶湯(湯温1600℃)を6
の受け口から、8アルミナセメントで作られた7
の湯道を介して、4の鋳型底部より、鋳型内に導
入される。こうして溶湯5は鋳型壁を静かに上方
に押し上げられる。鋳型4はS15C材でつくられ
た金型であるから、鋳壁より冷却される。こうし
て得たインゴツトのマクロ組織を第4図に示す。
インゴツトの中心部分にわずか等軸晶が存在する
もほとんど60〜70%は柱状晶を呈することがわか
つた。 次に従来法、本発明法で作られた合金インゴツ
ト各0.5Kgを第5図に示す磁石製造工程に従つて
永久磁石をつくつた。先ずArガス雰囲気中で、
バルク状インゴツトを溶体化処理した。温度は
1150℃、時間は10時間行い、10〜30℃/分の速度
で常温まで急冷した。続いて磁気硬化のための時
効処理を800℃×24時間行つた。次に該インゴツ
トを、ハンマークラツシヤーで粉砕した粗粉末
(−80#)をボールミル中で非酸化性雰囲気の下
で微粉砕した。この時の粉末粒度は3μm〜50μ
m、平均粒度で15μmであつた。こうして得られ
た磁性粉末を、製法1に従つて、樹脂結合磁石を
得た。先ず、バインダーは一液性エポキシ樹脂で
粘度1000CPSのものを2.0Wt%添加、磁性粉末と
混合し、磁場強度15Kgの電磁石中で磁場配向し、
さらに5ton/cm2で加圧成形した。次に成形体を型
より抜き出し、150℃×2時間加熱バインダーを
硬化させた。こうして得た成形体の寸法はφ15×
10m/mの円柱状試料である。なお試料は従来
法、本発明法とも各10ケつくつた。この試料を直
流磁気磁束計(B―H測定器)で磁気特性を調べ
た。結果を第1表に示す。
The present invention relates to a precipitation magnet using R 2 Co 17 type crystals. More specifically, when melting and casting an alloy in which the ratio of the rare earth metal R and the transition metal TM consisting of Co, Cu, Fe, and Zr is 1:7.0 to 9.0 in atomic ratio, the molten metal at the time of casting is This invention relates to a method of manufacturing a permanent magnet in which columnar crystals are exposed throughout the alloy ingot by pouring from the bottom of the mold. When melting and casting R(TM) 7.0 to 9.0 alloy , when pouring into the mold, the molten metal should be kept quiet,
It is characterized by the fact that the macrostructure of the ingot is made into columnar crystals by pouring. An object of the present invention is to improve magnetic performance and reduce variation, and another object is to improve mass productivity. In our patent application No. 55-3226, we proposed Sm―Co―Cu―
When the Fe-Zr alloy ingot is made into columnar crystals,
It was shown that the magnetic performance of magnets using this alloy is significantly better than that of equiaxed crystals and chill crystals. If we use exactly the same manufacturing method and make a magnet from a chilled crystal alloy using an equiaxed crystal alloy and a columnar crystal alloy, we find that the columnar crystal alloy has the same characteristics as the saturation magnetization 4πIs, the coercive force iHc, bHc, or the squareness of the hysteresis loop. It was found that the performance was excellent across the board. On the contrary, equiaxed crystal alloys and equiaxed chill crystal alloys are the worst in terms of performance. Columnar chill crystal alloys produce magnets with values intermediate between these. Since the crystals of columnar crystal alloys are aligned, they have good orientation in the uniaxial direction when made into a magnet. In addition, it is thought that in this alloy, precipitates formed by heat treatment are more uniform than in other alloys. This improves the squareness of the hysteresis. It is also believed that the crystal structure and morphology of the precipitates are formed in a way that increases iHc better than those of equiaxed crystals. The origin of equiaxed crystals was not well known before, but it is now believed that crystals formed in a mold or on a cooled surface of the liquid become free crystals, and these free crystals form equiaxed crystals. (A. Ohno, T. Motegi and H. Soda:
Trans ISIJ.11 (1971) 18). It has also become clear that the movement of the molten metal within the mold during pouring is very important for the formation of columnar crystals. As mentioned above, the present invention promotes columnar crystallization of an ingot.
It's something that can be easily obtained. Therefore, the method of the present invention consists in injecting hot water into the mold from the bottom of the mold. In this case, the molten metal is poured quietly into the mold, and no turbulent waves occur on the surface of the molten metal. Therefore, the crystals formed on the casting wall are not released, and the crystals tend to grow from the casting wall surface. Due to this, the columnar crystals grow to the inside of the ingot. The method of the present invention has very few chill crystals, mostly columnar crystals, and some equiaxed crystals.
