JPS6111447B2 - - Google Patents

Info

Publication number
JPS6111447B2
JPS6111447B2 JP56004878A JP487881A JPS6111447B2 JP S6111447 B2 JPS6111447 B2 JP S6111447B2 JP 56004878 A JP56004878 A JP 56004878A JP 487881 A JP487881 A JP 487881A JP S6111447 B2 JPS6111447 B2 JP S6111447B2
Authority
JP
Japan
Prior art keywords
alloy
crystals
columnar
crystal
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56004878A
Other languages
Japanese (ja)
Other versions
JPS57118604A (en
Inventor
Tsuyoshi Kitabayashi
Tatsuya Shimoda
Itaru Okonogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP56004878A priority Critical patent/JPS57118604A/en
Publication of JPS57118604A publication Critical patent/JPS57118604A/en
Publication of JPS6111447B2 publication Critical patent/JPS6111447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Sm2Co17型結晶を析出硬化型の希土
類コバルト磁石に関する。 本発明の目的は、鋳造時の合金インゴツトのマ
クロ組織を主に柱状晶組織とすることにより、永
久磁石の磁気性能を向上させることにある。 我々は、先に特願昭55―3226号において、Sm
―Co―Cu―Fe―Zr系合金の鋳造インゴツトのマ
クロ組織を柱状晶化することにより、同一組成で
あつても、等軸晶およびチル晶の合金に比べて磁
気性能が格段とよくなることを示したが、上記合
金にさらにS,Se,TeおよびBiのうちの少なく
とも一種からなる元素を加えると、柱状晶化がよ
り促進されることを見出し、本発明に至つたもの
である。 本発明は、鋳造インゴツトの塊をそのまま熱処
理し、粉砕、バインダーとの混合、磁場中成形、
バインダーを結合強化して磁石を製造する、樹
脂、メタル、またはセラミツク結合型磁石の高性
能化に極めて有効である。すなわち、粉砕前まで
の工程は鋳造磁石と変らず、鋳造インゴツトの結
晶状態をそのまま用いるので、前記したような高
性能な磁気特性が得られる柱状晶を、鋳造インゴ
ツトに微量添加した特殊元素Mの効果により、で
きるだけ多く生成させれば高性能の磁石を得るこ
とは可能である。 一般に溶融金属が、るつぼから鋳型に注入され
ると、鋳壁から凝固が開始する。これは、固体異
物質と接解したエングリオ(晶芽)は、接触しな
いで融液中に漂つているものに比べて、安定核生
成に対するエネルギー障壁が小さくなるからと説
明されている。鋳壁に生成した結晶は、隣の結晶
と相互に競争しつつ溶易中に成長する。第1図に
示すような、鋳塊最外層の結晶の競争成長領域を
チル層と呼んでいる。結晶は成長速度に異方性が
あるため、最大成長速度をもつ方向が熱流の方向
に平行であるような結晶が、隣接の結晶成長を抑
えて優先的に成長する。結晶の成長中、優先方位
が熱流に近い程長く生き残り、他の結晶は萄汰さ
れる結果、結晶の数は鋳塊内部に行くに従つて少
くなり、柱状晶帯が形成される。条件が整えば柱
状晶帯がぶつかり合い凝固は完了するが、通常第
1図に示すように、柱状晶の内部に等軸晶が生成
する。等軸晶の生因については、以前はよく知ら
れていなかつたが、現在では鋳壁とか冷却された
湯面で形成された結晶が遊離して自由晶となり、
この自由晶が等軸晶体を形成することが明らかに
なつている(A.Ohno,T.Motegi and H.Soda:
Trans.IBIJ.11(1971)18)。 Sm―Co―Cu―Fe―Zr―M系の6元合金を使
用した磁石は、析出硬化型、あるいは2相分離型
磁石と呼ばれる。これは、マトリツクス中に異相
を析出させ、磁気硬化させるためである。本系統
の磁石は、最初Sm―Co―Cu3元系合金で、
Sm2Co17結晶を用いた組成で磁石化されて以来、
今日広く発展してきたものである。 CoをFeと置換してゆくと、ある量まで飽和磁
化4xIsが増加することが知られている。4xIsが増
大する範囲でしかも、結晶が一軸易方性を示すの
は、Sm2(Co1xFex)17で示すと、Xが0〜0.6
の範囲である。この事実はCoにCuをある程度の
量を置換しても変らない。Sm2(CoCuFe)17に、
さらにZrを加えると、Zrの量は微量でもたいへん
磁気性能の向上がはかられる。すなわち、Zrを加
えると、Cuの量が少なくなつても、また鉄の量
が多くなつても、実用磁石として充分な保磁力
iHcが得られ高エネルギー積の磁石の作製が可能
になつた。 本合金では前述したように、チル晶帯、柱状晶
帯、そして等軸晶帯のうちで柱状晶帯が磁石にす
るのに最も優れていることが明らかになつた。ま
た、合金に特殊元素Mを微量添加して、インゴツ
ト中の柱状晶帯域を増大させたものの方が、同一
条件で鋳込んだインゴツトと比較して優れてい
る。今、例を樹脂結合型希土類コバルト磁石にと
つて説明する。この磁石は第2図に示すような方
法で磁石合金を磁石にする。製法を全く同じにし
て、等軸晶合金、柱状晶合金とチル晶合金を磁石
にしてみると、柱状晶合金が、飽和磁化4xIs、保
磁力iHc,bHcあるいはヒステリシスループの角
形性にと、全ての性能にわたつてすぐれているこ
とが分つた。逆に、等軸晶合金およびチル晶合金
が性能的に一番劣つている。また、同一条件で鋳
込んだもので、特殊元素Mを微量添加して柱状晶
帯域を増大させたインゴツトと、特殊元素Mを添
加しないインゴツトでは、特殊元素Mを添加して
柱状晶帯域を増大させたものの方が性能が優れて
いる。 柱状晶合金は、結晶が揃つているので磁石にし
た時の一軸方向への配向性がよくなる。また、該
合金は、熱処理によつてできる析出物が他のもの
に比べ均一になると考えられる。このためヒステ
リシスの角形性がよくなる。また析出物の結晶構
造、形態も等軸晶のものに比べiHcをよく高める
方向に形成されると考えられる。 このため、本合金を鋳壁近傍のチル晶体は柱状
チル晶にして、他の部分は柱状晶にする製造法が
よい磁石を得るために大切である。チル晶帯は合
金全体では量が少いので、製造上最も大切なこと
は、等軸晶帯を防ぎ柱状晶帯の比率を大きくする
ことである。このようなことから、本発明の合金
は鋳造インゴツトの等軸晶帯の形成を極力減らす
ために、S,Se,TeおよびBiのうちの少なくと
も一種からなる元素Mを添加したものである。 これらの元素を加えることにより、融体から結
晶化の核生成を促進させる酸化物や窒化物を包み
込んで不活性化させたり、これらの元素Mと融体
中の酸素や窒素とが結合して結晶生成の核となる
酸化物や窒化物の発生を少なくし、等軸晶の形成
を抑えることができる。 この場合、添加元素によりその効果は必ずしも
同一ではないが、柱状晶化を促進させる効果は同
じである。 また、柱状晶化の効果を得るのに最も適した組
成は、原子比を用いた組成が、 Sm(Co1uvwxCuuFevZrwMx)z (但し 0<u<0.2 0<v<0.5 0<w<0.1 0<x<0.1 6.5z9.0) で表わされる合金であることが確認された。 以下に各成分とその組成範囲の限定理由を述べ
る。 本合金系およびその組成域においては、Sm―
Co系が基本である。CuはSm2Co17型合金で保磁
力を得るために加えられるものであり、Cuを入
れることでiHcは向上する。しかし、4xIは低下す
る。このため、実用磁石材料としては、Sm
(Co1―uCuu)z中のu値は、0.2までが限度であ
る。Zの値が、5Z8.5の間にある時には、
Sm―Co合金はSmCo5型化合物とSm2Co17型化合
物に分離する。4xIsの値は、Sm2Co17の方が20%
高い。依つて、高4xIsを実現するためには、Zは
6.5以上が望ましい。一方Zが9.0以上になると、
iHcは著しく低下するとともに、Co―Fe相が多く
出て来てしまいヒステリシスループの角形性を悪
くするので好ましくない。 Zrは著しく合金の4xIsを低下させるので、0.1
以上入れると、Feを増やし、Cuを低減して4xIs
を高めた意味がなくなる。Mは、添加元素により
多少効果は異なるが、ある量以上になると、
4xIs,iHcが低下するので、その限界を考慮して
上限を0.1とした。尚、これらは複合添加の合計
量を示しており、その比率は特に規定しない。 バインダーは各種ポリマー、例えば、エポキ
シ、フエノール、ゴム、ポリエステルなど又は、
メタルバインダーで、融点が400℃以下の低融点
合金が好ましい。 以下実施例に従つて本発明を説明する。 実施例 1. 鋳造後Sm(Co0.6Cu0.07Fe0.3Zr0.02S0.01)
8.2の組成になるよう原料を調合し、全部で1Kg
の合金を、高周波炉を用いてArガス雰囲気中で
溶解し、第3図に示されるような鉄製の鋳型に湯
温1600℃で鋳込んだ。溶湯は主に側壁から冷却さ
れ、第1図に示すような組織形態をとつた。第1
図はインゴツトを中心で切断したときの組織を示
す。これらの部分で、チル層をA、柱状組織を
B、そして踏軸組織をCとする。合金インゴツト
のA,B,C部より、それぞれの鋳造塊を切り出
し、第2図に示す製法1に従い樹脂結合磁石を作
製した。溶体化処理は、1150℃で24時間、時効処
理は800℃で20時間アルゴン雰囲気中で行つた。
ボールミル法により平均粒度10μに粉砕された磁
石微粉末に、バインダーとしてのエポキシ樹脂
1.6wt%を混練した。この混練した混合物を16KG
磁場中でプレス成形し、成形体に適度な熱を加え
て樹脂を硬化させ(キユア処理)、磁石を完成さ
せた。結果を第1表に示す。表より分かるよう
に、B部の柱状晶帯より得た磁気性能は、C部の
等軸晶帯より得たものより、たいへん優れてい
る。A部のチル晶帯は、B部のものと比べて低い
とはいえ、C部よりも優れている。
The present invention relates to a precipitation-hardened rare earth cobalt magnet with Sm 2 Co 17 type crystals. An object of the present invention is to improve the magnetic performance of a permanent magnet by making the macrostructure of an alloy ingot during casting mainly a columnar crystal structure. In our patent application No. 55-3226, we previously proposed that Sm
