JPS6254269A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6254269A
JPS6254269A JP19407985A JP19407985A JPS6254269A JP S6254269 A JPS6254269 A JP S6254269A JP 19407985 A JP19407985 A JP 19407985A JP 19407985 A JP19407985 A JP 19407985A JP S6254269 A JPS6254269 A JP S6254269A
Authority
JP
Japan
Prior art keywords
tellurium
arsenic
vapor deposition
photoreceptor
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19407985A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nakato
中藤 清
Kunio Otsuki
大月 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19407985A priority Critical patent/JPS6254269A/en
Publication of JPS6254269A publication Critical patent/JPS6254269A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic

Abstract

PURPOSE:To obtain an electrophotographic sensitive body which has excellent performance to withstand crystallization and high photosensitivity and maintains the stable performance with the lessened decrease of electrostatic charge potential and increase of residual potential in the continuous repeated use by using respectively specifically composed amorphous selenium-tellurium-arsenic alloys for an electric charge transfer layer and charge generating layer and providing an intermediate layer in which the compsns. of both layers are mingled between the two layers. CONSTITUTION:The CTL of the photosensitive body having the intermediate layer in which the compsn. of both layers are mingled between the CTL and the CGL consists of the amorphous selenium-tellurium-arsenic alloy contg. 1-15wt% tellurium and 0.01-5wt% arsenic and the CGL consists of the amorphous selenium-tellurium- arsenic alloy contg. 5-30wt% tellurium and 0.1-10wt% arsenic. The selenium- tellurium-arsenic alloy is packed as a vapor deposition material for the CTL in a boat and the alloy is packed as a vapor deposition material for the CGL in a quartz boat. Both boats are set in a vacuum deposition vessel. The vapor deposition vessel is closed and the inside thereof is evacuated, then the vapor deposition materials are evaporated to the specified profile of the vapor deposition compsn. ratio, by which the variance of the photosensitive characteristics is decreased.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、導電性基体上に電荷輸送層、電荷発生層を順
次積層してなるセレン系機能分離型電子写真用感光体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a selenium-based functionally separated electrophotographic photoreceptor comprising a charge transport layer and a charge generation layer successively laminated on a conductive substrate.

〔従来技術とその問題点〕[Prior art and its problems]

電子写真用感光体(以下単に感光体とも称す)として用
いられる非晶質セレン系光導電性材料としては、純セレ
ン、セレン・テルル合金のほかにセレン・砒素合金も用
いられている。As 2Bθ3 からなる感光層を有す
る感光体は、耐結晶化、耐印写性能に優れた感光体とし
て知られているが、光疲労による帯電電位の低下が極め
て大きく、その使用にあたっては除電光波長の限だ、前
除電工程の設置などの複雑さが伴い、このため感光体の
小形化、例えば感光体円筒の(H径を小さくすることの
妨げとなっている。また使用元素の一つである砒素が高
師であシ、さらにA8aSθ3のガラス転移点が高いと
いう長所のゆえにかえって製造上の設備が複雑で高価に
なるので原価低減が困難である。
As an amorphous selenium-based photoconductive material used as an electrophotographic photoreceptor (hereinafter simply referred to as a photoreceptor), in addition to pure selenium and a selenium-tellurium alloy, a selenium-arsenic alloy is also used. A photoreceptor having a photosensitive layer made of As 2Bθ3 is known as a photoreceptor with excellent crystallization resistance and printing resistance. However, it is complicated to install the pre-static neutralization process, which hinders the miniaturization of the photoreceptor, for example, reducing the (H diameter) of the photoreceptor cylinder.Also, one of the elements used Due to the high glass transition temperature of some arsenic and the high glass transition point of A8aSθ3, the manufacturing equipment becomes complicated and expensive, making it difficult to reduce the cost.

そこでtp!i開昭55−134856号公報に見られ
るように、導′ぼ性基体上に86もしくは8θ−Tθ合
金からなる電荷輸送層、その」二にBθ−Aii合金(
AS:30〜42重蓋俤)からなる電荷発生層を積層し
た機能分離型感光体により砒素消費綾を少なくし、耐光
疲労性、耐久性を向上させる試みがなされている。しか
しこのような構成の感光体では、電荷輸送層と電荷発生
層の熱膨張係数の差があるため、真空蒸着による積層の
際内部応力のため、電荷発生層にひび割れが生ずること
がしばしば起こシ、このひび割れはコピー上にも現れ、
画像品質を著しく損ない、感光体を実用に耐え得ないも
のとする。
So tp! As seen in Japanese Patent Publication No. 55-134856, a charge transport layer made of 86 or 8θ-Tθ alloy on a conductive substrate, and secondly a Bθ-Aii alloy (
Attempts have been made to reduce arsenic consumption and improve light fatigue resistance and durability by using a functionally separated photoreceptor in which a charge generation layer consisting of AS: 30 to 42 layers is laminated. However, in photoreceptors with such a structure, there is a difference in thermal expansion coefficient between the charge transport layer and the charge generation layer, so cracks often occur in the charge generation layer due to internal stress during lamination by vacuum evaporation. , this crack also appears on the copy,
This significantly impairs image quality and makes the photoreceptor unusable.

