JPS6222954B2 - - Google Patents

Info

Publication number
JPS6222954B2
JPS6222954B2 JP56186567A JP18656781A JPS6222954B2 JP S6222954 B2 JPS6222954 B2 JP S6222954B2 JP 56186567 A JP56186567 A JP 56186567A JP 18656781 A JP18656781 A JP 18656781A JP S6222954 B2 JPS6222954 B2 JP S6222954B2
Authority
JP
Japan
Prior art keywords
glass
crucible
storage structure
hip
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56186567A
Other languages
Japanese (ja)
Other versions
JPS5888180A (en
Inventor
Masato Moritoki
Takao Fujikawa
Junichi Myanaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56186567A priority Critical patent/JPS5888180A/en
Publication of JPS5888180A publication Critical patent/JPS5888180A/en
Publication of JPS6222954B2 publication Critical patent/JPS6222954B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は熱間静水圧プレス処理のための被処理
物収納構造体に係り、詳しくは低軟化点のガラス
を溶解し、該ガラスを被処理セラミツクス成形の
シール材として用いる圧媒ガス利用のセラミツク
ス熱間静水圧プレス処理におけるシール性の改善
された被処理成形体収納結合構造体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a workpiece storage structure for hot isostatic pressing, and more specifically, it melts glass with a low softening point and uses the glass as a sealing material for molding ceramics to be processed. The present invention relates to a structure for housing and combining formed objects to be processed, which has improved sealing performance in hot isostatic pressing of ceramics using a pressure medium gas.

ガラスをシール材として用いる熱間静水圧プレ
ス(以下、HIPと略記する。)処理方法は異形成
形が可能であること、通常カプセル材として使用
される銅、鋼などでは使用できない高温下でも
HIPすることが可能である等の利点があり、高温
強度構造材料として近時、その開発が推進されて
いるセラミツクスの高密度化処理に適用が試みら
れており、ガラスカプセル法(特公昭46−2731号
公報参照)、成形体をガラス粉粒体中に埋設する
方法(特開昭55−89405号公報参照)などが知ら
れている。
The hot isostatic pressing (hereinafter abbreviated as HIP) process that uses glass as a sealing material allows for irregular shapes and can be used even at high temperatures that cannot be used with copper, steel, etc., which are normally used as encapsulants.
It has been attempted to be applied to the densification treatment of ceramics, which has advantages such as being able to be HIPed and is being developed as a high-temperature strength structural material in recent years. 2731) and a method of embedding a molded body in glass powder (see Japanese Patent Application Laid-Open No. 89405/1983).

これらの方法は何れも黒鉛坩堝などカーボン製
坩堝が通常、使用され、該坩堝内でガラスを溶解
し、被処理成形体を包囲するものであるが、セラ
ミツクス粉末は、その焼結温度が比較的高く、従
前の金属粉末成形時に比べHIP温度に高温が要求
されるところから低軟化点のガラスを用いて窒化
珪素、炭化珪素などのセラミツクスを処理する際
には、前記ガラス封入方式でも、ガラス粉粒体埋
設方式でも結局、同じように被処理セラミツクス
成形体はガラス浴に浸漬された状態となる。とこ
ろが、セラミツクス成形体は高密度になるまでは
比重が1.8〜2.1g/m3と、ガラスの比重2.2〜2.3
g/m3より小さいため、前記の如くガラスが溶解
した場合には成形体が設置場所から浮上し、移動
し易すくなつて、カーボン製坩堝と接触を起し易
くなる。
In each of these methods, a carbon crucible such as a graphite crucible is usually used, and the glass is melted in the crucible to surround the molded object to be processed. However, the sintering temperature of ceramic powder is relatively low. When processing ceramics such as silicon nitride and silicon carbide using glass with a low softening point, the glass encapsulation method requires a high HIP temperature compared to the conventional metal powder molding process. Even in the granule embedding method, the ceramic molded body to be treated ends up being immersed in the glass bath in the same way. However, the specific gravity of ceramic molded bodies is 1.8 to 2.1 g/m 3 until they reach high density, while the specific gravity of glass is 2.2 to 2.3.
Since it is smaller than g/m 3 , when the glass melts as described above, the molded body floats up from the installation location, becomes easily moved, and is likely to come into contact with the carbon crucible.

