JPS6223049A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6223049A
JPS6223049A JP16321285A JP16321285A JPS6223049A JP S6223049 A JPS6223049 A JP S6223049A JP 16321285 A JP16321285 A JP 16321285A JP 16321285 A JP16321285 A JP 16321285A JP S6223049 A JPS6223049 A JP S6223049A
Authority
JP
Japan
Prior art keywords
layer
charge generation
generation layer
photoreceptor
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16321285A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakato
中藤 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16321285A priority Critical patent/JPS6223049A/en
Publication of JPS6223049A publication Critical patent/JPS6223049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sensitivity and to reduce fluctuation of characteristics during repeated uses by laminating an electrostatic charge generating layer so that a Vickers hardness, a surface roughness, and a glass transition point thereof may be in a specified range respectively. CONSTITUTION:The photosensitive body is obtained by successively laminating a charge transfer layer 2 made of an amorphous Se-Te alloy and the charge generating layer 4 made of an amorphous Se-Te-As alloy on a conductive substrate 1, resulting in forming an interlayer 3 made of a mixture of both layers between them. At that time, the layer 4 is formed so as to have a Vickers hardness of 50-60kg/mm<3> measured on the side of its surface, a surface roughness of 0.01-0.03mum in terms of an average center line roughness, and a glass transition point of 55-75 deg.C, thus permitting the obtained electrophotographic sensitive body to be high in sensitivity and small in fluctuation of the electrophotographic characteristics at the time of repeated uses.

Description

【発明の詳細な説明】 〔発明の楓する技術分野〕 本発明は、導電性基体上に電荷輸送層、電荷発生層を順
次積層してなるセレン系機能分離型電子写真用感光体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a selenium-based functionally separated electrophotographic photoreceptor comprising a charge transport layer and a charge generation layer successively laminated on a conductive substrate.

〔従来技術とその問題点〕[Prior art and its problems]

電子写真用感光体(以下単に感光体とも称す)として用
いられる非晶質セレン系光導電性材料としては、純セレ
ン、セレン・テルル合金のほかにセレン・砒素合金も用
いられている。AallBθ3からなる感光層を有する
感光体は、耐結晶化、耐印写性能に優れた感光体として
知られているが、光疲労による帯電電位の低下が極めて
大きく、その使用にあたっては除電光波長の限定、前除
電工程の設置等の複雑さが伴い、このため感光体の小形
化、例えば円筒状感光体の円筒の直径を小さくすること
の妨げとなっている。また使用元素の一つである砒素が
高価であり、さらに)、82B6Bのガラス転移点が高
いという長所のゆえにかえって製造上の設備が複雑で高
価になるので原価低減が困難である。
As an amorphous selenium-based photoconductive material used as an electrophotographic photoreceptor (hereinafter simply referred to as a photoreceptor), in addition to pure selenium and a selenium-tellurium alloy, a selenium-arsenic alloy is also used. A photoconductor having a photoconductor layer made of AallBθ3 is known as a photoconductor with excellent crystallization resistance and printing resistance. This method is accompanied by complications such as limitation and installation of a pre-discharge process, which hinders miniaturization of the photoreceptor, for example, reduction in the diameter of the cylinder of a cylindrical photoreceptor. Furthermore, arsenic, which is one of the elements used, is expensive, and the advantage of 82B6B in that it has a high glass transition point makes manufacturing equipment complicated and expensive, making it difficult to reduce costs.