〔発明の目的〕[Purpose of the invention]

本発明は、上述の欠点を除去し、耐結晶化性能に優れ、
かつ高光感度で繰シ返し連続使用時の特性変動が少なく
安定し良性能の電子写真用感光体を提供することを目的
とする。
The present invention eliminates the above-mentioned drawbacks, has excellent crystallization resistance performance,
Another object of the present invention is to provide a photoreceptor for electrophotography which has high photosensitivity, is stable with little variation in characteristics during repeated and continuous use, and has good performance.

〔発明の要点〕[Key points of the invention]

本発明の目的は、導電性基体上に電荷輸送層(以下CT
Lとも称する)、電荷発生層(以下OGLとも称する)
を順次積層し、かっOTLとCGLの間に両層の組成の
混じった中間層を有してなる感光体において、OTLが
テルル1〜〕5重量優、砒$ 0.01〜5重量%を含
む非晶質セレン・テルル・砒素合金からなり、OGLが
テルル5〜30重量%、砒素01〜1帽1チを含む非晶
質セレン・テルル・砒素合金からなる感光体とすること
によって達成される。
The object of the present invention is to provide a charge transport layer (hereinafter referred to as CT) on a conductive substrate.
(also referred to as L), charge generation layer (hereinafter also referred to as OGL)
In a photoreceptor having an intermediate layer between OTL and CGL in which the compositions of both layers are mixed, the OTL contains 1 to 5% by weight of tellurium and 0.01 to 5% by weight of arsenic. This is achieved by making a photoreceptor made of an amorphous selenium-tellurium-arsenic alloy containing an OGL of 5 to 30% by weight of tellurium and 0.1 to 1 g of arsenic. Ru.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の好適な実施例について詳しく説明する。 Next, preferred embodiments of the present invention will be described in detail.

実施例1 OTL用蒸着材料としてテルル5,5重量%、砒素0.
5重fチ、残部セレンからなるセレン・テルル・砒素合
金をステンレス鋼5U8430 表ボートに900 g
充填し、またOGL用蒸着材料としてテルル15重蓋チ
、砒素3重量%、残部セレンからなるセレン・テルル・
砒素合金を石英製ボートに130 g充填し、真空蒸着
槽内にセットする。同じく真空蒸着槽内に設けられた支
持軸の表面温度を約65℃に制御し、これに外径90f
fiIIll長さ320■のアルミニウム円筒全装層し
、支持軸を10 rpmで回転させる。蒸着槽を閉じ、
真空排気し、真空度が5 X No TOrrに達シタ
時点で0TLH着用ボートのヒータのスイッチを入れ、
このボートの温度を325℃にまで約25分で上昇させ
、この温度に保持し−Cセレン・テルル・砒素合金を蒸
発させる。900 g全量の蒸発が終る時点はボート温
度が上昇することによって判シ、それに要する325℃
に保持する時間は28分である。
Example 1 As a vapor deposition material for OTL, 5.5% by weight of tellurium and 0.5% by weight of arsenic were used.
900 g of a selenium-tellurium-arsenic alloy consisting of 5 layers, the balance being selenium, in a stainless steel 5U8430 boat.
Filled with selenium, tellurium, and OGL vapor deposition materials consisting of 15 layers of tellurium, 3% by weight of arsenic, and the balance selenium.
Fill a quartz boat with 130 g of arsenic alloy and set it in a vacuum deposition tank. Similarly, the surface temperature of the support shaft provided in the vacuum deposition tank was controlled to about 65°C, and the outer diameter was 90 f.
An aluminum cylinder with a length of 320 cm was fully loaded, and the support shaft was rotated at 10 rpm. Close the deposition tank,
Evacuate the boat, and when the vacuum level reaches 5 x No Torr, turn on the heater of the boat wearing 0TLH,
The temperature of the boat is raised to 325° C. in about 25 minutes and held at this temperature to evaporate the -C selenium-tellurium-arsenic alloy. The point at which evaporation of all 900 g is completed is determined by the increase in boat temperature, and the required 325°C is reached.
The holding time is 28 minutes.

蒸発終了の2分後にボートのヒータのスイッチを切る。Two minutes after evaporation is complete, turn off the boat heater.

