JPS60224722A - Manufacture of anisotropic composite magnet - Google Patents
Manufacture of anisotropic composite magnetInfo
- Publication number
- JPS60224722A JPS60224722A JP59080236A JP8023684A JPS60224722A JP S60224722 A JPS60224722 A JP S60224722A JP 59080236 A JP59080236 A JP 59080236A JP 8023684 A JP8023684 A JP 8023684A JP S60224722 A JPS60224722 A JP S60224722A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- powder
- alloy
- particle size
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】 〔技術分野〕 本発明は高分子複合型磁石に関するものであり。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a polymer composite magnet.
特に希土類コバルト磁石粉末を用いた製造方法に関する
ものである。In particular, it relates to a manufacturing method using rare earth cobalt magnet powder.
高分子複合型磁石は、高分子樹脂中に磁石粉末を分散さ
せたものであり、鋳造磁石や焼結磁石等には見られない
種々の特徴例えば弾力性や加工容易性を備えており1種
々の方面に用いられている。Polymer composite magnets are made by dispersing magnetic powder in polymer resin, and have various characteristics not found in cast magnets, sintered magnets, etc., such as elasticity and ease of processing. It is used in the direction of.
しかしながらこの磁石は、磁石粉末と非磁性の樹脂で形
成されているだめ、焼結磁石等に比べて磁気特性が低い
という短所を有している。そのため粉末を磁界中で配向
させる等の異方性化により。However, since this magnet is made of magnetic powder and non-magnetic resin, it has a disadvantage in that its magnetic properties are lower than that of sintered magnets and the like. Therefore, by making the powder anisotropic by orienting it in a magnetic field.
高い磁石特性を達成しようとしている。We are trying to achieve high magnetic properties.
本発明は、磁石特性の優れた希土類コバルト系磁石の中
でも高Brを特徴とするR2T17で示される系の希土
類磁石を用いた高分子複合型磁石の磁石特性の向上を、
その製造方法の面から達成したものである。The present invention aims to improve the magnetic properties of a polymer composite magnet using a rare earth magnet of the R2T17 system, which is characterized by high Br among rare earth cobalt magnets with excellent magnetic properties.
This was achieved through the manufacturing method.
従来のR2T17系希土類磁石の複合磁石は、原料を溶
解して得られた合金鋳塊を溶体化処理1時効後、粉砕し
、その粉末を高分子樹脂と混合し、成形して製造されて
いた。この場合一般的には樹脂に対する磁石粉末の混合
割合を多くシ、磁石特性を向上させるために粉末の粒子
径を大きくして磁石の比率を高めようとする傾向にある
。磁石合金は高価な金属を主成分としているので、磁気
特性とともに磁石は高価になる。また高分子樹脂と粉末
の混合割合には製造上限度があり、たとえばコ゛ムに対
しては90チ位まで、ナイロンなどには93チ位までで
ある。したがって従来のこの種の磁石の磁石特性は頭打
ちの状態にあった。しかしそれにも拘らずこの種の磁石
に対する特性改善は強く要望されている。Conventional R2T17-based rare earth magnet composite magnets are manufactured by melting raw materials, aging an alloy ingot, and then pulverizing it, mixing the powder with polymer resin, and molding it. . In this case, there is a general tendency to increase the mixing ratio of the magnet powder to the resin and increase the particle size of the powder in order to improve the magnetic properties. Since magnetic alloys are mainly composed of expensive metals, the magnets become expensive along with their magnetic properties. Furthermore, there is a manufacturing upper limit for the mixing ratio of polymer resin and powder, for example, up to about 90 inches for combs and up to about 93 inches for nylon. Therefore, the magnetic properties of conventional magnets of this type have reached a plateau. However, in spite of this, there is a strong desire to improve the characteristics of this type of magnet.
したがって本発明の目的は磁石合金粉末の混入割合に関
係なしに磁石特性の改善された異方性複合磁石を得よう
とするものである。Therefore, an object of the present invention is to obtain an anisotropic composite magnet with improved magnetic properties regardless of the mixing ratio of magnet alloy powder.