そこで特開昭55−134856号公報に見られるよう
に、導電性基体上にSeもしくはBe −Te合金から
なる電荷輸送層、その上にSe −Aθ合金(As:3
0〜42重量%)からなる電荷発生層を積層した機能分
離型感光体によシ砒素消費量を少なくし、耐光疲労性、
耐久性を向上させる試みがなされている。しかしこのよ
うな構成の感光体では、電曹輸送層と電荷発生層の熱膨
張係数の差があるため、真空蒸着による積層の際内部応
力のため、電荷発生層にひび割れが生ずることがしばし
ば起こり、このひび割れはコピー上にも現れ、画像品質
を著しく損ない、感光体を実用に耐え得ないものとする
Therefore, as seen in JP-A-55-134856, a charge transport layer made of Se or Be-Te alloy is placed on a conductive substrate, and a Se-Aθ alloy (As:3
The functionally separated photoreceptor is laminated with a charge generation layer consisting of 0 to 42% by weight), which reduces arsenic consumption and improves light fatigue resistance.
Attempts have been made to improve durability. However, in a photoreceptor with such a structure, there is a difference in thermal expansion coefficient between the electrolyte transport layer and the charge generation layer, so cracks often occur in the charge generation layer due to internal stress during lamination by vacuum evaporation. , these cracks also appear on copies, significantly impairing image quality and rendering the photoreceptor unusable for practical use.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の欠点を除去し、高光感度で繰り返し使
用時の特性変動が少なく、かつ耐結晶化および耐印写性
能に優れた電子写真用感光体を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks, and to provide an electrophotographic photoreceptor that has high photosensitivity, less variation in characteristics during repeated use, and excellent crystallization resistance and printing resistance.

〔発明の要点〕[Key points of the invention]

本発明の目的は、導電性基体上に非晶質セレ/・テルル
合金からなる電荷輸送層と非晶質セレン・テルル・砒素
合金からなる電荷発生層とを屓次積層し、かつ電荷輸送
層と電荷発生層との間に両層の組成の混じった中間層を
有してなる感光体において、電荷発生層の表面側から測
定したビッカース硬度を50〜65Kf/−とし、電荷
発生層の表面粗さを中心線平均粗さ(Ra)で0.01
〜0.03μm とし、電荷発生層のガラス転移点を5
5〜′75℃とすることによって達成される。
An object of the present invention is to sequentially laminate a charge transport layer made of an amorphous selenium/tellurium alloy and a charge generation layer made of an amorphous selenium/tellurium/arsenic alloy on a conductive substrate; In a photoreceptor having an intermediate layer between the charge generating layer and the charge generating layer, the Vickers hardness measured from the surface side of the charge generating layer is 50 to 65 Kf/-, and the surface of the charge generating layer is Roughness is center line average roughness (Ra) of 0.01
~0.03μm, and the glass transition point of the charge generation layer is 5.
This is achieved by keeping the temperature between 5 and 75°C.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

実施例1〜9゜ 電荷輸送層用蒸着材料として、テルル5.5重量%、残
部セレンからなるセレン・テルル合金900gを5US
430製のボートに充填し、また電荷発生層用蒸着材料
として、各側に対応してそれぞれ第1表に示す組成のセ
レン・テルル・砒素合金を石英製ボートに60g充填し
て真空蒸着槽内にセットする。次に表面温度を約65℃
に制御した支持軸に外径90情、長さ320fiのアル
ミニウム円筒を装着し、支持軸を10 rpmで回転さ
せる。蒸着槽を閉じ、真空排気し、真空度が5 X 1
0 Torr IIC達した時点で電荷輸送層蒸着用ボ
ートのヒータのスイッチを入れ、このボートの温度を3
25℃にまで約25分で上昇させ、この温度に保持して
セレン・テルル合金を蒸発させる。900g全量の蒸発
が終る時点はボート温度が上昇することによって判シ、
それに要する325℃に保持する時間は23分である。
Examples 1 to 9 As a vapor deposition material for a charge transport layer, 900 g of a selenium-tellurium alloy consisting of 5.5% by weight tellurium and the balance selenium was used for 5 US
A quartz boat was filled with 60 g of a selenium-tellurium-arsenic alloy having the composition shown in Table 1 for each side as a vapor deposition material for the charge generation layer, and then placed in a vacuum evaporation tank. Set to . Next, set the surface temperature to about 65℃.
An aluminum cylinder with an outer diameter of 90 mm and a length of 320 mm was attached to the support shaft, which was controlled at 10 rpm, and the support shaft was rotated at 10 rpm. Close the deposition tank and evacuate it to a vacuum level of 5 x 1.
When the temperature reaches 0 Torr IIC, turn on the heater of the boat for charge transport layer deposition and raise the temperature of this boat to 3
The temperature is raised to 25° C. in about 25 minutes and maintained at this temperature to evaporate the selenium-tellurium alloy. The time when the entire 900g has finished evaporating is determined by the increase in boat temperature.
The time required to maintain the temperature at 325°C is 23 minutes.