- By changing the macrostructure of a cast ingot of a Co-Cu-Fe-Zr alloy into a columnar crystal, we have found that the magnetic performance is much better than that of equiaxed or chill crystal alloys, even if they have the same composition. However, it has been discovered that columnar crystallization is further promoted by adding an element consisting of at least one of S, Se, Te, and Bi to the above alloy, leading to the present invention. The present invention heat-treats a cast ingot lump as it is, crushes it, mixes it with a binder, molds it in a magnetic field,
It is extremely effective in improving the performance of resin, metal, or ceramic bonded magnets, which are produced by strengthening the binding of binders. In other words, the process before pulverization is the same as for cast magnets, and the crystalline state of the cast ingot is used as is, so the special element M added in a small amount to the cast ingot can be used to add the columnar crystals that provide the above-mentioned high-performance magnetic properties. Due to its effect, it is possible to obtain a high-performance magnet by producing as much as possible. Generally, when molten metal is poured from a crucible into a mold, solidification begins at the casting walls. This is explained by the fact that engrios (crystal buds) in contact with a solid foreign material have a smaller energy barrier to stable nucleation than those floating in the melt without contact. Crystals formed on the casting wall grow during melting while competing with neighboring crystals. The competitive growth region of crystals in the outermost layer of the ingot, as shown in FIG. 1, is called the chill layer. Since crystals have anisotropy in growth rate, crystals whose direction of maximum growth rate is parallel to the direction of heat flow grow preferentially, suppressing the growth of adjacent crystals. During crystal growth, the closer the preferred orientation is to the heat flow, the longer the crystals survive, and other crystals are weeded out.As a result, the number of crystals decreases toward the inside of the ingot, forming columnar crystal bands. When the conditions are right, the columnar crystal bands collide and solidification is completed, but as shown in FIG. 1, equiaxed crystals are usually formed inside the columnar crystals. The origin of equiaxed crystals was not well known in the past, but now crystals formed on the casting wall or on the cooled surface of the molten metal are liberated and become free crystals.
It has become clear that these free crystals form equiaxed crystals (A. Ohno, T. Motegi and H. Soda:
Trans.IBIJ.11 (1971) 18). Magnets using the Sm-Co-Cu-Fe-Zr-M six-element alloy are called precipitation hardening type or two-phase separation type magnets. This is because a different phase is precipitated in the matrix and magnetically hardened. This series of magnets was initially made of a ternary Sm-Co-Cu alloy.
Since it was magnetized with a composition using Sm 2 Co 17 crystals,
It has been widely developed today. It is known that when Co is replaced with Fe, the saturation magnetization 4xIs increases up to a certain amount. In the range where 4xIs increases, the crystal exhibits uniaxial easiness when X is 0 to 0.6, expressed as Sm 2 (Co 1 - x Fex) 17 .
is within the range of This fact does not change even if a certain amount of Cu is substituted for Co. Sm 2 (CoCuFe) 17 ,
Furthermore, by adding Zr, the magnetic performance can be greatly improved even if the amount of Zr is minute. In other words, if Zr is added, even if the amount of Cu is small or the amount of iron is large, the coercive force will be sufficient for a practical magnet.
iHc was obtained, making it possible to create a magnet with a high energy product. As mentioned above, in this alloy, it has become clear that among the chill crystal zone, columnar crystal zone, and equiaxed crystal zone, the columnar crystal zone is the most suitable for making into a magnet. Furthermore, an ingot in which a small amount of special element M is added to the alloy to increase the columnar crystal zone in the ingot is superior to an ingot cast under the same conditions. An example will now be explained using a resin bonded rare earth cobalt magnet. This magnet is made from a magnetic alloy using the method shown in FIG. If we make magnets using equiaxed crystal alloys, columnar crystal alloys, and chill crystal alloys using exactly the same manufacturing method, we find that the columnar crystal alloys have all the advantages of saturation magnetization 4xIs, coercive forces iHc, bHc, and squareness of the hysteresis loop. It was found that the performance was excellent across the board. On the contrary, equiaxed crystal alloys and chill crystal alloys are the worst in terms of performance. In addition, ingots cast under the same conditions but with a small amount of special element M added to increase the columnar crystal zone, and ingots without special element M added, the columnar