Macrostructure including columnar crystals and chill crystals accounts for 50% of the total
The above is preferable. The composition of the alloy in the present invention is:
Contains 21 to 28% by weight of a rare earth metal R consisting of one or more of Sm, Y, La, Ce, and Pr, and the remainder is a transition metal TM consisting of Co, Cu, Fe, and Zr; and TM ratio is 1:7.0~9.0
It is an R 2 TM 17 series alloy. Of course, magnetic performance can also be improved using RTM 5 alloy. Furthermore, the method of the present invention is applicable to resin-bonded magnets made using alloy ingot crystals as they are. Example 1 The composition of alloy ingot is Sm
(Co 0.61 Cu 0.07 Fe 0.3 Zr 0.02 ) It was melted in a high frequency furnace to give 8.3 . Figure 1 shows the conventional method of pouring molten metal, in which the molten metal was poured into mold 1 (S15C mold) from the top 3 at a temperature of 1550°C. At this time, the water surface 2 causes violent waves. The macrostructure of the ingot cooled and solidified in this way has columnar crystals near the casting wall surface, as shown in FIG. 2, but most of them are equiaxed crystals. The columnar crystal space factor is approximately
It was as low as 20%. On the other hand, the casting method of the present invention was
As shown in the figure. The raw material whose weight was adjusted to give the above composition alloy was melted in a high frequency furnace. This molten metal (water temperature 1600℃)
From the socket, 7 made of 8 alumina cement
It is introduced into the mold from the bottom of the mold through the runner runner No. 4. In this way, the molten metal 5 is gently pushed up the mold wall. Since the mold 4 is made of S15C material, it is cooled from the casting wall. The macrostructure of the ingot thus obtained is shown in FIG.
It was found that almost 60-70% of the ingots were columnar crystals, although there was a small amount of equiaxed crystals in the center of the ingot. Next, permanent magnets were made from 0.5 kg each of the alloy ingots made by the conventional method and the method of the present invention according to the magnet manufacturing process shown in FIG. First, in an Ar gas atmosphere,
The bulk ingot was subjected to solution treatment. The temperature is
The temperature was 1150°C for 10 hours, and the temperature was rapidly cooled to room temperature at a rate of 10 to 30°C/min. Subsequently, aging treatment for magnetic hardening was performed at 800°C for 24 hours. Next, the ingot was crushed into coarse powder (-80#) using a hammer crusher and then finely crushed in a ball mill under a non-oxidizing atmosphere. The powder particle size at this time is 3μm to 50μm
m, and the average particle size was 15 μm. The thus obtained magnetic powder was used to obtain a resin-bonded magnet according to Production Method 1. First, the binder is a one-component epoxy resin with a viscosity of 1000 CPS, added with 2.0 Wt%, mixed with magnetic powder, and magnetically oriented in an electromagnet with a magnetic field strength of 15 kg.
Further pressure molding was performed at 5 tons/cm 2 . Next, the molded body was extracted from the mold, and the binder was cured by heating at 150°C for 2 hours. The dimensions of the molded body thus obtained are φ15×
This is a cylindrical sample with a diameter of 10m/m. In addition, 10 samples each were prepared for both the conventional method and the present invention method. The magnetic properties of this sample were examined using a DC magnetic flux meter (BH measuring device). The results are shown in Table 1.