蒸発終了の2分後にボートのヒータのスイッチを切る。Two minutes after evaporation is complete, turn off the boat heater.

また、上記325℃での保持時間が14分になった時点
で電荷発生層蒸着用ボートのヒータのスイッチを入れ、
このボートの温度を各側に対応して第1表に示すように
制御し、充填1160gの60%を蒸発させる保持時間
終了後ボートのヒータのスイッチを切シ、さらに2分後
に真空を破シ、10分後に真空槽を開けて感光体を取シ
だす。このようにして、第1図に概念的断面図として示
すような導電性基体1の上に形成されるセレン・テルル
合金からなる電荷輸送層2とセレン・テルル・砒素合金
からなる電荷発生層4との間に両層の材料の混じった中
間層3を有する感光体を9本作製した。本実施例の方法
で電荷輸送層のみを蒸着したときの膜厚は56〜57μ
mであり、また電荷発生層のみを蒸着したときの膜厚は
約6μmであるが、前述の通り実際の本実施例の感光体
では両層は一部重複しており、電荷発生層のみのときの
膜厚の25〜75チは電荷輸送層と重複して中間層とな
っている。
Furthermore, when the holding time at 325° C. reached 14 minutes, the heater of the charge generation layer deposition boat was turned on.
The temperature of this boat was controlled as shown in Table 1 for each side, and after the holding time to evaporate 60% of the 1160 g charge, the boat heater was switched off and the vacuum was broken after a further 2 minutes. After 10 minutes, open the vacuum chamber and take out the photoreceptor. In this way, a charge transport layer 2 made of a selenium-tellurium alloy and a charge generation layer 4 made of a selenium-tellurium-arsenic alloy are formed on a conductive substrate 1 as shown in a conceptual cross-sectional view in FIG. Nine photoreceptors were manufactured, each having an intermediate layer 3 in which the materials of both layers were mixed between the two layers. The film thickness when only the charge transport layer was deposited using the method of this example was 56 to 57 μm.
m, and the film thickness when only the charge generation layer is deposited is about 6 μm, but as mentioned above, in the actual photoreceptor of this example, both layers partially overlap, and the thickness of only the charge generation layer is approximately 6 μm. The film thickness of 25 to 75 inches overlaps with the charge transport layer and forms an intermediate layer.

第1表 比較例1 電荷発生層用蒸着材料として、砒素を含有しない、テル
ル15重量%、残部セレンからなるセレン・テルル合金
を使用する以外はすべて実施例1に準じて感光体を作製
した。
Table 1 Comparative Example 1 A photoreceptor was prepared in the same manner as in Example 1, except that a selenium-tellurium alloy containing 15% by weight of tellurium and the balance selenium, which did not contain arsenic, was used as the vapor deposition material for the charge generation layer.

比較例2 電荷発生層用蒸着材料として、砒素を含有しない、テル
ル20重量%、残部セレンからなるセレン・テルル合金
を使用する以外はすべて実施例1に準じて感光体を作製
した。
Comparative Example 2 A photoreceptor was produced in the same manner as in Example 1, except that a selenium-tellurium alloy containing 20% by weight of tellurium and the remainder selenium, which did not contain arsenic, was used as the vapor deposition material for the charge generation layer.

これら11本の感光体の感光層の膜厚および電子写真特
性を第2表に示す。こ\で帯電電位は暗所で+6.OK
V  のコロナ放電によシ帯電された表面電位であり、
暗′tc衰率はこの帯電電位の暗所においての1秒後の
保持比率を示し、半減衰露光輩は色温度28bOKのハ
ロゲンランプによシ3ルックスの照度で露光し九とき、
1OOOvの帯電電位初期値が500vに減衰するに要
する値であり、残留電位はlOルックス・秒の露光を行
なった後の値を示す。
Table 2 shows the film thickness and electrophotographic properties of the photosensitive layer of these 11 photoreceptors. Here, the charging potential is +6 in the dark. OK
is the surface potential charged by corona discharge of V,
The dark decay rate indicates the retention ratio of this charged potential after 1 second in a dark place, and the half-decay exposure type is exposed to a halogen lamp with a color temperature of 28 b OK at an illuminance of 3 lux.
This is the value required for the initial charging potential value of 100v to attenuate to 500v, and the residual potential is the value after exposure of 10 lux·sec.