本発明は上記の目的を達成するために、粉砕した磁石合
金粉末の直径を従来とは逆に微小化することにより磁石
粒子の配向性を向上させるようにしたものである。In order to achieve the above object, the present invention improves the orientation of magnet particles by reducing the diameter of crushed magnet alloy powder, contrary to the conventional method.
すなわち本発明によれば、R2T17系磁石合金を粉砕
して粉末を作り、得られた粉末を高分子樹脂と混合し、
磁場中で硬化成形して高分子複合型磁石を製造する方法
において、前記粉砕して粉末を作る工程が、得られる粉
末の平均粒子径が前記R2T、7系磁石合金中の結晶粒
の平均粒径の90チ以下になるまで粉砕するような工程
であることを特徴とする異方性複合磁石の製造方法が得
られる。That is, according to the present invention, an R2T17 magnet alloy is pulverized to form a powder, the obtained powder is mixed with a polymer resin,
In the method of manufacturing a polymer composite magnet by hardening and molding in a magnetic field, the step of pulverizing to form a powder is such that the average particle size of the obtained powder is the R2T, the average grain of the crystal grains in the 7-series magnet alloy. There is obtained a method for manufacturing an anisotropic composite magnet characterized by a step of crushing the magnet until it has a diameter of 90 inches or less.
本発明の方法により得られる異方性複合磁石は。 The anisotropic composite magnet obtained by the method of the present invention is as follows.
磁石粒子の配向性の向上により高異方性化して高い磁石
特性が得られ、而も高価格化することなく。By improving the orientation of the magnet particles, it becomes highly anisotropic and provides excellent magnetic properties without increasing the price.
工業上非常に有益である。It is very useful industrially.
Smが25 wL%、 Feが15.5 wL%、 C
uが9wt%。Sm is 25 wL%, Fe is 15.5 wL%, C
u is 9wt%.
Zrが1.5wt%、残部がCoとなるように原料を調
整し、アルゴン雰囲気中で高周波加熱により浴解し、熱
処理終了時に平均結晶粒径が50μmと30μmになる
ような2種類の鋳塊を得た。但し2種類の結晶粒径は溶
湯の冷却する速度を変えることにより得たものである。The raw materials were adjusted so that Zr was 1.5 wt% and the balance was Co, and the ingots were bath-dissolved by high-frequency heating in an argon atmosphere to produce two types of ingots with average crystal grain sizes of 50 μm and 30 μm at the end of the heat treatment. I got it. However, the two types of crystal grain sizes were obtained by changing the cooling rate of the molten metal.
次にこのようにして得た鋳塊を1180℃で2時間溶体
化処理をしだ後800℃で1時間保持し。Next, the ingot thus obtained was subjected to solution treatment at 1180°C for 2 hours and then held at 800°C for 1 hour.
300℃まで毎分1℃の速度で冷却した。この熱処理を
行った鋳塊をそれぞれボール・ミルにて粉砕して平均粒
子径が7〜60μmのものを得た。そしてこれらの磁石
粉末をおのおの8 wt%のナイロン12(商品名)と
混練した後、高温にて15KOeの磁界中に射出成型し
て高分子複合磁石を作る。It was cooled to 300°C at a rate of 1°C per minute. The heat-treated ingots were each ground in a ball mill to obtain ingots having an average particle size of 7 to 60 μm. Each of these magnet powders is kneaded with 8 wt% of nylon 12 (trade name), and then injection molded at high temperature in a magnetic field of 15 KOe to produce a polymer composite magnet.
力お結晶粒径は電子顕微鏡あるいは金属顕微鏡で測定し
、粉末粒子径は気体透過法により測定している。The crystal grain size is measured using an electron microscope or a metallurgical microscope, and the powder particle size is measured using a gas permeation method.