また、上記325℃での保持時間が20分になった時点
でaGL#を用ボートのヒータのスイッチを入れ、この
ボートの温度を340℃にまで5分で上昇させ、この温
度に13分保持した後ボートのヒータのスイッチを切る
。]33分は合金の充填11130gの約60チを蒸発
させるに要する時間である。この60%の蒸発は蒸着組
成比のプロフィルを一定にして感光特性のバラツキを少
なくするために望ましい。
In addition, when the above holding time at 325°C reached 20 minutes, the heater of the boat used for aGL# was turned on, the temperature of this boat was raised to 340°C in 5 minutes, and this temperature was maintained for 13 minutes. Then turn off the boat's heater. ]33 minutes is the time required to evaporate approximately 60 g of the 11,130 g charge of alloy. This 60% evaporation is desirable in order to keep the vapor deposition composition ratio profile constant and reduce variations in photosensitive characteristics.

caLM着用ボートのヒータのスイッチを切って2分後
に真空を破9.10分後に真空槽を開けて感光体を取シ
出す。このようにして、第1図に概念的要部#面図とし
て示すような導[性基体1上に形成されたセレン・テル
ル・砒素合金からなるOTL 2と同じくセレン・テル
ル・砒素合金ではあるがその組成比が異なる合金からな
るOGL 4と、その間に介在する両層の材料の混じっ
た中間層3とを有する感光体が得られる。
After 2 minutes of turning off the heater of the caLM wearing boat, break the vacuum. 9. After 10 minutes, open the vacuum chamber and take out the photoreceptor. In this way, the OTL 2 made of a selenium-tellurium-arsenic alloy formed on the conductive substrate 1 as shown in a conceptual cross-sectional view of main parts in FIG. A photoreceptor is obtained which has an OGL 4 made of an alloy having different composition ratios, and an intermediate layer 3 interposed therebetween in which the materials of both layers are mixed.

実施例2〜15 OTL用蒸着材料、 OGL用蒸着材料の合金の組成比
を第1表に示すように変え、支持軸表面の温度、OTL
蒸着用ボートおよびOGL蒸着用ボートの設定温度、設
定温度までの昇温時間、設定温度での保持時間を牙2人
に示すようにした以外は実施例1と同様にして、実施例
2〜J5の感光体を作製した。
Examples 2 to 15 The composition ratios of the alloys of the OTL vapor deposition material and the OGL vapor deposition material were changed as shown in Table 1, and the temperature of the support shaft surface and the OTL
Examples 2 to J5 were carried out in the same manner as in Example 1, except that the set temperatures of the vapor deposition boat and the OGL vapor deposition boat, the temperature increase time to the set temperature, and the holding time at the set temperature were shown to the two people. A photoreceptor was fabricated.

なお11表および第2表には実施例1についての数値も
同様に示した。
Note that Table 11 and Table 2 also show the numerical values for Example 1.

オ  1  表 オ  2  表 これら実施例の方法で(ITTIのみを蒸着したときの
膜厚は約57μmであり、またCGLのみを蒸着L7た
ときの膜厚は7〜8μmであるが、前述の通りこれら実
施例の感光体では両層は一部重複して積層されて中間層
を形成している。
E 1 Table E 2 Table By the method of these examples (the film thickness when only ITTI is evaporated is about 57 μm, and when only CGL is evaporated L7, the film thickness is 7 to 8 μm, but as mentioned above, In the photoreceptors of these Examples, both layers are laminated to partially overlap to form an intermediate layer.

さらに、これら実施例においてtit OGLの形成に
際し、cGTr用蒸層材料のボートへ充填した全量を蒸
発させないで約60優の蒸発針でとどめて^るが、これ
は感光体の電子写)Il−特性などのばらつきを少なく
するためである。すなわち、nGT、用蒸着材料である
セレン・テルル・砒素合金を真空中で蒸発させると台金
の構成光素の蒸気圧の差により分溜が起きて蒸着層の膜
厚方向に構成元素の組成比の変化が生じるが、その変化
のグロファイルは蒸着毎に異なり一足にすることは難し
く、[2かもそのばらつきは蒸発が終了に近づくにつれ
て拡大する。
Furthermore, in forming the tit OGL in these Examples, the entire amount of cGTr evaporation layer material filled into the boat was not evaporated, but was stopped using an evaporation needle of approximately 60 mm, which was not achieved by electrophotography of the photoreceptor). This is to reduce variations in characteristics. In other words, when a selenium-tellurium-arsenic alloy, which is a deposition material for nGT, is evaporated in a vacuum, fractionation occurs due to the difference in vapor pressure of the constituent elements of the base metal, and the composition of the constituent elements changes in the thickness direction of the deposited layer. Although a change in the ratio occurs, the profile of the change differs from deposition to deposition, and it is difficult to make a uniform determination, and the variation increases as evaporation approaches the end.