第2表 実施例、比較例すべての感光体について、その初期の電
子写真特性は良好であることが判る。
It can be seen that all the photoreceptors in Examples and Comparative Examples in Table 2 had good initial electrophotographic characteristics.

次に、連続して繰り返し複写を行ったときの感光体の特
性変動をみるために1これらの感光体について繰シ返し
複写試験を行った。
Next, a repeated copying test was conducted on each of these photoreceptors in order to examine changes in the characteristics of the photoreceptors when copying was performed repeatedly.

繰り返し複写試験を行うために、複写スピードがA4用
紙に対し30枚/分の市販のカールソン方式の乾式普通
紙複写機を、これから現像器とクリーニング用ブレード
を除去し、現像器の位置に表面電位計のノローフ?設置
すると同時に、定着ヒータ用電源のスイッチが入らない
ように改造した。
In order to conduct a repeated copying test, we used a commercially available Carlson type dry plain paper copying machine with a copying speed of 30 sheets/min for A4 paper, removed the developing unit and cleaning blade, and placed a surface potential at the position of the developing unit. Total Norov? At the same time as installing it, I modified it so that the fuser heater power switch would not turn on.

次にアンサンプル・チャートを準備する。アンサンプル
・チャートとはA3用紙の大きさの原稿を長さ方向に3
等分し、それぞれの部分の゛光学I鍮度が1)0 = 
1.3 、 I)0 = 0.3 、 Do = 0.
07となるようにしたチャートである。感光体試料を複
写機内に装着し、まず原稿台カバーを開けた状態で帯電
位が750〜t90VKなるように調整する。次にアン
サンプル・チャートを置き、原稿台カバーを閉じた状態
でDo = 0.3の部分の電位を250〜290vに
なるように調整する。調整後、300回の繰シ返しの連
続運転を行い、これらの三つの部分の電位の変化を記録
する。各感光体についてこの試験を行ない、1回目と3
00回目のDo = 0.3の部分’kb−。
Next, prepare an sample chart. An ensample chart is an A3 paper-sized manuscript that is sized 3 times in the length direction.
Divide into equal parts, and each part's optical I Brass degree is 1) 0 =
1.3, I)0 = 0.3, Do = 0.
07. A photoreceptor sample is installed in a copying machine, and the charged potential is first adjusted to 750 to t90VK with the document table cover open. Next, place the sample chart and adjust the potential of the portion Do = 0.3 to 250 to 290 V with the document table cover closed. After adjustment, continuous operation is performed 300 times, and changes in potential of these three parts are recorded. Perform this test for each photoreceptor, and
Part 'kb-' of 00th Do = 0.3.

すなわち暗部電位の変化量(ΔV8)と、300回目の
Do = 0.07の部分の電位すなわち白紙部電位(
VW)を測だした結果を第3表に示す。
In other words, the amount of change in the dark area potential (ΔV8) and the potential at the 300th Do = 0.07 portion, that is, the blank area potential (
Table 3 shows the results of measuring VW).

第3表 fff部電位の変化量(ΔVa)の負号は300回目の
電位が1回目の電位より小さくなっていることを表す。
The negative sign of the amount of change (ΔVa) in the potential at section fff in Table 3 indicates that the potential at the 300th time is smaller than the potential at the first time.

すべての感光体は充分実用可能な値となっている。All photoreceptors have values that can be used for practical purposes.

この暗部電位は感光体の帯電電位に対応するものであり
、上述の結果は感光体を繰り返し使用してもその帯電性
能がほとんど変動せず劣化しないことを示している。ま
た、白紙部電位(’Vw )はどの感光体でもはじめ若
干増加するが、100回前後で飽和し、以降300回ま
で増加はみられず実用上問題ない。この白紙部電位は感
光体の残留電位に対応し、感光体を繰り返し使用しても
問題となるような残留電位の上昇はみられないことを示
している。
This dark area potential corresponds to the charging potential of the photoreceptor, and the above results show that even if the photoreceptor is used repeatedly, its charging performance hardly changes and does not deteriorate. In addition, the potential at the blank area ('Vw) increases slightly at first for all photoreceptors, but it becomes saturated after about 100 cycles, and after that, no increase is observed until 300 cycles, and there is no problem in practical use. This blank area potential corresponds to the residual potential of the photoreceptor, and indicates that no problematic increase in residual potential is observed even when the photoreceptor is used repeatedly.