この場合、坩堝は圧媒ガスを通過させるべく通
気性を有しているため、被処理物がカーボン坩堝
に接触すると、HIP処理時、圧力媒体として使用
されている気体が接触部分から侵入し、肝腎のシ
ールが不完全になり、HIPの目的を十分に達成で
きない。そして又これは、圧媒ガス中に含まれる
微量の酸素とセラミツクスとの反応を誘起する。
さらに又、カーボン坩堝内側に離型剤としてBN
粉末を付着させることが考へられるが、このよう
にしても処理後、凝固したガラスをカーボン坩堝
から取り出すのは困難である。
In this case, the crucible has air permeability to allow the pressure medium gas to pass through, so when the object to be processed comes into contact with the carbon crucible, the gas used as the pressure medium during the HIP process enters through the contact area. The liver-kidney seal becomes incomplete and the purpose of HIP cannot be fully achieved. This also induces a reaction between trace amounts of oxygen contained in the pressure medium gas and the ceramics.
Furthermore, BN is added as a mold release agent inside the carbon crucible.
One idea is to attach powder to the glass, but even with this method, it is difficult to remove the solidified glass from the carbon crucible after treatment.

しかしながら、以上のような欠点はあるにして
も低軟化点のガラスは取扱いが容易であること、
価格が安いことなどの多くの利点があり、その利
用は工業上有利であるところから、前記欠点の改
良を図ることが等しく望まれている。
However, despite the drawbacks mentioned above, glass with a low softening point is easy to handle;
Since it has many advantages such as low cost and its use is industrially advantageous, it is equally desirable to improve the above-mentioned disadvantages.

本発明は、かかる時代の要求に即応し、前記の
欠点を克服することにより、低軟化点のガラスに
よるシールをより有効に達成し得る、改善された
シール構造を有する被処理体収納構造体を提供す
ることを目的とするものである。
The present invention, in response to the demands of the times, provides a processing object storage structure having an improved sealing structure that can more effectively achieve sealing with low softening point glass by overcoming the above-mentioned drawbacks. The purpose is to provide

しかしてかかる目的を達成する本発明の特徴は
HIP装置内に装入する被処理物収納坩堝におい
て、被処理物及び該被処理物を包囲してガラスシ
ール材を収納すると共に、被処理物及びガラスシ
ール材を更に可撓性を有する無通気性の黒鉛の箔
又はシートで包み、かつその上面に重錘を自由動
可能に載置せしめた被処理物収納結合構造体の構
成にある。
However, the features of the present invention that achieve this purpose are
In the crucible for storing the processed material to be loaded into the HIP device, the processed material and the glass sealing material surrounding the processed material are stored, and the processed material and the glass sealing material are further kept in a flexible, non-ventilated crucible. The object is wrapped in a graphite foil or sheet, and a weight is placed on the upper surface of the structure so as to be freely movable.

以下、更に本発明の具体的な実施態様を添付図
面に示す具体例にもとづいて詳述する。
Hereinafter, specific embodiments of the present invention will be further described in detail based on specific examples shown in the accompanying drawings.

図は本発明被処理物収納構造体の1例であり、
坩堝1内に被処理物2がその上下のガラス板3,
3′と、中間のガラス粉粒体4とによつて包囲さ
れて収納されており、坩堝1と、それら被処理物
2及びガラス3,3′4との間には被処理物2及
びガラス3,3′4の全面を囲繞して本発明の要
部をなす無通気性で、かつ可撓性を有する黒鉛の
箔又はシート5が繞設され、更にその上面には
HIP時における前記ガラスの溶解時の被処理物2
の浮上を抑止する重錘6が自由動可能に載置され
ている。
The figure shows an example of the object storage structure of the present invention.
A workpiece 2 is placed in a crucible 1 with glass plates 3 above and below it,
3' and an intermediate glass powder 4. Between the crucible 1 and the objects 2 and glass 3, 3'4, the object 2 and the glass are A non-porous and flexible graphite foil or sheet 5, which constitutes the essential part of the present invention, surrounds the entire surface of 3, 3'4, and furthermore, on the upper surface thereof,
Object 2 to be treated during melting of the glass during HIP
A weight 6 that prevents floating is mounted freely.