crystal zone was increased by adding special element M. The performance is better. Since the crystals of columnar crystal alloys are aligned, they have good orientation in the uniaxial direction when made into a magnet. In addition, it is thought that in this alloy, precipitates formed by heat treatment are more uniform than in other alloys. This improves the squareness of the hysteresis. It is also believed that the crystal structure and morphology of the precipitates are formed in a direction that increases iHc better than that of equiaxed crystals. Therefore, in order to obtain a good magnet, it is important to manufacture this alloy in such a way that the chill crystals near the casting wall are made into columnar chill crystals, and the other parts are made into columnar crystals. Since the amount of chill crystal bands is small in the overall alloy, the most important thing in manufacturing is to prevent equiaxed crystal bands and increase the ratio of columnar crystal bands. For this reason, the alloy of the present invention contains an element M consisting of at least one of S, Se, Te, and Bi in order to minimize the formation of equiaxed crystal bands in cast ingots. By adding these elements, oxides and nitrides that promote crystallization nucleation from the melt can be wrapped up and inactivated, and these elements M can be combined with oxygen and nitrogen in the melt. It is possible to reduce the generation of oxides and nitrides that serve as nuclei for crystal formation, and to suppress the formation of equiaxed crystals. In this case, although the effect is not necessarily the same depending on the added element, the effect of promoting columnar crystallization is the same. In addition, the most suitable composition for obtaining the effect of columnar crystallization is the composition using the atomic ratio: Sm(Co 1uvwx Cu u Fe v Zr w M x )z (However, 0 <u<0.2 0<v<0.5 0<w<0.1 0<x<0.1 6.5z9.0). Each component and the reason for limiting its composition range will be described below. In this alloy system and its composition range, Sm-
Co type is the basic type. Cu is added to the Sm 2 Co 17 type alloy to obtain coercive force, and adding Cu improves iHc. However, 4xI decreases. Therefore, as a practical magnetic material, Sm
The u value in (Co 1 - uCuu)z is limited to 0.2. When the value of Z is between 5Z8.5,
The Sm-Co alloy is separated into SmCo 5 type compound and Sm 2 Co 17 type compound. The value of 4xIs is 20% higher for Sm 2 Co 17
expensive. Therefore, in order to achieve high 4xIs, Z is
6.5 or higher is desirable. On the other hand, when Z becomes 9.0 or more,
This is not preferable because iHc is significantly lowered and a large amount of Co--Fe phase comes out, which impairs the squareness of the hysteresis loop. Since Zr significantly reduces the 4xIs of the alloy, 0.1
If more than 4xIs is added, Fe is increased and Cu is decreased.
There is no point in increasing the value. The effect of M varies somewhat depending on the added element, but when it exceeds a certain amount,
Since 4xIs and iHc decrease, the upper limit was set at 0.1 in consideration of this limit. Note that these indicate the total amount of composite addition, and the ratio is not particularly specified. The binder can be a variety of polymers, such as epoxy, phenol, rubber, polyester, etc.
The metal binder is preferably a low melting point alloy with a melting point of 400°C or less. The present invention will be explained below with reference to Examples. Example 1. Sm after casting (Co0.6Cu0.07Fe0.3Zr0.02S0.01)
Mix raw materials to have the composition of 8.2, total 1Kg
The alloy was melted in an Ar gas atmosphere using a high frequency furnace and cast into an iron mold as shown in Figure 3 at a hot water temperature of 1600°C. The molten metal was cooled mainly from the side walls, and had the structure shown in FIG. 1st
The figure shows the structure when the ingot is cut at the center. In these parts, A is the chill layer, B is the columnar structure, and C is the tread axis structure. Cast ingots were cut from parts A, B, and C of the alloy ingot, and resin-bonded magnets were produced according to manufacturing method 1 shown in FIG. Solution treatment was performed at 1150°C for 24 hours, and aging treatment was performed at 800°C for 20 hours in an argon atmosphere.
Epoxy resin as a binder is added to fine magnetic powder that has been ground to an average particle size of 10μ using a ball mill method.
1.6wt% was kneaded. 16kg of this kneaded mixture
The magnet was completed by press molding in a magnetic field and applying appropriate heat to the molded body to harden the resin (cure treatment). The results are shown in Table 1. As can be seen from the table, the magnetic performance obtained from the columnar crystal zone in section B is much better than that obtained from the equiaxed crystal zone in section C. Although the chill crystal band of part A is lower than that of part B, it is superior to part C.