次に1これら11本の感光体蒸着時に直径30+mのア
ルミニウム円盤に同時に蒸着したモニターピースについ
て、蒸着約1ケ月後にビッカース硬9Hvを測定した。
Next, the Vickers hardness of 9 Hv was measured for the monitor pieces that were simultaneously deposited on an aluminum disk having a diameter of 30+ m during the deposition of these 11 photoreceptors, about one month after the deposition.

測定装置ば■明石製作所製型式MVK−Kを用い、荷重
10g1周囲温[22土1℃の条件で各5点測足した。
Using a measuring device (Model MVK-K manufactured by Akashi Seisakusho), measurements were taken at 5 points each under the conditions of a load of 10 g, an ambient temperature of 22°C, and 1°C.

その平均値を第4表に示す。The average values are shown in Table 4.

また、同様に感光体蒸着時にアルミニウム円盤上にシャ
ッターを用いて電荷発生層のみを蒸着したモニターピー
スより剥離した蒸着物質のガラス転移点Tgを測定した
。測定装置は理学電機■製の標準型走査型示差熱分析装
置を用い昇温レイトは10℃/分で行った。その測定結
果を同じく牙4表に示す。
Similarly, the glass transition point Tg of the vapor-deposited material was measured, which was peeled off from a monitor piece on which only the charge generation layer was vapor-deposited using a shutter on an aluminum disk during photoreceptor vapor deposition. The measuring device was a standard scanning type differential thermal analyzer manufactured by Rigaku Denki ■, and the heating rate was 10° C./min. The measurement results are also shown in Table 4.

また、これら11本の感光体の蒸着層表面の粗さを測定
した。ランクテーラーボブソン社のタリサー7型表面粗
さ針を用い、蒸着約1ケ月後の感光体について、r工s
 B 0601に規尾する中心線平均粗さRaを周囲温
度22±2℃で測定した。各3点測足の平均値を同じく
第4表に示す。
Further, the roughness of the surface of the vapor deposited layer of these 11 photoreceptors was measured. After about one month of vapor deposition, the photoconductor was processed using a Talcer 7 type surface roughness needle manufactured by Rank Taylor Bobson.
The centerline average roughness Ra according to B 0601 was measured at an ambient temperature of 22±2°C. The average value of each three-point measurement is also shown in Table 4.

第4表 次に耐結晶化性能をみるために加速寿命試験を行った。Table 4 Next, an accelerated life test was conducted to examine crystallization resistance.

これら11本の感光体を、複写スピードがA4の用紙で
30枚/分の市販のカールソン方式の乾式普通紙複写機
にjIi次実装し、A3用紙の大きさの原稿を1000
枚実複写し、感光体に実使用の負荷を与えた後、温度5
0土1℃、相対湿度8〜20%の雰囲気中に放置し、結
晶化の認められはじめる時間を調べ寿命とした。その結
果を第5表に示す。
These 11 photoreceptors were installed in a commercially available Carlson type dry-type plain paper copying machine with a copying speed of 30 sheets/minute of A4 paper, and 1000 A3 paper-sized originals were printed.
After copying a sheet and applying a load of actual use to the photoreceptor, the temperature
The product was left in an atmosphere of 0°C and 1°C and a relative humidity of 8 to 20%, and the time it took for crystallization to begin to be observed was determined as the lifespan. The results are shown in Table 5.

第5表 第4表および第5表より明らかなように、 Hvが50
Kll/−以下であり、Tgが55℃以下であり、Ra
が0.01μm以下である比較例の感光体はその寿命が
100時間に満たないが、本実施例の感光体はいずれも
非常に長寿命である。av l ’rg 、 RaO値
が比較的小さい実施例5においても、その寿命は比較例
に比して約2倍にのびておシ、これらの数値が増すにつ
れてその感光体の寿命は顕著にのびる。すなわち、感光
体の耐結晶化性能が大幅に向上することが判る。
Table 5 As is clear from Tables 4 and 5, Hv is 50
Kll/- or less, Tg is 55°C or less, and Ra
The life of the photoreceptor of the comparative example, which has a diameter of 0.01 μm or less, is less than 100 hours, but the life of the photoreceptor of this example is extremely long. Even in Example 5, where av l 'rg and RaO values are relatively small, the lifespan is approximately twice as long as that of the comparative example, and as these values increase, the lifespan of the photoreceptor increases significantly. . In other words, it can be seen that the crystallization resistance of the photoreceptor is significantly improved.