このうち、坩堝1はHIP時、Ar、N2等の圧媒
ガスを透過すべく通気性を有しており、通常カー
ボン製坩堝が用いられている。
Of these, the crucible 1 has air permeability to allow pressure medium gases such as Ar and N 2 to pass through during HIP, and a carbon crucible is usually used.

一方、被処理物2は金属又はセラミツクス粉末
などHIP処理するすべての材料が含まれるが、ガ
ラスをシール材とするHIP法が高温下処理にすぐ
れ、セラミツクスのHIP処理に好適であるところ
からセラミツクス材料が特に効果的であり、窒化
珪素、炭化珪素、炭化硼素の何れかを主成分とす
るセラミツクス、就中、窒化珪素を主成分とする
セラミツクスは最も好ましく、本発明における被
処理物の主流である。そして、この被処理物2は
通常粉末でなく、既知の焼結助剤を含み又は含ま
ない予備成形体又は更にこれを予備焼結した予備
焼結体に形成されて適用される。
On the other hand, the object to be processed 2 includes all materials to be subjected to HIP treatment, such as metals or ceramic powders, but ceramic materials are used because the HIP method, which uses glass as a sealing material, has excellent high-temperature processing and is suitable for HIP treatment of ceramics. is particularly effective, and ceramics containing silicon nitride, silicon carbide, or boron carbide as a main component, particularly ceramics containing silicon nitride as a main component, are the most preferable and are the mainstream of the treated material in the present invention. . The object to be processed 2 is usually not a powder, but is formed into a preformed body containing or not containing a known sintering aid, or a presintered body obtained by presintering this preformed body.

又前記シールに使用するガラスはシリカガラス
バイコールガラス、パイレツクスガラスなど通
常、HIP処理用として使用されているガラスをす
べて使用することができるが、セラミツクスとの
反応防止あるいはHIP処理後の除去の容易さから
一般にパイレツクスガラスが最も実用的なものと
して選ばれる。このシール用ガラスは図では上下
のガラス板3,3′と中間のガラス粉粒体4によ
つて構成されているが、別段、かかる両者の併用
ではなく、ガラス粉粒体4のみの使用でもよく、
又、ガラスカプセルに封入したものでもよい。し
かし、坩堝内の組立配置上、図示の配置は形態に
変化があるにせよ、最も好適である。なお、ガラ
スは前記板状、粉粒体形状の外、種々の形状のも
のを利用することができる。
The glass used for the seal can be any glass that is normally used for HIP processing, such as silica glass, Vycor glass, or Pyrex glass, but it is possible to use any glass that is normally used for HIP processing, such as silica glass, Vycor glass, Pyrex glass, etc. Therefore, Pyrex glass is generally chosen as the most practical. In the figure, this sealing glass is composed of upper and lower glass plates 3, 3' and an intermediate glass powder 4, but it is also possible to use only the glass powder 4 instead of using both together. often,
Alternatively, it may be encapsulated in a glass capsule. However, in terms of the assembly arrangement within the crucible, the arrangement shown in the drawings is the most suitable even though there are variations in form. In addition to the above-mentioned plate shape and powder shape, glass in various shapes can be used.