図は上記のようにして得た高分子複合磁石の磁気特性で
あるエネルギー積(B)() 、残留磁束布ax
度Br 、および保磁力xHc 、 sHCを従来のも
のと比較して示した図である。丸印をつないだ実線は鋳
塊の平均結晶粒径が50μmの場合を示し三角印をつな
いだ破線は鋳塊の平均結晶粒径が30μmの場合を示し
ている。図からすぐ分るように、結晶粒径が50μmの
ものは粉末粒径を40μmとするとBrおよび(BH)
が向上し、結晶粒径が30μmのものは粉末粒径を2
5μm以下にすると同様にBr。The figure shows the magnetic properties of the polymer composite magnet obtained as described above, such as energy product (B) (), residual magnetic flux distribution ax degree Br, and coercive force xHc, sHC, compared with conventional ones. It is. A solid line connecting circles indicates a case where the average crystal grain size of the ingot is 50 μm, and a broken line connecting triangle marks indicates a case where the average crystal grain size of the ingot is 30 μm. As you can easily see from the figure, if the crystal grain size is 50 μm, and the powder grain size is 40 μm, Br and (BH)
The powder particle size has been improved by 2.
Similarly, if it is 5 μm or less, Br.
(BH) が大きくなっている。他の特性は上記の2つ
ほど顕著にはあられれない。(BH) is getting larger. Other properties are less pronounced than the above two.
上記の特性をまとめてあられすと、磁石粉末の平均粒子
径を鋳塊の平均結晶粒径の90%以下にすると、磁石特
性が著しく向上していることが分る。そしてこのような
効果が得られるのは、粉末の平均粒子径を平均結晶粒径
より小さくして粉末を磁石の単一粒とすると、高分子樹
脂と混ぜて磁界中で成形する場合に磁石粉末粒子の磁気
配向が従来にくらべてはるかに揃え易くなるためである
。Summarizing the above characteristics, it can be seen that the magnetic characteristics are significantly improved when the average particle size of the magnetic powder is set to 90% or less of the average crystal grain size of the ingot. This effect can be obtained because if the average particle size of the powder is made smaller than the average crystal grain size and the powder is made into a single grain of magnet, the magnet powder becomes smaller when mixed with polymer resin and molded in a magnetic field. This is because the magnetic orientation of the particles becomes much easier to align than in the past.
なお効果ある粒径の下限界は特に示していないが。Note that the lower limit of the effective particle size is not particularly indicated.
それは下限界がないという意味ではなく、効果的な粒子
径が5μm以下相当の範囲にまたがっていることは図か
ら推定はされるものの、粉砕能率からいって平均粒径を
数μmより相当低い値にすることは工業的見地からいえ
ばあまり意味がないからである。This does not mean that there is no lower limit, and although it can be estimated from the figure that the effective particle size spans a range equivalent to 5 μm or less, in terms of crushing efficiency, the average particle size should be considerably lower than several μm. This is because doing so does not make much sense from an industrial standpoint.
以上は、 Sm −Co−Fe−Cu−Zr系合金につ
いてのみ記述しであるが2本発明は本質的には等方的な
多結晶体の磁石を粉砕し、磁石粉末粒子を異方性化して
なる高分子複合磁石に関しており。The above describes only the Sm-Co-Fe-Cu-Zr alloy, but the present invention essentially involves grinding an isotropic polycrystalline magnet and making the magnet powder particles anisotropic. This is about polymer composite magnets.
R2Tj7系磁石ばかりでな(、SmCo5磁石やBa
0・6Fe203 + SrO’6Fe205磁石を代
表とするフェライト磁石を磁石粉末に使用する場合にも
適用できることは容易に推察できる。Only R2Tj7 magnets (, SmCo5 magnets and Ba
It can be easily inferred that the present invention can also be applied to the case where a ferrite magnet, typified by a 0.6Fe203 + SrO'6Fe205 magnet, is used as magnet powder.