感光体表面層の粗さが大きくなり過ぎると得られる複写
画像に欠陥があられれるようになる。表面層の粗さはR
aで0.01−0.03μmの範囲が望ましい。また、
ビッカース硬度Hvが大きくなると耐印写性能が向上し
、ガラス転移点Tgが高くなると耐結晶化性能が向上す
るが、電荷発生層への砒素の添加量が多くなるのでその
蒸着が難しくなシ、しかも材料費も高くなる。H”fは
50〜65匂/−の範囲にあシ、Tgは55〜’75℃
の範囲にあれば、実用的に充分な耐印写性能、耐結晶化
性能が得られ好適である。
If the roughness of the surface layer of the photoreceptor becomes too large, defects will appear in the resulting copied image. The roughness of the surface layer is R
It is desirable that a is in the range of 0.01-0.03 μm. Also,
As the Vickers hardness Hv increases, the printing resistance improves, and as the glass transition point Tg increases, the crystallization resistance improves, but since the amount of arsenic added to the charge generation layer increases, its vapor deposition becomes difficult. Moreover, the cost of materials also increases. H"f is in the range of 50 to 65 odor/-, Tg is 55 to '75℃
If it is within this range, practically sufficient printing resistance and crystallization resistance can be obtained, which is preferable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に非晶質セレン・テルル
合金からなる電荷輸送層と非晶質セレン・テルル・砒素
合金からなる電荷発生層とを順次積層し、かつ電荷輸送
層と電荷発生層との間に両層の組成の混じった中間層を
有してなる感光体において、電荷発生層の表面側から測
定したビッカース硬度を50〜65匂/−とし、電荷発
生層の表面粗さを中心線平均粗さ(Ra)で0.O1〜
0゜03μmとし、電荷発生層のガラス転移点を55〜
75℃とする。
According to the present invention, a charge transport layer made of an amorphous selenium-tellurium alloy and a charge generation layer made of an amorphous selenium-tellurium-arsenic alloy are sequentially laminated on a conductive substrate, and the charge transport layer and the charge In a photoreceptor having an intermediate layer having a mixture of compositions of both layers between the charge generation layer and the charge generation layer, the Vickers hardness measured from the surface side of the charge generation layer is 50 to 65 o/-, and the surface roughness of the charge generation layer is The center line average roughness (Ra) is 0. O1~
The glass transition point of the charge generation layer is 55 to 0.03 μm.
The temperature shall be 75°C.

このような特性を示す感光体とすることKよって、鳩光
感度で繰り返し使用時の電子写真特性の変動カニ少なく
、かつ、耐結晶化性1しおよび耐印写性化の優t’L 
fc電電子写真用感体体得られる。
By using a photoreceptor that exhibits such characteristics, there is less variation in electrophotographic characteristics during repeated use due to light sensitivity, and excellent crystallization resistance and printing resistance.
A sensitive body for fc electrophotography is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