【表】 ただし、SQとはヒステリシスループの角形性
を示す指標で、 SQ=HK/iHc で与えられる。HKは、4xI―H減磁曲線上で
0.9Brで与える磁場の大きさである。これらの結
果より、B部の柱状晶の部分が性能が優れている
ことが明らかになつた。A部のチル晶帯は、鋳壁
のごく近傍のみに生成するもので、インゴツト全
体ではごくわずかであるから、インゴツト製造上
最も大切なことは、いかにして等軸晶の生成を抑
え、柱状晶を発達させるかである。尚本実施例に
用いたA部には、A部の発生状況からして、ある
程度の柱状晶Bの部分が入つていると思われる。 実施例 2. 実施例1と同様な方法で、第2表に示されてい
る組成の合金から樹脂結合磁石を製造した。但し
溶体化処理は1130〜1180℃の間で最も適切な温度
で20時間行つた。
[Table] However, SQ is an index indicating the squareness of the hysteresis loop, and is given by SQ = HK/iHc. HK is on the 4xI-H demagnetization curve
This is the magnitude of the magnetic field given by 0.9Br. From these results, it became clear that the columnar crystal portion of part B had excellent performance. The chill crystal zone in part A is generated only in the vicinity of the casting wall, and is very small in the whole ingot, so the most important thing in ingot production is how to suppress the formation of equiaxed crystals and form columnar crystals. The key is to develop crystals. Incidentally, it seems that part A used in this example contains a certain amount of columnar crystal B, judging from the occurrence of part A. Example 2. Resin-bonded magnets were manufactured from alloys having the compositions shown in Table 2 in the same manner as in Example 1. However, the solution treatment was carried out at the most appropriate temperature between 1130 and 1180°C for 20 hours.