そのため充填された全量を蒸発させるとCAL表面のセ
レン・テルル・砒素各元素の比率が感光体毎に大きくば
らつき、その電子写真特性、耐結晶化性能などが大幅に
ばらつくことになる。しかも充填物全1を蒸発させると
不純物などの蒸発残渣も飛散し中子くなシ、C旧、表面
に欠陥が生1ニること= 9− にもなる。充填量の20〜80 Ly6の蒸発にとどめ
ると、これらの欠点を防ぐことができ有効であり、特に
実施例のように60優程度にすると蒸着材料の無駄も比
較的少なく好適である。
Therefore, if the entire amount filled is evaporated, the ratio of the elements selenium, tellurium, and arsenic on the CAL surface will vary greatly from photoreceptor to photoreceptor, and the electrophotographic characteristics, crystallization resistance, etc. will vary greatly. Furthermore, when the entire filling is evaporated, evaporation residues such as impurities are scattered, resulting in defects on the core, cracks, and surface. If the filling amount is limited to evaporation of 20 to 80 Ly6, these drawbacks can be prevented and it is effective, and in particular, if the filling amount is about 60 Ly6 as in the example, there is relatively little wastage of vapor deposition material, which is preferable.

比較例1 OTL用蒸着材料としてテルル5.5重f%、残部セレ
ンカラなるセレン・テルル合金900 g 、 OGL
用蒸着材料としてテルル20重量%、残部セレンからな
るセレン・テルル合金130 gを用い実施例1に準じ
て感光体を作製した。蒸着条件の実施例1と異なるとこ
ろは、0TTJ用蒸着材料の蒸発がボート温度325℃
、保持時間部分で終了するのでボートのヒータのスイッ
チをその後2分で切ること、上記保持時間が14分にな
った時点で0GTJ蒸着用ボートのヒータのスイッチを
入れることである。
Comparative Example 1 As a vapor deposition material for OTL, 900 g of selenium-tellurium alloy consisting of 5.5 wt % tellurium and the remainder selenium color, OGL
A photoreceptor was produced according to Example 1 using 130 g of a selenium-tellurium alloy consisting of 20% by weight tellurium and the balance selenium as a vapor deposition material. The difference between the evaporation conditions and Example 1 is that the 0TTJ evaporation material was evaporated at a boat temperature of 325°C.
, since the holding time ends, the heater of the boat is turned off after 2 minutes, and when the holding time reaches 14 minutes, the heater of the boat for 0GTJ deposition is turned on.

比較例2 CTL用蒸着材料としてテルル8.5重量%、残部セレ
ンからなるセレン・テルル合金、 OGL用蒸着材料と
してテルル25重普チ1残部セレ/からなるセレン・テ
ルル合金を用いた以外は比較例コと同一]〇− 様にして感光体を作製した。
Comparative Example 2 Comparison except that a selenium-tellurium alloy consisting of 8.5% by weight tellurium and the balance selenium was used as the vapor deposition material for CTL, and a selenium-tellurium alloy consisting of 25% tellurium, 1% polypropylene, and the balance selenium was used as the vaporization material for OGL. A photoreceptor was produced in the same manner as in Example A.

比較例3 CTL用蒸着材料としてテノール5.5重is、残部セ
レンからなるセレン・テルル合金、OGL用蒸着材料と
してテルル20重is、砒素す重ii優、残部セレンか
らなるセレン・テルル・砒素合金を用いた以外は比較例
1と同様にして感光体を作製した。
Comparative Example 3 A selenium-tellurium alloy consisting of Tenor 5.5 F IS and the balance selenium as a vapor deposition material for CTL, and a selenium-tellurium-arsenic alloy consisting of Tellurium 20 F IS, arsenic II superior, and selenium as an OGL vapor deposition material. A photoreceptor was produced in the same manner as in Comparative Example 1 except that .

比較例益 CGL用蒸着材料としてテルル20重量%、砒素3重量
%、残部セレンからなるセレン・テルル・砒素合金を用
いた以外は比較例3と同様にして感光体を作製した。
Comparative Example A photoreceptor was produced in the same manner as in Comparative Example 3, except that a selenium-tellurium-arsenic alloy consisting of 20% by weight tellurium, 3% by weight arsenic, and the balance selenium was used as the vapor deposition material for CGL.

これら実施例]5本、比較例4本の感光体の感光層の膜
厚および電子写真特性を刃・3表に示す。ここで、帯電
電位は暗所で+6.OKVのコロナ放電によシ帯電され
た表面電位であり、保持率はこの帯電電位の暗所におい
ての1秒後の電位保持率を示し、半減衰露光量は色温度
2850にのハロゲンランプによ#)3ルツクスの照度
で露光したとき、コ000vの表面電位初期値が500
vに減衰するに要する露光蓋であり、残留電位は10ル
ックス・秒の露光量を受けた後の表面電位を示す。
The film thicknesses and electrophotographic properties of the photosensitive layers of the 5 photoreceptors of Examples and 4 of Comparative Examples are shown in Table 3. Here, the charging potential is +6. This is the surface potential charged by OKV's corona discharge, and the retention rate indicates the potential retention rate after 1 second in a dark place. #) When exposed to an illuminance of 3 lux, the initial value of the surface potential of ko000v is 500
The residual potential indicates the surface potential after receiving an exposure amount of 10 lux·sec.