オ1図は、本発明による感光体の一実施例を示す概念的
断面図である。 l・・・4’を性基体、2・・・電荷輸送層、3・・・
中間層、第1図
FIG. 1 is a conceptual sectional view showing an embodiment of a photoreceptor according to the present invention. l... 4' is a sexual substrate, 2... charge transport layer, 3...
Middle class, Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)導電性基体上に非晶質セレン・テルル合金からなる
電荷輸送層と非晶質セレン・テルル・砒素合金からなる
電荷発生層とを順次積層し、かつ前記電荷輸送層と前記
電荷発生層との間に該両層の組成の混じつた中間層を有
してなる電子写真用感光体において、前記電荷発生層の
表面側から測定したビッカース硬度が50〜65Kg/
mm^2であり、前記電荷発生層の表面粗さが中心線平
均粗さ(Ra)で0.01〜0.03μmであり、前記
電荷発生層のガラス転移点が55〜75℃であることを
特徴とする電子写真用感光体。
1) A charge transport layer made of an amorphous selenium-tellurium alloy and a charge generation layer made of an amorphous selenium-tellurium-arsenic alloy are sequentially laminated on a conductive substrate, and the charge transport layer and the charge generation layer In the electrophotographic photoreceptor, the electrophotographic photoreceptor has an intermediate layer between which the compositions of both layers are mixed, and the Vickers hardness measured from the surface side of the charge generation layer is 50 to 65 kg/
mm^2, the surface roughness of the charge generation layer is 0.01 to 0.03 μm in center line average roughness (Ra), and the glass transition point of the charge generation layer is 55 to 75°C. An electrophotographic photoreceptor characterized by:
JP16321285A 1985-07-24 1985-07-24 Electrophotographic sensitive body Pending JPS6223049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16321285A JPS6223049A (en) 1985-07-24 1985-07-24 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16321285A JPS6223049A (en) 1985-07-24 1985-07-24 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6223049A true JPS6223049A (en) 1987-01-31

Family

ID=15769426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16321285A Pending JPS6223049A (en) 1985-07-24 1985-07-24 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6223049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250837A (en) * 1985-08-30 1987-03-05 Fuji Electric Co Ltd Electrophotographic sensitive body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134856A (en) * 1979-04-09 1980-10-21 Ricoh Co Ltd Laminate type electrophotographic receptor
JPS574052A (en) * 1980-06-09 1982-01-09 Canon Inc Electrophotographic receptor
JPS5719749A (en) * 1980-07-09 1982-02-02 Fuji Electric Co Ltd Electrophotographic receptor
JPS5944055A (en) * 1982-09-04 1984-03-12 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS59136737A (en) * 1983-01-25 1984-08-06 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS6033562A (en) * 1983-08-05 1985-02-20 Fuji Electric Co Ltd Manufacture of electrophotographic sensitive body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134856A (en) * 1979-04-09 1980-10-21 Ricoh Co Ltd Laminate type electrophotographic receptor
JPS574052A (en) * 1980-06-09 1982-01-09 Canon Inc Electrophotographic receptor
JPS5719749A (en) * 1980-07-09 1982-02-02 Fuji Electric Co Ltd Electrophotographic receptor
JPS5944055A (en) * 1982-09-04 1984-03-12 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS59136737A (en) * 1983-01-25 1984-08-06 Fuji Electric Co Ltd Electrophotographic sensitive body
JPS6033562A (en) * 1983-08-05 1985-02-20 Fuji Electric Co Ltd Manufacture of electrophotographic sensitive body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250837A (en) * 1985-08-30 1987-03-05 Fuji Electric Co Ltd Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
CA1152801A (en) Electrophotographic member including a layer of amorphous silicon containing hydrogen
GB2092324A (en) Electrophotographic image-forming member
US4609605A (en) Multi-layered imaging member comprising selenium and tellurium
US4464451A (en) Electrophotographic image-forming member having aluminum oxide layer on a substrate
JPS5913021B2 (en) Composite photoreceptor material
JPS6223049A (en) Electrophotographic sensitive body
US3709683A (en) Infrared sensitive image retention photoreceptor
US3501343A (en) Light insensitive xerographic plate and method for making same
US4585621A (en) Vapor-deposited film of selenium or selenium alloy for electrophotography
US4370399A (en) Equisensitive ambipolar indium doped selenium containing electrophotographic materials, plates and method
JPS6250837A (en) Electrophotographic sensitive body
GB2141552A (en) Photoconductive member for electrophotography
JPS6254269A (en) Electrophotographic sensitive body
JPS6254270A (en) Electrophotographic sensitive body
JPS61200543A (en) Electrophotographic sensitive body
JPS60252353A (en) Electrophotographic sensitive senlenium and selenium photosensitive film and its manufacture
JPS6335978B2 (en)
US3684500A (en) Method of forming permanent electrostatic image with two-layered photoreceptor
JPS62295064A (en) Electrophotographic sensitive body
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPS5870235A (en) Production for photoreceptor
JPS6120046A (en) Photosensitive body for electrophotography
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPS6343162A (en) Electrophotographic sensitive body
JPS60252357A (en) Electrophotographic sensitive selenium and selenium photosensitive film and its manufacture