【表】 本実施例は、B,C部のインゴツトに対して行
なつた。結果を第4図に示す。Feの量が増加し
ていつでも、柱状晶帯Bの方が良い磁気性能が得
られる。これにより、ある程度Feの量を高めて
も、ある程度のiHcが得られることが明らかにな
つた。実施例 3. 実施例2と全く同じ方法で、第3表の組成の合
金から樹脂結合磁石を製造した。結果を第5図に
示す。Sm(CoCuFeZrM)17型の合金では、Cuの
量が低くなるとiHcは低下するが柱状晶のもので
は、等軸晶のものに比べて、低Cu組成までiHcは
高い値が得られることが分かる。また、角形性も
柱状晶部の方が優れている。
[Table] This example was carried out on ingots of sections B and C. The results are shown in Figure 4. Whenever the amount of Fe increases, better magnetic performance is obtained in columnar zone B. This revealed that even if the amount of Fe is increased to a certain extent, a certain level of iHc can be obtained. Example 3. In exactly the same manner as in Example 2, resin-bonded magnets were manufactured from alloys having the compositions shown in Table 3. The results are shown in Figure 5. In Sm(CoCuFeZrM) type 17 alloy, the iHc decreases as the amount of Cu decreases, but it can be seen that in the case of columnar crystal, a higher value of iHc can be obtained up to a low Cu composition compared to that of equiaxed crystal. . In addition, the columnar crystal portion has better squareness.