牙 3 表 実施例、比較例のすべての感光体について、その初期の
電子写真特性は良好である。
Fang 3 All of the photoreceptors in the Examples and Comparative Examples in the table have good initial electrophotographic characteristics.

次に、上記19本の感光体蒸着時に直径10■のアルミ
ニクム円#に同時に蒸着したモニターピースについてイ
オンマイクロ分析(IMA )を行った。
Next, ion microanalysis (IMA) was performed on monitor pieces that were simultaneously deposited on aluminum circles #10 in diameter during the deposition of the 19 photoreceptors.

特Xσ■B立夷作所簀型式IMA −2Aを用い1分析
aアルξニクムマスク法(直径0.B wa穴)で行な
い、−次イオンとしてOsrを用い、加速電界15ke
V。
One analysis was carried out using a special Xσ■B Tatsui laboratory model IMA-2A using the aluminum mask method (diameter 0.B wa hole), using Osr as the -order ion, and an accelerating electric field of 15ke.
V.

イオン電流0.5μA、ビーム径1.4mの条件で分析
した時の電荷発生層中のテルルと砒素の平均重量%を第
4表に示す。
Table 4 shows the average weight percent of tellurium and arsenic in the charge generation layer when analyzed under the conditions of an ion current of 0.5 μA and a beam diameter of 1.4 m.

第4表 次に、連続して繰り返し複写を行ったときの感光体の特
性変動をみるために、これらの感光体について繰り返し
複写試験を行った。
Table 4 Next, a repeated copying test was conducted on these photoreceptors in order to observe changes in the characteristics of the photoreceptors when copying was performed repeatedly.

繰り返し複写試験を行う圧めに、複写スピードがA4用
紙に対し30枚/分の市販のカールソン方式の乾式普通
紙複写機を、これから現像器とクリーニング用ブレード
を除去し、現像器の位置に表面電位計のプローブを設置
すると同時に、装着ヒータ用電源のスイッチが入らない
ように改造した。
In order to perform repeated copying tests, we used a commercially available Carlson method dry-type plain paper copying machine with a copying speed of 30 sheets/min for A4 paper, removed the developing device and cleaning blade, and installed the surface in the position of the developing device. At the same time as installing the electrometer probe, the power supply for the installed heater was modified so that it would not turn on.

次にアンサンプル・チャートを準備する。アンサンプル
・チャートとはA3用紙の大きさの原稿を長さ方向に3
等分し、それぞれの部分の光学温度がD0=1.3 、
  Do=0.3 、 D0=0.07となるようにし
たチャートである。感光体試料を複写機内に装着し、ま
ず原稿台カバーを開けた状態で帯電位が′750〜79
0■になるようvcvs整する。次にアンサンプル・チ
ャートを置き、原稿台カバーを閉じた状態でD0=0.
3の部分の電位を250〜290 Vになるように調整
する。調整後、300回の繰り返しの連続運転を行い、
これらの三つの部分の電位の変化を記録する。各感光体
についてこの試験を行ない、1回目と300回目のD0
=0.3の部分、即ち暗部電位の変化量(Δvs )と
3001ffi目(2)D0=O,O’7(2)部分の
電位、即ち出紙部電位(Vw)を創建した結果を第5表
に示す。
Next, prepare an sample chart. An ensample chart is an A3 paper-sized manuscript that is sized 3 times in the length direction.
Divide into equal parts, and the optical temperature of each part is D0=1.3,
This is a chart in which Do=0.3 and D0=0.07. Insert the photoreceptor sample into the copying machine, and with the original platen cover open, check that the charged potential is between '750 and '79.
Adjust vcvs so that it becomes 0■. Next, place the sample chart, close the document platen cover, and set D0=0.
Adjust the potential of part 3 to 250 to 290 V. After adjustment, continuous operation was performed for 300 times.
Record the change in potential of these three parts. This test was conducted for each photoconductor, and the D0 of the 1st and 300th
= 0.3, that is, the amount of change in dark area potential (Δvs), and the potential of the 3001ffi (2) D0=O, O'7 (2) area, that is, the output area potential (Vw). It is shown in Table 5.

第5表 暗部電位の変化量(ΔVe)の負号は300回目の電位
が1回目の電位よシ小さくなっていることを表す。電荷
発生層についての工MAにおいて、テルルおよび砒素が
比較的多く含まれている感光体、例えば実施例12〜]
5についてはΔV8は若干大きい傾向はあるが、それら
を含めてすべての感光体は充分実用可能な値となってい
る。この暗部電位は感光体の帯電電位に対応するもので
あり、上述の結果は感光体を繰り返し使用してもその帯
電性能がほとんど変動せず劣化しないことを示している
The negative sign of the amount of change in dark area potential (ΔVe) in Table 5 indicates that the potential at the 300th time is smaller than the potential at the first time. Photoreceptors containing relatively large amounts of tellurium and arsenic in the MA for the charge generation layer, e.g., Examples 12-]
Although ΔV8 tends to be slightly large for No. 5, all photoreceptors including those have sufficiently practical values. This dark area potential corresponds to the charging potential of the photoreceptor, and the above results show that even if the photoreceptor is used repeatedly, its charging performance hardly changes and does not deteriorate.