次に前記本発明の要部をなす黒鉛の箔又はシー
ト5による囲繞は、通気性を有する坩堝1を通過
して来た圧媒ガスの侵入を防ぐと共にHIP時にお
ける等方圧縮力を被処理物2に対し適確に伝達す
るもので、圧媒ガス利用のHIP処理において特に
その有用性を発揮し、無通気性であると共に圧縮
変形に対応する可繞性が必要である。しかも、
HIP処理時、溶解しては前記機能を遂行すること
ができないので当然、HIP処理時、不溶性である
ことが要求される。
Next, the surrounding by the graphite foil or sheet 5, which constitutes the main part of the present invention, prevents the intrusion of the pressurized gas that has passed through the crucible 1, which has air permeability, and also absorbs the isotropic compression force during HIP. It transmits information accurately to the object 2, and is particularly useful in HIP processing using pressurized gas, and must be non-porous and have the ability to cope with compressive deformation. Moreover,
Naturally, it is required to be insoluble during the HIP process because it cannot perform the above function if it is dissolved during the HIP process.

なお、かかる機能を満足するものとしては、黒
鉛に限らず、モリブデン等の高融点金属の箔、シ
ートもあるが、何れもコスト面で難があり、商品
名グラホイルで知られる黒鉛の箔又はシート状物
は最も有用である。特にこの黒鉛の箔又はシート
5は離型材としての役割をも有しており、処理
後、これに凝固したガラスを坩堝から容易に取り
出すことができる。
In addition to graphite, there are also foils and sheets made of high-melting point metals such as molybdenum that satisfy this function, but they all have difficulties in terms of cost, so graphite foils or sheets known under the trade name Graphoil are the most useful. In particular, this graphite foil or sheet 5 also has a role as a mold release material, and after processing, the glass solidified thereon can be easily taken out from the crucible.

更に前述の構成において黒鉛の無通気性箔又は
シート5で包囲された被処理物2及びシールガラ
ス3,3′4の上面には重錘6が載置されている
が、この重錘6は前述の如くガラスが溶解したと
き浮き上る被処理物2の浮上を押えるためであ
り、高温材料で、かつガラスよりも比重の小さい
被処理体の浮上を押えるにたる重量のものであれ
ばよいが例えば窒化珪素、タングステン、モリブ
デン等が使用される。そして、この重錘6は処理
時における変形に対応すべく自由に坩堝内壁面に
沿う方向に動くことが必要で、前記被処理物及び
ガラス上面の黒鉛シート又は箔の上に荷重がかか
るようにしてある。
Furthermore, in the above structure, a weight 6 is placed on the upper surface of the workpiece 2 and the seal glass 3, 3'4, which are surrounded by an air-impermeable graphite foil or sheet 5. As mentioned above, this is to suppress the floating of the object to be processed 2 that floats up when the glass is melted, and it may be made of a high-temperature material and heavy enough to suppress the object to be processed, which has a specific gravity smaller than that of glass, from floating. For example, silicon nitride, tungsten, molybdenum, etc. are used. The weight 6 needs to move freely in the direction along the inner wall surface of the crucible in order to accommodate deformation during processing, so that a load is applied to the object to be processed and the graphite sheet or foil on the top surface of the glass. There is.

なお、図中、7は坩堝内側に噴霧又は塗布され
たBN粉末からなる離型剤層であり、特に必須で
はないが黒鉛の箔又はシートの離型効果と相俟つ
て処理後の取出しを容易ならしめることは勿論で
ある。
In addition, in the figure, 7 is a mold release agent layer made of BN powder sprayed or applied inside the crucible, and although it is not particularly essential, it combines with the mold release effect of graphite foil or sheet to facilitate removal after processing. Of course, you need to get used to it.