【表】 実施例 4. 実施例2と全く同じ方法で、第4表の組成の合
金から樹脂結合磁石を製造した。合金鋳造時の湯
温は1650℃である。鋳造インゴツトは第1図に示
すような断面マクロ組成になつている。Bの柱状
組織の割合は、合金No.1では45〜60%、合金No.2
〜4では75〜85%、合金No.5〜6では60〜65%で
あつた。柱状組織の割合はインゴツト断面を顕微
鏡で観察し、メツシユ法で推定した。
[Table] Example 4. In exactly the same manner as in Example 2, resin-bonded magnets were manufactured from alloys having the compositions shown in Table 4. The temperature of the hot water during alloy casting is 1650℃. The cast ingot has a cross-sectional macroscopic composition as shown in FIG. The proportion of columnar structure in B is 45 to 60% in alloy No. 1, and in alloy No. 2.
-4, it was 75-85%, and alloy No.5-6, it was 60-65%. The proportion of columnar structure was estimated by observing the cross section of the ingot under a microscope and using the mesh method.

【表】 結果を第5表に示す。第5表から分かる通り、
柱状組織が最も多いものが、最も磁気性能が優れ
ている。このように、合金組成に、S,Se,
Te,Biの少なくとも一種からなる元素Mを微量
添加して、柱状組織をできるだけ促進させるよう
にすることにより、磁気性能の向上がはかれてい
ることが分かる。
[Table] The results are shown in Table 5. As can be seen from Table 5,
The one with the most columnar structures has the best magnetic performance. In this way, the alloy composition includes S, Se,
It can be seen that the magnetic performance is improved by adding a trace amount of the element M consisting of at least one of Te and Bi to promote the columnar structure as much as possible.

【表】 実施例 5. 第6表に示す組成の合金を、実施例2と全く同
じ方法で樹脂結合磁石を製造した。結果を第7表
に示す。
[Table] Example 5. A resin-bonded magnet was manufactured using the alloy having the composition shown in Table 6 in exactly the same manner as in Example 2. The results are shown in Table 7.

【表】【table】

【表】 上記のごとく、Zの値を変化させても充分高い
磁気性能を有する磁石を得ることができた。 このように、Sm―Co―Cu―Fe―Zr合金に、
S,Se,Te,Biの少なくとも一種からなる元素
を微量添加することにより、合金インゴツトの柱
状晶化を一層促進させ、樹脂、メタル、またはセ
ラミツク結合のSm2Co17型磁石の高性能化がなさ
れた。本発明の高性能磁石は、時計用ステツプモ
ータ、マイクロスピーカー、コアレスモーター、
磁気センサーなど広く工業的用途を持つものであ
る。
[Table] As shown above, it was possible to obtain a magnet with sufficiently high magnetic performance even when the value of Z was changed. In this way, in Sm-Co-Cu-Fe-Zr alloy,
By adding a small amount of an element consisting of at least one of S, Se, Te, and Bi, the columnar crystallization of the alloy ingot is further promoted, and the performance of Sm 2 Co 17 type magnets bonded with resin, metal, or ceramic is improved. It was done. The high performance magnet of the present invention can be used in step motors for watches, micro speakers, coreless motors,
It has a wide range of industrial applications such as magnetic sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋳型に鋳込んだインゴツトの中心を
縦方向に切断したときの断面である。A,B,C
はそれぞれチル層、柱状層、そして等軸層を示
す。Dは金型の断面である。第2図は、樹脂結合
型磁石の製造工程を示す。第3図は、鉄製鋳型を
示す。肉厚はすべて15mmである。長さの単位はmm
である。第4図は、Sm(Co0.9―
VCu0.007FevZr0.02S0.01)8.2の組成において、
Vを変化させた時の樹脂結合磁石の磁気性能を示
す。第5図は、Sm(Co0.75―
VCuFe0.22Zr0.02S0.01)8.3の組成において、u
を変化させた時の樹脂結合磁石の磁気性能を示
す。
FIG. 1 is a cross section of an ingot cast into a mold, taken along the center of the mold. A, B, C
represent the chilled layer, columnar layer, and equiaxed layer, respectively. D is a cross section of the mold. FIG. 2 shows the manufacturing process of the resin-bonded magnet. Figure 3 shows an iron mold. All walls are 15mm thick. Unit of length is mm
It is. Figure 4 shows Sm(Co0.9−
In the composition of VCu0.007FevZr0.02S0.01) 8.2,
The magnetic performance of the resin bonded magnet is shown when V is changed. Figure 5 shows Sm(Co0.75-
In the composition of VCuFe0.22Zr0.02S0.01)8.3, u
This figure shows the magnetic performance of resin-bonded magnets when changing .