【表】 第1表からわかるように、樹脂結合型磁石は、
鋳造組織の柱状晶化の程度により、大きく磁気特
性が変わることがわかつた。従つて、溶解鋳造の
プロセスは、磁石の高性能化にとつて、極めて重
要なものである。本発明法によれば、同一組成の
合金でも、その性能は(BH)maxでみれば約1.2
倍にも高められた。又(BH)maxのバラツキは
平均偏差σでみれば本発明法がσ=0.05、従来法
はσ=0.15であつた。 実施例 2 Sm(Co0.6Cu0.08Fe0.3Zr0.02)z組成の合金
(zは7.0〜9.0)を溶解し、実施例1と同様鋳型
に鋳造した。次に実施例1と同一の製造工程に従
つて磁石を作つた。各組成(Smの変化)に対す
る柱状晶化の程度は、従来法は占積率20〜30%、
本発明法は65%〜75%が得られた。第6図は、磁
気特性を示すが、Zの変化に対し、本発明法は、
従来法に比べ4πIs(飽和磁化)、iHc(保磁力)
ともすぐれている。又、Smの変化に対してiHc
は鈍化している。すなわち、工程中で生じるSm
の酸化、ペーパーアウトによる磁気特性の劣化を
防止出来る利点がある。他の一つは、行Z側でも
iHc8KOe〜10KOeが得られるので、高い4πIs
と共に高性能化を有利に出来る利点もある。この
ように本発明法は、Sm2Co17型磁石の組成域の巾
を大きく出来且つより低Sm側(高Z側)に移動
出来る利点もある。なお実施例では、希土類金属
としてSmを用いた例を示したが、Smの一部を
Y,La,Ce,Prの1種又は2種以上で置き換え
ても同様の効果が得られている。 以上実施例にも詳記したように、樹脂結合型磁
石の高性能化にとつて、合金インゴツトの柱状晶
化を促進すれば、大変有効なことがわかつた。 この事は当業界にとつて、Sm2Co17型磁石の磁
気性能を従来より高めることができ、安価で高性
能な磁石の製造が可能になつた。
[Table] As you can see from Table 1, resin bonded magnets are
It was found that the magnetic properties vary greatly depending on the degree of columnar crystallization of the cast structure. Therefore, the process of melting and casting is extremely important for improving the performance of magnets. According to the method of the present invention, even if the alloy has the same composition, its performance is approximately 1.2 in terms of (BH)max.
It was doubled. Also, regarding the variation in (BH)max, in terms of the average deviation σ, it was σ=0.05 for the method of the present invention and σ=0.15 for the conventional method. Example 2 An alloy of Sm( Co0.6Cu0.08Fe0.3Zr0.02 )z composition (z is 7.0 to 9.0 ) was melted and cast into a mold in the same manner as in Example 1. Next, a magnet was manufactured according to the same manufacturing process as in Example 1. The degree of columnar crystallization for each composition (change in Sm) is 20 to 30% in the conventional method;
The method of the present invention yielded 65% to 75%. FIG. 6 shows magnetic properties, and with respect to changes in Z, the method of the present invention
4πIs (saturation magnetization) and iHc (coercive force) compared to the conventional method
It is also excellent. In addition, iHc changes with respect to changes in Sm.
is slowing down. In other words, Sm generated during the process
It has the advantage of preventing deterioration of magnetic properties due to oxidation and paper-out. The other one is also on the row Z side.
Since iHc8KOe~10KOe can be obtained, high 4πIs
At the same time, there is also the advantage of being able to improve performance. In this way, the method of the present invention has the advantage of being able to increase the width of the composition range of the Sm 2 Co 17 type magnet and moving it to the lower Sm side (higher Z side). In the example, an example was shown in which Sm was used as the rare earth metal, but similar effects can be obtained even if a part of Sm is replaced with one or more of Y, La, Ce, and Pr. As described in detail in the Examples above, it has been found that promoting columnar crystallization of the alloy ingot is very effective in improving the performance of resin-bonded magnets. This has enabled the industry to improve the magnetic performance of Sm 2 Co 17 type magnets compared to conventional magnets, making it possible to manufacture low-cost, high-performance magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図は本
発明法実施例1で得られたグラフである。第1
図、第2図は従来法の注湯法及び鋳型を示した断
面図及び鋳造合金のマクロ組織。 1……鋳型(S15C材)、2……溶湯、3……注
湯部、 第3図、第4図は本発明法の注湯法及び鋳型断
面図及び鋳造合金のマクロ組織。 4……鋳型(S15C材)、5……溶湯、6……注
湯部、7……溶湯の流れ、8……湯道用鋳型(ア
ルミナ質)、 第5図は樹脂結合型磁石の製造工程を示す図。
第6図は実施例2で得られた、Smの量(Z値)
と磁気特性を示す図。
FIG. 1, FIG. 2, FIG. 3, FIG. 4, and FIG. 5 are graphs obtained in Example 1 of the method of the present invention. 1st
Figure 2 is a cross-sectional view showing the conventional pouring method and mold, and the macrostructure of the cast alloy. 1... Mold (S15C material), 2... Molten metal, 3... Pouring section, Figures 3 and 4 show the pouring method of the present invention, a cross-sectional view of the mold, and the macrostructure of the cast alloy. 4... Mold (S15C material), 5... Molten metal, 6... Molten metal pouring section, 7... Molten metal flow, 8... Mold for runner (alumina material), Figure 5 shows the production of resin-bonded magnets. A diagram showing the process.
Figure 6 shows the amount of Sm (Z value) obtained in Example 2.
A diagram showing magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 1 Sm,Y,La,Ce,Prの1種又は2種以上か
らなる希土類金属を重量比で21〜28%含有し、残
部がCo,Cu,FeおよびZrからなる合金を粉末化
し、樹脂バインダーを添加して成形する樹脂結合
型の永久磁石の製造方法において、前記組成の合
金を溶解して鋳造する時に前記合金を溶解した溶
湯を鋳型の底部から注湯して冷却することにより
前記合金インゴツトのマクロ組織を主に注状晶に
することを特徴とする永久磁石の製造方法。
1 An alloy containing 21 to 28% by weight of rare earth metals consisting of one or more of Sm, Y, La, Ce, and Pr, and the balance consisting of Co, Cu, Fe, and Zr is powdered and a resin binder is prepared. In a method for producing a resin-bonded permanent magnet in which an alloy having the composition described above is melted and cast, the alloy ingot is formed by pouring the molten metal containing the alloy from the bottom of the mold and cooling it. A method for producing a permanent magnet, characterized in that the macrostructure of the permanent magnet is mainly amorphous.
JP55188090A 1980-12-29 1980-12-29 Manufacture of permanent magnet Granted JPS57114628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55188090A JPS57114628A (en) 1980-12-29 1980-12-29 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55188090A JPS57114628A (en) 1980-12-29 1980-12-29 Manufacture of permanent magnet