本発明被処理物収納構造体は叙上のような構成
によつてなり、主として圧力媒体にAr、N2等の
気体を用いたHIP処理に使用され、その形態で
HIP炉内に装入され、HIP処理されるが、HIP処
理は概して被処理物内に残存するガスを閉じ込め
ない上から又ガラスシールを完成させてから加圧
する意味から、先ず昇温し、その後、所定温度に
至り、昇圧およびさらに昇温するのが一般的であ
る。従つてガラスとしてパイレツクスガラスを使
用した場合、1200℃を過ぎると軟化溶解が起り、
未だ高密度化していない被処理物は比重の軽さか
ら浮上し、上部の無通気性黒鉛の箔又はシートを
押し上げガラス浴から被処理物の一部が浮上して
くる。
The object storage structure of the present invention has the above-mentioned configuration, and is mainly used for HIP processing using gases such as Ar and N2 as the pressure medium.
The material is charged into a HIP furnace and subjected to HIP treatment, but HIP treatment generally involves raising the temperature first and then applying pressure after completing the glass seal in order to avoid trapping gas remaining in the object. , it is common to reach a predetermined temperature, then increase the pressure and further increase the temperature. Therefore, if Pyrex glass is used as glass, it will soften and melt when the temperature exceeds 1200℃.
The objects to be treated, which have not yet been densified, float due to their light specific gravity, push up the upper non-porous graphite foil or sheet, and a portion of the objects to be treated float up from the glass bath.

しかし、このとき、上方には重錘6が存在する
ためこの浮上を抑え圧力媒体である気圧の侵入を
防ぐことができ、完全なシール状態を保持する。
なお、被処理物から放出されるガスはHIP初期に
は、ガラスシールが完成していないためにガラス
の間を通つて流出する。
However, at this time, since the weight 6 is present above, this floating can be suppressed and the intrusion of atmospheric pressure, which is a pressure medium, can be prevented, and a perfect sealing state can be maintained.
Note that the gas released from the object to be processed flows out through gaps in the glass because the glass seal is not yet completed in the early stages of HIP.

ガラスが融解した後はパイレツクスガラスが該
ガスを溶解する機能をもつところからガラス内に
溶解され、被処理物は所要のHIP温度、圧力下で
高密度化を達成することができる。そして前記ガ
ラス内に溶解したガスは処理後において、再び気
化され、ガラスを発泡状態としてガラスの除去を
容易とする。
After the glass is melted, the Pyrex glass has the function of dissolving the gas, so it is dissolved into the glass, and the object to be processed can be densified at the required HIP temperature and pressure. After the treatment, the gas dissolved in the glass is vaporized again, making the glass foamy and making it easier to remove the glass.

かくして本発明構造体は被処理物を無通気性の
黒鉛箔又はシートで囲み、上部に重錘を載せるこ
とにより圧力媒体の気体による被処理物への侵入
を防ぐことが出来るのみならず、HIP処理の懸案
である途中の被処理物の浮上傾向に対してもこれ
を重錘により押下しその無通気性と相俟つてシー
ルを完全ならしめることができる。
Thus, the structure of the present invention not only prevents pressure medium gas from entering the workpiece by surrounding the workpiece with an air-impermeable graphite foil or sheet and placing a weight on top, but also prevents pressure medium gas from entering the workpiece. Even if the object to be treated has a tendency to float during treatment, which is a problem during treatment, it can be pressed down with a weight and, in combination with its air-impermeability, a perfect seal can be achieved.

しかも本発明における黒鉛の箔又はシートは可
撓性を具備し、被処理物の緻密化を何ら阻害する
ことがないと共に離型剤としての効用をも有し、
カーボン坩堝から凝固したガラスを容易に取り出
す上にも頗る効果的であり、HIP処理するには圧
力媒体である気体を被処理物に侵入させてはなら
ないとするHIP処理の基本に則り高密度セラミツ
クス焼結体の製造に極めて実効性を発揮するもの
である。
Moreover, the graphite foil or sheet in the present invention has flexibility, does not inhibit the densification of the processed material in any way, and also has the effect as a mold release agent.
It is highly effective in easily removing solidified glass from a carbon crucible, and it is highly effective in making it possible to easily remove solidified glass from a carbon crucible. This method is extremely effective in producing sintered bodies.

以下、更に本発明の実施例を掲げる。 Examples of the present invention will be further described below.