Claims (1)

【特許請求の範囲】 1 Sm2Co17型結晶を主体とする合金の粉末にバ
インダーを混練して圧粉成形してなる希土類コバ
ルト永久磁石において、前記合金として原子を用
いた組成が、 Sm(Co1uvwxCuuFevZrwMx)z (但し 0<u<0.2 0<v<0.5 0<w<0.1 0<x<0.1 6.5z9.0 Mは、S,Se,TeおよびBiのうちの少な
くとも一種からなる元素を示す。) で表わされ、かつ鋳造時のインゴツトのマクロ組
織が主に柱状晶組織である合金を使用したことを
特徴とする希土類コバルト永久磁石。
[Claims] 1. A rare earth cobalt permanent magnet made by kneading a binder into powder of an alloy mainly composed of Sm 2 Co 17 type crystals and compacting the resultant powder, wherein the composition using atoms as the alloy is Sm ( Co 1uvwx Cu u Fe v Zr w Mx)z (However, 0<u<0.2 0<v<0.5 0<w<0.1 0<x<0.1 6.5z9.0 M is S, A rare earth cobalt permanent alloy, which is represented by an element consisting of at least one of Se, Te, and Bi, and is characterized by using an alloy in which the macrostructure of the ingot at the time of casting is mainly a columnar crystal structure. magnet.
JP56004878A 1981-01-16 1981-01-16 Rare-earth metal-cobalt permanent magnet Granted JPS57118604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56004878A JPS57118604A (en) 1981-01-16 1981-01-16 Rare-earth metal-cobalt permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56004878A JPS57118604A (en) 1981-01-16 1981-01-16 Rare-earth metal-cobalt permanent magnet

Publications (2)

Publication Number Publication Date
JPS57118604A JPS57118604A (en) 1982-07-23
JPS6111447B2 true JPS6111447B2 (en) 1986-04-03

Family

ID=11595921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56004878A Granted JPS57118604A (en) 1981-01-16 1981-01-16 Rare-earth metal-cobalt permanent magnet

Country Status (1)

Country Link
JP (1) JPS57118604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268884A (en) * 1987-04-24 1988-11-07 永井 五一郎 Card key device for automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183517A (en) * 1988-12-08 1993-02-02 Fuji Electrochemical Co., Ltd. Permanent magnet composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268884A (en) * 1987-04-24 1988-11-07 永井 五一郎 Card key device for automobile

Also Published As

Publication number Publication date
JPS57118604A (en) 1982-07-23

Similar Documents

Publication Publication Date Title
US4536233A (en) Columnar crystal permanent magnet and method of preparation
US2578407A (en) Method of making cast alnico magnets
JPS6043900B2 (en) permanent magnet material
JPS6111447B2 (en)
JPH031802B2 (en)
JPH0125819B2 (en)
JPH0147543B2 (en)
JPS648447B2 (en)
JPH031803B2 (en)
JPH0147542B2 (en)
JPS648451B2 (en)
JPS6111304B2 (en)
JPH0152460B2 (en)
JPH0135056B2 (en)
JPH031801B2 (en)
JPH0230369B2 (en)
JPS648455B2 (en)
JPS648458B2 (en)
JPS648454B2 (en)
JPS648459B2 (en)
JPS648460B2 (en)
JPS648452B2 (en)
JPS648445B2 (en)
JPS6223059B2 (en)
JPS648448B2 (en)