図は2本発明の実施例における希土類コバルト系複合磁
石の磁気特性を鋳塊の平均粒径とその粉砕平均粒子径の
関係で示したものである。
、丁′、9′で・
代理人(7127)ブtFl!l、後藤洋介 ・1、・
・;−、::、’、−’
図
一〇−1敷鬼の平掬焦蝙忌随径W/JJrL粉砕平均粒
鑵(μ雇)The figure shows the magnetic properties of the rare earth cobalt composite magnet in the second embodiment of the present invention in terms of the relationship between the average particle size of the ingot and the average particle size of the crushed ingot. , D', 9' Agent (7127) ButtFl! l, Yosuke Goto ・1,・
・;−、::、'、−' Figure 10-1 Shikiki no Hirayuki Kobokizui diameter W/JJrL crushed average grain iron (μ hire)
Claims (1)
び希土類元素、Tは遷移金属を表わす。)を粉砕して粉
末を作り、得られた粉末を高分子樹脂と混合し、磁場中
で硬化成形して高分子複合型磁石を製造する方法におい
て、前記粉砕して粉末を作る工程が、得られる粉末の平
均粒子径が前記R2T17系磁石合金中の結晶粒の平均
粒径の90%以下になるまで粉砕するような工程である
ことを特徴とする異方性複合磁石の製造方法。1, R2T1. A system magnetic alloy (herein, R represents yttrium and rare earth elements, T represents a transition metal) is pulverized to form a powder, the resulting powder is mixed with a polymer resin, and is hardened and molded in a magnetic field to form a polymer. In the method for manufacturing a composite magnet, the step of pulverizing to produce powder includes pulverizing until the average particle size of the obtained powder is 90% or less of the average particle size of the crystal grains in the R2T17-based magnet alloy. 1. A method for manufacturing an anisotropic composite magnet, which is characterized by a process of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59080236A JPS60224722A (en) | 1984-04-23 | 1984-04-23 | Manufacture of anisotropic composite magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59080236A JPS60224722A (en) | 1984-04-23 | 1984-04-23 | Manufacture of anisotropic composite magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60224722A true JPS60224722A (en) | 1985-11-09 |
JPH0340081B2 JPH0340081B2 (en) | 1991-06-17 |
Family
ID=13712699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59080236A Granted JPS60224722A (en) | 1984-04-23 | 1984-04-23 | Manufacture of anisotropic composite magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60224722A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56166346A (en) * | 1980-05-22 | 1981-12-21 | Seiko Epson Corp | Manufacture of resin bonded type permanent magnet alloy of rare earth element and cobalt |
JPS57114628A (en) * | 1980-12-29 | 1982-07-16 | Seiko Epson Corp | Manufacture of permanent magnet |
-
1984
- 1984-04-23 JP JP59080236A patent/JPS60224722A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56166346A (en) * | 1980-05-22 | 1981-12-21 | Seiko Epson Corp | Manufacture of resin bonded type permanent magnet alloy of rare earth element and cobalt |
JPS57114628A (en) * | 1980-12-29 | 1982-07-16 | Seiko Epson Corp | Manufacture of permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JPH0340081B2 (en) | 1991-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63232301A (en) | Magnetic anisotropic bond magnet, magnetic powder used therefor, and manufacture thereof | |
JPH0366105A (en) | Rare earth anisotropic powder and magnet, and manufacture thereof | |
JPH06346101A (en) | Magnetically anisotropic powder and its production | |
JPS63317643A (en) | Production of rare earth-iron permanent magnetic material | |
JPS62198103A (en) | Rare earth-iron permanent magnet | |
JPS62177101A (en) | Production of permanent magnet material | |
JPH0680608B2 (en) | Rare earth magnet manufacturing method | |
JPS60224722A (en) | Manufacture of anisotropic composite magnet | |
JPS5852019B2 (en) | Rare earth cobalt permanent magnet alloy | |
JPS62169403A (en) | Manufacture of polymer composite type rare earth magnet | |
JPS63216307A (en) | Alloy powder for magnet | |
JPS62208609A (en) | Resin-bonded permanent magnet and manufacture of its magnetic powder | |
JPS61147504A (en) | Rare earth magnet | |
JPS63211705A (en) | Anisotropic permanent magnet and manufacture thereof | |
JP3125226B2 (en) | Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet | |
JP2730441B2 (en) | Manufacturing method of alloy powder for permanent magnet | |
JPH08148315A (en) | Production of rare earth magnet | |
JPH07211570A (en) | Manufacture of rare-earth permanent magnet | |
JPS5830107A (en) | Manufacture of permanent magnet | |
JPS63312915A (en) | Production of permanent magnet | |
JPS58153306A (en) | Manufacture of rare earth metal magnet | |
JPS62131503A (en) | Manufacture of rare earth-iron-boron alloy powder for resin magnet | |
JPH02101710A (en) | Permanent magnet and manufacture thereof | |
JPS5877546A (en) | Permanent magnet and its manufacture | |
JPS63287005A (en) | Permanent magnet and manufacture thereof |