また、出紙部電位(Vw)はどの感光体でもはじめ若干
増加するが、100回前後で飽和し、以14300回ま
で増加はみられず実用上問題ない。この出紙部電位は感
光体の残留電位に対応し、感光体を繰り返し使用しても
問題となるような残留電位の上昇はみられないことを示
している。′しかしながら、OTL用蒸着材料に砒素が
5重量優と比較的多く含まれたセレン・テルル・砒素合
金を用い九実施例6.10.14の感光体ではVwが若
干大きく、感光層全体への砒素添加による残留電位の増
大の傾向が一1’7− 見られる。
In addition, the potential (Vw) at the paper exit part increases slightly at first for all photoreceptors, but it becomes saturated after about 100 times, and no increase is observed after that until 14,300 times, so there is no problem in practical use. This potential at the paper output portion corresponds to the residual potential of the photoreceptor, and indicates that no problematic increase in the residual potential is observed even when the photoreceptor is used repeatedly. 'However, in the photoreceptor of Example 6.10.14, in which the OTL vapor deposition material was made of a selenium-tellurium-arsenic alloy containing a relatively large amount of arsenic (more than 5% by weight), the Vw was slightly large, and it was difficult to cover the entire photosensitive layer. There is a tendency for the residual potential to increase due to the addition of arsenic.

次に耐結晶化性能をみるために加速寿命試験を行った。Next, an accelerated life test was conducted to examine crystallization resistance.

これら19本の感光体を、複写スピードがA4の用紙で
30枚/分の市販のカールノン方式の乾式普通紙複写機
に順次実装し、A3用紙の大きさの原稿を1000枚実
複写し、感光体に実使用の負荷を与えた後、温度50±
1℃ 、相対湿度8〜20%の雰囲気中に放置し、結晶
化の認められはじめる時間を調べ寿命とした。その結果
を牙6表に示す。
These 19 photoreceptors were sequentially installed in a commercially available Carlnon-type dry plain paper copying machine with a copying speed of 30 sheets per minute on A4 paper, and 1000 sheets of A3 paper-sized originals were actually copied. After applying the load of actual use to the body, the temperature is 50±
The product was left in an atmosphere of 1° C. and relative humidity of 8 to 20%, and the time it took for crystallization to begin to be observed was determined as the lifespan. The results are shown in Table 6.

−〕8− オ  6  表 牙6表より明らかなとおり、OTL 、 OGL両層共
に砒素を含有しない比較例1.2の感光体の寿命は]0
0時間根度と短かい。またOGLには砒素が添加されて
いるが牙4表にみられるように比較的含有1の少ない比
較例3.4の感光体ではその寿命が比較例1.2の感光
体よりも数倍のびてはいるが、実施例の感光体のように
500時間以上の長寿命を示すまでにはいたらない。と
ころがOTL、OGI、両層に砒素が添加されている、
すなわち感光層全層に砒素を含有している実施例の感光
体においては、そのCGLの砒素の含有量が比較例3.
4と同程度でおる実施例1,2.3.4においても50
0時間以上の長寿命を有するようになる。
-]8- E 6 As is clear from Table 6, the life of the photoreceptor of Comparative Example 1.2 in which neither the OTL nor OGL layers contain arsenic is ]0
It's short and takes 0 hours. Furthermore, although arsenic is added to OGL, as shown in Table 4, the life of the photoconductor of Comparative Example 3.4, which contains relatively little 1, is several times longer than that of the photoconductor of Comparative Example 1.2. However, it does not show a long life of 500 hours or more like the photoreceptor of the example. However, arsenic is added to both OTL and OGI layers.
That is, in the photoreceptor of Example in which the entire photosensitive layer contains arsenic, the arsenic content of the CGL is equal to that of Comparative Example 3.
50 also in Examples 1, 2.3.4, which is about the same as 4.
It has a long life of 0 hours or more.

