JPS62262403A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPS62262403A
JPS62262403A JP61105966A JP10596686A JPS62262403A JP S62262403 A JPS62262403 A JP S62262403A JP 61105966 A JP61105966 A JP 61105966A JP 10596686 A JP10596686 A JP 10596686A JP S62262403 A JPS62262403 A JP S62262403A
Authority
JP
Japan
Prior art keywords
rare earth
ingot
permanent magnet
iron
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61105966A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61105966A priority Critical patent/JPS62262403A/en
Publication of JPS62262403A publication Critical patent/JPS62262403A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic characteristics of an obtained permanent magnet by improving a grindability of an ingot by making the magnet from an alloy which has a macro-structure of an ingot consisting of a rare earth metal, iron and boron changed into a column structure by zone heating. CONSTITUTION:An alloy which has a macro-structure of an ingot consisting of a rare earth metal, iron and boron changed into a column structure by zone heating is made into a magnet. As the rare earth metal, Y, La, Ce, Pr, Nd, and Pm are available. Thus. grindability of the ingot can be improved and magnetic characteristics of the obtained permanent magnet are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が希土類金属、鉄およびボロンから
なる希土類永久磁石の製造方法に閃する〔従来の技術〕 従来、基本組成が希土類金属、鉄およびボロンからなる
合金インゴットのマクロ組識を柱状組該とするために、
鋳造金型の構造の改良などにより鋳造後の冷却速度を制
御していた。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a rare earth permanent magnet whose basic composition is a rare earth metal, iron, and boron [Prior Art] Conventionally, the basic composition is a rare earth metal, iron, and boron. In order to make the macrostructure of an alloy ingot consisting of iron and boron into a columnar structure,
The cooling rate after casting was controlled by improving the structure of the casting mold.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の手段は数tの溶解では可能である
が、数十〜数百tの溶解では極めてFf(Mであり、か
つ鋳造組識が完全には得られず、さらに溶解工程に時間
が要するなど社産には向いていないといった問題点を有
している。
However, although the above method is possible with melting of several tons, melting of tens to hundreds of tons results in extremely low Ff (M), and the casting structure cannot be completely obtained, and the melting process takes a long time. It has problems such as the fact that it is not suitable for company production.

本発明は以上の問題点を解決するもので、その目的とす
るところは、数十〜数百tといった量産時の溶解におい
ても、インゴットのマクロ組識を柱状組識とし、磁気性
能を向上させ品質を安定させる希土類永久磁石の製造方
法を提供することにある。
The present invention solves the above problems, and its purpose is to make the macrostructure of the ingot into a columnar structure and improve the magnetic performance even during melting during mass production of tens to hundreds of tons. The purpose of the present invention is to provide a method for manufacturing rare earth permanent magnets that stabilizes quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の希土類永久磁石の製造方法は、基本組成が希土
類金属、鉄およびボロンからなり、ゾーン加熱法により
インゴットのマクロ組識を柱状組繊とした合金を使用し
て磁石化することを特徴とする。
The method for producing a rare earth permanent magnet of the present invention is characterized in that the basic composition is a rare earth metal, iron, and boron, and magnetization is performed using an alloy in which the macrostructure of an ingot is made into columnar fibers by a zone heating method. do.

一般に溶融金属がるつぼから鋳型に鋳こまれたとき、溶
融金属は先ず鋳型壁と接触して、おびただしい核生成を
生じる程度1で急冷され、チル層を形成する。次に、鋳
型へ熱が流れるため、鋳型壁に垂直に内部に向かって柱
状組繊が伸びてくる。さらに熱の流れがなくなると、柱
状組繊にかわり等軸組識が現れ、鋳型内での凝固が完了
する。
Generally, when molten metal is poured from a crucible into a mold, the molten metal first contacts the walls of the mold and is rapidly cooled to a degree of 1 which causes extensive nucleation, forming a chill layer. Next, as heat flows into the mold, the columnar fibers extend inward perpendicular to the mold wall. When the heat flow further ceases, an equiaxed structure appears instead of a columnar structure, and solidification in the mold is completed.

したがって、第2図に示すように、鋳造時のマクロ組識
はチル組誠(1’I 、柱状組繊(2)および等軸組識
(3,)から形成される。
Therefore, as shown in FIG. 2, the macrostructure at the time of casting is formed of a chilled structure (1'I), a columnar structure (2), and an equiaxed structure (3,).