Publications (2)

Publication Number Publication Date
JPS57114628A JPS57114628A (en) 1982-07-16
JPS6223060B2 true JPS6223060B2 (en) 1987-05-21

Family

ID=16217522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55188090A Granted JPS57114628A (en) 1980-12-29 1980-12-29 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS57114628A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59118827A (en) * 1982-12-24 1984-07-09 Seiko Epson Corp Production of rare earth cobalt permanent magnet
JPS60224722A (en) * 1984-04-23 1985-11-09 Tohoku Metal Ind Ltd Manufacture of anisotropic composite magnet
JP2007157864A (en) * 2005-12-02 2007-06-21 Mitsubishi Electric Corp Alloy for rare-earth iron-boron based magnet, manufacturing method therefor and manufacturing device thereof

Also Published As

Publication number Publication date
JPS57114628A (en) 1982-07-16

Similar Documents

Publication Publication Date Title
US4536233A (en) Columnar crystal permanent magnet and method of preparation
JPS6223060B2 (en)
JPH0125819B2 (en)
JPS6111304B2 (en)
JPS648445B2 (en)
JPS6111303B2 (en)
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JPS648447B2 (en)
JPH0230369B2 (en)
JPH031802B2 (en)
JPH05295489A (en) Alloy for bond magnet and its manufacture
JPS6111447B2 (en)
JPH01706A (en) Rare earth magnet manufacturing method
JPS648448B2 (en)
JPS648452B2 (en)
JPH031803B2 (en)
JPS648451B2 (en)
JPS6223059B2 (en)
JPS648455B2 (en)
JPS648454B2 (en)
JPS62262403A (en) Manufacture of rare earth permanent magnet
JPS648450B2 (en)
JPS648459B2 (en)
JPH0137461B2 (en)
JPH0147543B2 (en)