□このように、OTL 、 CGL両層に砒素を含有さ
せるとその感光体の耐結晶化性能は大幅に向上し、さら
に長波長光に対する感度も高くなシ、しかもその含有量
が多くなる程その傾向は著しいが、反面電子写真特性に
光疲労の現象が生じ感光体を繰り返し連続使用し九とき
に特性が変動し安定して良質な画像が得られにくくなる
。ま九各層の蒸着も難しくなり蒸着材料の価格も高くな
る。砒素の含有量はCTLにおりては0.01〜5重蓋
% 、 OGLにおいてはO,]−〜10重量%が好ま
しく、より好適にはOTL Kオイ”r O,1〜3重
t1% OGLニオイテ0.5〜5重量%である。
□In this way, when arsenic is included in both the OTL and CGL layers, the crystallization resistance of the photoreceptor is greatly improved, and the sensitivity to long wavelength light is also high. Although the tendency is remarkable, on the other hand, the phenomenon of photofatigue occurs in the electrophotographic properties, and when a photoreceptor is used repeatedly and continuously, the properties fluctuate, making it difficult to obtain stable, high-quality images. Also, it becomes difficult to deposit each layer, and the cost of deposition materials increases. The arsenic content is preferably 0.01 to 5% by weight in CTL and 1 to 10% by weight in OGL, and more preferably 1 to 1% by weight in OGL. OGL niote is 0.5 to 5% by weight.

また、OTL 、 OGL両層、特にOGLのテルルの
含有量が少なくなると感光体の光感度が悪化するし、そ
の含有量が多くなると帯’11電位が低くなる。
Furthermore, if the tellurium content of both the OTL and OGL layers, especially the OGL, decreases, the photosensitivity of the photoreceptor will deteriorate, and if the tellurium content increases, the band '11 potential will decrease.

OTLにおけるテルル含有量が多くなると感光体の電子
写真特性の温度依存性が増大する傾向も生じてくる。テ
ルルの含有量はOTLにおいては1.〜15重量% 、
 OGLにおいては5〜30重量%が好ましく、より好
適にはOTLにおいて2〜10重量%、 OGI、にお
いて10〜20重量%である。
As the tellurium content in the OTL increases, the temperature dependence of the electrophotographic properties of the photoreceptor also tends to increase. The tellurium content in OTL is 1. ~15% by weight,
It is preferably 5 to 30% by weight in OGL, more preferably 2 to 10% by weight in OTL, and 10 to 20% by weight in OGI.

以上の実施例においては、OTL蒸着中にOGLの蒸着
を開始し両層の間に両層の組成の混じった中間層を形成
している。このような中間を介在させることにより、O
TLよりOGLへの組成比の移行が漸進的に行なわれる
ので、両層間の電荷の移動をスムーズにして境界におけ
る電荷の蓄積をなくし、感光体を繰り返し連続使用した
場合の帯電性能の低下および残留電位の上昇を少なくす
ることかでき非常に有効である。
In the embodiments described above, OGL vapor deposition is started during OTL vapor deposition to form an intermediate layer between the two layers in which the compositions of both layers are mixed. By interposing such an intermediate, O
Since the composition ratio shifts from TL to OGL gradually, the charge transfer between the two layers is smoothed and charge accumulation at the boundary is eliminated, reducing charging performance deterioration and residual charges when the photoreceptor is used repeatedly and continuously. This is very effective because it can reduce the rise in potential.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電荷輸送層をテルル1〜15重−mt
%、砒素0.01〜5重量優、残部セレンからなる非晶
質セレン・テルル・砒素合金、電荷発生層をデルルb〜
30重量%、砒素0.1〜]0重敗チからなる非晶質セ
レン・テルル・砒素合金とし、かつ両ノーの間に両層の
組成の混じった中間層を設けることにより、耐結晶化性
能に優れ、かつ高光感度で繰り返し連続使用時において
帯電電位の低下、残留電位の上昇が少なく安定した性能
の電子写真感光体を得ることができる。
According to the present invention, the charge transport layer is made of tellurium 1 to 15 weight mt.
Amorphous selenium-tellurium-arsenic alloy consisting of 0.01 to 5% arsenic by weight and the balance selenium, the charge generation layer is Delu b~
By making an amorphous selenium-tellurium-arsenic alloy consisting of 30% by weight, 0.1 to 0% arsenic, and providing an intermediate layer with a mixture of the compositions of both layers between the two layers, crystallization resistance can be achieved. It is possible to obtain an electrophotographic photoreceptor with excellent performance, high photosensitivity, and stable performance with little decrease in charging potential and little increase in residual potential during repeated and continuous use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の感光体の概念的要部断面図
である。 1・・・導電性基体、2・・・電荷輸送1−53・・中
間層、4・・・電荷発生層。 第1 図 電荷発生層 中間層 電・附私−因層 叫宙′jせ基体
FIG. 1 is a conceptual sectional view of a main part of a photoreceptor according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Conductive substrate, 2... Charge transport 1-53... Intermediate layer, 4... Charge generation layer. Figure 1: Charge generation layer, intermediate layer, electric charge and attached layer - causal layer and space substrate

Claims (1)