基本組成が希土類金属、鉄およびボロンからなるインゴ
ットのマクロ組識を柱状組誠とすることにより、インゴ
ットの粉砕性が向上し、さらに得られる永久磁石の磁気
性能も向上する。
By making the macrostructure of the ingot whose basic composition is a rare earth metal, iron, and boron into a columnar structure, the crushability of the ingot is improved, and the magnetic performance of the obtained permanent magnet is also improved.

しかし、前述のように、インゴットのマクロ組識を柱状
組麟とすることは、特に泣産時に困難となりてくる。
However, as mentioned above, it is difficult to make the macrostructure of the ingot into a columnar structure, especially when the ingot is in a cryogenic state.

そこで、鋳造上がりのインゴットを第1図に示すように
、ゾーンメルティングやゾーンリファイニングと同様な
装置を用い、インゴットの一部分を帯状に溶融し、この
帯域(ゾーン)を移動させることにより、異方性結晶成
長が可能となり、柱状組鎮が得られるのである。
Therefore, as shown in Figure 1, a part of the ingot after casting is melted in a band shape using equipment similar to zone melting or zone refining, and this zone is moved. Oriental crystal growth becomes possible, and a columnar structure can be obtained.

なお、基本組成が希土類金属、鉄およびボロンからなる
希土類永久磁石としては゛Na−?θ−B磁石が知られ
ているが、希土類金にとしては、Y、La、Oe、Pr
、Nd、Pm、Sm、Eu。
In addition, as a rare earth permanent magnet whose basic composition is rare earth metal, iron, and boron, there is "Na-?" θ-B magnets are known, but examples of rare earth gold include Y, La, Oe, and Pr.
, Nd, Pm, Sm, Eu.

Gd、T’b、Dy、Ho、l1ir、Tm、Ybおよ
びLuの希土類元素のうちの1種または2種以上であれ
ば良く、ジジム(Pr−Na)やセリウム・ジジム(O
e−P r−N d)でも十分な磁気性能が得られ、供
給面・価格面から有利である。さらに、DyやTb等の
重希土類元素の少量添加により、保磁力1Hcを増大さ
せることができ、温度特性の実質的な改善が達成される
Any one or more of the rare earth elements Gd, T'b, Dy, Ho, l1ir, Tm, Yb and Lu may be used, and didymium (Pr-Na) and cerium didymium (O
e-P r-N d) can also provide sufficient magnetic performance and is advantageous from the standpoint of supply and price. Furthermore, by adding a small amount of heavy rare earth elements such as Dy and Tb, the coercive force 1Hc can be increased and a substantial improvement in temperature characteristics can be achieved.

また、鉄の一部をコバルトでfil決することによりキ
ューリ一温度の向上が計られ、他の遷移金属群でtif
換しても磁気性能や耐食性等が改善される〔実施例〕 以下、本発明について実施例に基づいて詳細に説明する
In addition, by filling part of iron with cobalt, the Curie temperature was improved, and with other transition metal groups, tif
[Example] The present invention will be described in detail based on Examples below.

(実施例−1) Nd15?e77]3g の組成になるように高周波溶
解炉を用いアルゴンガスB)囲気下で溶解、鋳造し、3
0KPの合金を得た。得られたインゴットには、柱状組
成は、わずかしか含まれてなく、はとんどが等軸m緑で
あった。このインゴットを第1図に示す装置を用い、ゾ
ーン加熱を施したところ、はぼ完全に柱状組戯となった
(Example-1) Nd15? Melt and cast in a high-frequency melting furnace under argon gas B) atmosphere so that the composition becomes 3g.
An alloy of 0KP was obtained. The obtained ingot contained only a small amount of columnar composition and was mostly equiaxed green. When this ingot was subjected to zone heating using the apparatus shown in FIG. 1, it became almost completely columnar.

また、比較例として、柱状組繊がわずがしか含んでいな
い鋳造上がりのインゴットも用意した。
As a comparative example, a cast ingot containing only a small amount of columnar fibers was also prepared.

これらのインゴットをスタンプミルな用い一#32メツ
シュの粉末とし、ボールミルを用い粉砕時間を変えて微
粉砕し、その時の粉末の平均粒径を1・S−5−S・を
用い測定した。
These ingots were made into powder with a #32 mesh using a stamp mill, and finely ground using a ball mill while changing the grinding time, and the average particle size of the powder was measured using a 1.S-5-S.

その結果を第3図に示す。The results are shown in FIG.

第3図より明らかなように、比較例と比べ、本発明は短
い時間で微粉末となっていることが分かる。インゴット
のマクロ組識を比べてみても、本発明の方が完全な柱状
組繊になっていることからも、マクロ組識を柱状組繊と
することにより、粉砕性が向上し、たといえる。
As is clear from FIG. 3, it can be seen that the powder of the present invention becomes fine powder in a shorter time than that of the comparative example. Comparing the macrostructures of the ingots, the ingots of the present invention have more complete columnar fibers, so it can be said that the crushability is improved by making the macrostructure into columnar fibers.

(実施例−2) NdlL5D7L5’!8670010BB  となる
ように、実施例−1と同様の方法を用い、粉砕時間を変
えて微粉砕し、本発明と比較例の所定の磁性粉末を作成
した。この磁性粉末を15KOeの磁場中で配向させて
154/、、ノの成形圧で圧l?1成形させ、アルコン
ガス雰囲気中で1000〜1200tl’)/i適温度
で焼結、400〜1000℃の最適温度で時効を施した
(Example-2) NdlL5D7L5'! 8670010BB, using the same method as in Example-1, changing the grinding time, to create predetermined magnetic powders of the present invention and comparative examples. This magnetic powder was oriented in a magnetic field of 15 KOe, and the molding pressure was 154/. 1 molding, sintering at an appropriate temperature of 1000 to 1200 tl'/i in an Alcon gas atmosphere, and aging at an optimum temperature of 400 to 1000°C.

得られた磁石なりHトレーサーを用い磁気性能を測定し
た。得られた磁気性能のうち最も大きなポイントとなる
保磁力(iHc)と粉砕時間との関係を第4図に示す。
Magnetic performance was measured using the obtained magnet or H tracer. FIG. 4 shows the relationship between the coercive force (iHc), which is the most significant point in the obtained magnetic performance, and the grinding time.

第4図から明らかだが、比較例と比べ、本発明は短い時
間でiHcが最大値に到達していて、かつその最大値も
大きな値とならている。すなわち、マクロ組識を柱状組
鎗とすることにより、単に粉砕性が向上するだけでなく
、得られる磁石の磁気性能を改善させるのである。
As is clear from FIG. 4, iHc reaches the maximum value in a shorter time in the present invention than in the comparative example, and the maximum value is also a large value. That is, by forming the macrostructure into a columnar molding, not only the crushability is improved, but also the magnetic performance of the resulting magnet is improved.

(実施例−3) (Osへ2PrO,1N110.SD7α1)ls?e
sToolOBaの合金を振動ミルを用いて粉砕時間を
変えて微粉砕し、実施例−1と同様の方法を用−1本発
明と比較例の所定の磁石を作成した。
(Example-3) (2PrO to Os, 1N110.SD7α1)ls? e
The alloy of sToolOBa was finely pulverized using a vibration mill while changing the pulverization time, and the same method as in Example 1 was used to create predetermined magnets of the present invention and comparative example.

同様に保磁力(iHc)と粉砕時間の関係を第5図に示
した。
Similarly, the relationship between coercive force (iHc) and grinding time is shown in FIG.

第5図から明らかなように、本発明ではボールミルを用
いたときに比べると・多少低い1Hcとなっているが十
分実用になるのに対し、比較例では満足なiHcを得る
ことはできなかった。
As is clear from Fig. 5, in the present invention, 1Hc is somewhat lower than when using a ball mill, but it is sufficiently practical, whereas in the comparative example, it was not possible to obtain a satisfactory iHc. .