【特許請求の範囲】 1)導電性基体上に電荷輸送層、電荷発生層を順次積層
し、かつ前記電荷輸送層と前記電荷発生層との間に該両
層の組成の混じつた中間層を有してなる電子写真用感光
体において、前記電荷輸送層がテルル1〜15重量%、
砒素0.01〜5重量%を含む非晶質セレン・テルル・
砒素合金からなり、前記電荷発生層がテルル5〜30重
量%、砒素0.1〜10重量%を含む非晶質セレン・テ
ルル・砒素合金からなることを特徴とする電子写真用感
光体。 2)特許請求の範囲第1項記載の感光体において、電荷
輸送層がテルル2〜10重量%、砒素0.1〜3重量%
を含む非晶質セレン・テルル・砒素合金からなり、電荷
発生層がテルル10〜20重量%、砒素0.5〜5重量
%を含む非晶質セレン・テルル・砒素合金からなること
を特徴とする電子写真用感光体。
[Claims] 1) A charge transport layer and a charge generation layer are sequentially laminated on a conductive substrate, and an intermediate layer having a mixture of compositions of both layers is provided between the charge transport layer and the charge generation layer. In the electrophotographic photoreceptor, the charge transport layer contains 1 to 15% by weight of tellurium;
Amorphous selenium/tellurium containing 0.01-5% by weight of arsenic
1. A photoreceptor for electrophotography, characterized in that the charge generation layer is made of an amorphous selenium-tellurium-arsenic alloy containing 5 to 30% by weight of tellurium and 0.1 to 10% by weight of arsenic. 2) In the photoreceptor according to claim 1, the charge transport layer contains 2 to 10% by weight of tellurium and 0.1 to 3% by weight of arsenic.
The charge generating layer is made of an amorphous selenium/tellurium/arsenic alloy containing 10 to 20% by weight of tellurium and 0.5 to 5% by weight of arsenic. A photoreceptor for electrophotography.
JP19407985A 1985-09-03 1985-09-03 Electrophotographic sensitive body Pending JPS6254269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19407985A JPS6254269A (en) 1985-09-03 1985-09-03 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19407985A JPS6254269A (en) 1985-09-03 1985-09-03 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS6254269A true JPS6254269A (en) 1987-03-09

Family

ID=16318606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19407985A Pending JPS6254269A (en) 1985-09-03 1985-09-03 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS6254269A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917240A (en) * 1972-03-31 1974-02-15
JPS574052A (en) * 1980-06-09 1982-01-09 Canon Inc Electrophotographic receptor
JPS5915940A (en) * 1982-07-20 1984-01-27 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS5944055A (en) * 1982-09-04 1984-03-12 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS6043662A (en) * 1983-08-19 1985-03-08 Fuji Electric Co Ltd Selenium photosensitive body for electrophotography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917240A (en) * 1972-03-31 1974-02-15
JPS574052A (en) * 1980-06-09 1982-01-09 Canon Inc Electrophotographic receptor
JPS5915940A (en) * 1982-07-20 1984-01-27 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS5944055A (en) * 1982-09-04 1984-03-12 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS6043662A (en) * 1983-08-19 1985-03-08 Fuji Electric Co Ltd Selenium photosensitive body for electrophotography

Similar Documents

Publication Publication Date Title
JPH07104605B2 (en) Overcoating Amorphous Silicon Imaging Member
US4483911A (en) Photoconductive member with amorphous silicon-carbon surface layer
US5976745A (en) Photosensitive member for electrophotography and fabrication process thereof
US4416962A (en) Electrophotographic member having aluminum oxide layer
US4609605A (en) Multi-layered imaging member comprising selenium and tellurium
JP5777419B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
FR2520887A1 (en) PHOTOCONDUCTIVE ELEMENT
US4296191A (en) Two-layered photoreceptor containing a selenium-tellurium layer and an arsenic-selenium over layer
US4486521A (en) Photoconductive member with doped and oxygen containing amorphous silicon layers
JPS6254269A (en) Electrophotographic sensitive body
US3501343A (en) Light insensitive xerographic plate and method for making same
JPS6223049A (en) Electrophotographic sensitive body
US4370399A (en) Equisensitive ambipolar indium doped selenium containing electrophotographic materials, plates and method
US3709683A (en) Infrared sensitive image retention photoreceptor
JPS61200543A (en) Electrophotographic sensitive body
US4415642A (en) Electrophotographic member of Se-Te-As with halogen
KR910008491B1 (en) Electrographic sensitive body
JPS6250837A (en) Electrophotographic sensitive body
US6045958A (en) Photoconductor for electrophotography
JPS6254270A (en) Electrophotographic sensitive body
JPS62272275A (en) Electrophotographic sensitive body
US3684500A (en) Method of forming permanent electrostatic image with two-layered photoreceptor
JPS6120046A (en) Photosensitive body for electrophotography
JP2867530B2 (en) Positive charging / reversal development type electrophotographic photoreceptor for electrophotographic apparatus
JPH0217019B2 (en)