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、基本組成が希土類
金属、鉄およびボロンからなり、ゾーン加熱法によりイ
ンゴットのマクロ組識を柱状組識とした合金を使用して
磁石化することにより、従来に比べて粉砕性が向上し、
粉砕工程に要する時間が大幅に短縮されるだけでなく、
得られる永久磁石の磁気性能をも大きく改善され、特に
ボールミルに比べて粉砕効率が格段に良く大量生産には
欠かすことができない振動ミルを用いても、十分実用と
なるfIi気性能が得られるようになり、工程時間の短
縮、址産の向上、コストダウン、品質の安定性などに多
大の効果を有するものである。
As described above, according to the present invention, by magnetizing using an alloy whose basic composition consists of rare earth metals, iron, and boron, and which has a columnar structure in the macro structure of the ingot by the zone heating method, Improved crushability compared to conventional methods,
Not only is the time required for the crushing process significantly reduced;
The magnetic performance of the resulting permanent magnet has also been greatly improved, and in particular, the crushing efficiency is much better than that of a ball mill, and even when using a vibration mill, which is indispensable for mass production, sufficient fIi performance can be obtained for practical use. This has great effects in shortening process time, improving yield, reducing costs, and stabilizing quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のゾーン加熱法を示す図。 1・・・・・・帯状加熱装置 2・・・・・・柱状組識部 3・・・・・・未処理部 第2図は、鋳造時のインゴットの断面図。 1・・・・・・チル組識 2・・・・・・柱状組識 3・・・・・・等軸組識 fg3図は、本発明と比較例の粉砕時間と平均粒径の関
係図。 第4図は、本発明と比較例の粉砕時間と保磁力(1HO
)の関係図。 第5図は、振動ミルでの本発明と比較例の粉砕時間と保
磁力(iHo )の関係図である。 以  上 出願人 セイコーエプソン株式会社 /    z      6−   ノo    20
      Δ12  /ρ0  2er。 メ分紳13待関  口にYコ 第3図 /  2   夕  10 20   rO1w  2
ρ0料降時間〔し〕 第4図 ケ   10    Z117     rO/co 
  2a。 顔耕日侍間[y−4〕 第5図
FIG. 1 is a diagram showing the zone heating method of the present invention. 1... Strip heating device 2... Column structure portion 3... Untreated portion FIG. 2 is a sectional view of the ingot during casting. 1... Chill structure 2... Column structure 3... Equiaxed structure fg3 Figure is a diagram showing the relationship between grinding time and average particle size of the present invention and comparative example. . Figure 4 shows the grinding time and coercive force (1HO
) relationship diagram. FIG. 5 is a diagram showing the relationship between the grinding time and coercive force (iHo) of the present invention and a comparative example using a vibratory mill. Applicant: Seiko Epson Corporation/Z6-No.20
Δ12/ρ0 2er. Mebushin 13 Machi Seki Yko figure 3 at the mouth / 2 Evening 10 20 rO1w 2
ρ0 shipping time [shi] Figure 4 ke 10 Z117 rO/co
2a. Face Koichi Samurai [y-4] Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)基本組成が希土類金属、鉄およびボロンからなり
、ゾーン加熱法によりインゴットのマクロ組識を柱状組
識とした合金を使用して磁石化することを特徴とする希
土類永久磁石の製造方法。
(1) A method for producing a rare earth permanent magnet, characterized in that the basic composition is a rare earth metal, iron, and boron, and magnetization is performed using an alloy in which the macrostructure of the ingot is a columnar structure by a zone heating method.
(2)前記鉄の一部を、コバルトなどの鉄以外の遷移金
属群から選ばれた少なくとも1種以上の遷移金属群で置
換した特許請求の範囲第1項記載の希土類永久磁石の製
造方法。
(2) The method for producing a rare earth permanent magnet according to claim 1, wherein a part of the iron is replaced with at least one transition metal group selected from the group of transition metals other than iron, such as cobalt.
JP61105966A 1986-05-09 1986-05-09 Manufacture of rare earth permanent magnet Pending JPS62262403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61105966A JPS62262403A (en) 1986-05-09 1986-05-09 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61105966A JPS62262403A (en) 1986-05-09 1986-05-09 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPS62262403A true JPS62262403A (en) 1987-11-14

Family

ID=14421527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105966A Pending JPS62262403A (en) 1986-05-09 1986-05-09 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPS62262403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431747A (en) * 1992-02-21 1995-07-11 Tdk Corporation Master alloy for magnet production and a permanent alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431747A (en) * 1992-02-21 1995-07-11 Tdk Corporation Master alloy for magnet production and a permanent alloy

Similar Documents

Publication Publication Date Title
US7691323B2 (en) Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing
JPH0553853B2 (en)
US4536233A (en) Columnar crystal permanent magnet and method of preparation
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
CN109216007B (en) Preparation process of samarium cobalt magnet
JP2001355050A (en) R-t-b-c based rare earth magnet powder and bond magnet
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
JPS62262403A (en) Manufacture of rare earth permanent magnet
CN105913989A (en) High-remanence material and preparation method
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH0125819B2 (en)
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
CN105869817A (en) Lanthanide rare earth permanent magnetic powder and manufacturing method thereof
JPS6223060B2 (en)
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JPH0488603A (en) Method for horizontally casting magnetic alloy
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2002083728A (en) Method of manufacturing rare earth permanent magnet
JPH0696927A (en) Rare-earth sintered magnet
JPS5830107A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
CN111968850A (en) Method for preparing high-coercivity neodymium-iron-boron permanent magnet material by discharge plasma sintering
JPH05320832A (en) Alloy cast ingot for rare earth metal-iron permanent magnet and its production and permanent magnet