実施例 純度99%、α相70%、平均粒径約1μmの
Si3N4粉末をシリコンゴムのチユーブに入れ栓を
して5000Kg/cm2の圧力で等方プレスを行ない相対
密度58%の予備成形体(約18mmφ×30mm)を作
製した。
Example Purity 99%, α phase 70%, average particle size approximately 1 μm
The Si 3 N 4 powder was placed in a silicone rubber tube and the tube was plugged, followed by isostatic pressing at a pressure of 5000 Kg/cm 2 to produce a preformed body (approximately 18 mmφ×30 mm) with a relative density of 58%.

この予備成形体を内面をBNでコーテイングし
た黒鉛製坩堝に図示の如くパイレツクスガラスか
らなる上下ガラス板と中間のパイレツクスガラス
からなる粉粒体に埋設した状態でグラフアイト製
ホイルで全面を包囲して配置し重錘を載せてHIP
装置に装入した。HIP装置内を300℃に昇温し、
約10Torrまで真空引を行つた後、15Kg/cm2のN2
ガスを注入して排気操作を2度行い、30Kg/cm2
N2ガスを注入した。このまま1200℃まで昇温し
てガラスを軟化溶解させた後、N2ガスを補給す
ると共に更に昇温し、1750℃、2000Kgf/cm2で約
2時間HIP処理を行つた。
This preformed body was embedded in a graphite crucible whose inner surface was coated with BN, with the upper and lower glass plates made of Pyrex glass and the intermediate powder made of Pyrex glass, and the entire surface was surrounded by graphite foil. Place it, place a weight on it, and HIP it.
loaded into the device. Raise the temperature inside the HIP device to 300℃,
After vacuuming to approximately 10 Torr, 15Kg/cm 2 of N 2
Inject the gas and perform the exhaust operation twice to obtain a volume of 30Kg/ cm2 .
N2 gas was injected. After raising the temperature to 1200° C. to soften and melt the glass, N 2 gas was supplied and the temperature was further raised to perform HIP treatment at 1750° C. and 2000 Kgf/cm 2 for about 2 hours.

HIP装置より取り出した成形体は、その全体が
黒味を帯びたガラスで覆われていたが、グラフア
イト製ホイルならびにガラスを除去したところ
Si3N4の表面は全く圧媒ガス侵入の跡もなく清浄
でその相対密度は98.5%であつた。
The molded body taken out from the HIP machine was entirely covered with dark glass, but after removing the graphite foil and glass,
The surface of Si 3 N 4 was clean with no trace of pressure gas intrusion, and its relative density was 98.5%.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明に係る被処理物収納構造体の1例を
示す断面概要図である。 1……坩堝、2……被処理物、3,3′……ガ
ラス板、4……ガラス粉粒体、5……黒鉛箔又は
シート、6……重錘、7……BN離型剤層。
The figure is a schematic cross-sectional view showing one example of a processing object storage structure according to the present invention. 1... Crucible, 2... Processing object, 3, 3'... Glass plate, 4... Glass powder, 5... Graphite foil or sheet, 6... Weight, 7... BN mold release agent layer.

Claims (1)

【特許請求の範囲】 1 通気性を有する坩堝内に熱間静水圧プレス処
理する被処理セラミツクス成形体を収納してなる
構造体であつて、前記被処理成形体は、坩堝内部
において該成形体を包み込むシール材ガラスと共
に可撓性を有する無通気性黒鉛の箔又はシートに
よつて全面が包囲されており、その上面の前記無
通気性黒鉛の箔又はシート上には重錘が載置され
ていることを特徴とする被処理物収納構造体。 2 通気性を有する坩堝がカーボン製坩堝である
特許請求の範囲第1項記載の被処理物収納構造
体。 3 被処理セラミツクス成形体が窒化珪素を主成
分として含む成形体である特許請求の範囲第1項
又は第2項記載の被処理物収納構造体。 4 被処理物成形体全面を上下のガラス板と、そ
の中間に充填されるガラス粉粒体によつて包囲し
てなる特許請求の範囲第1項、第2項又は第3項
記載の被処理物収納構造体。 5 ガラスがパイレツクスガラスである特許請求
の範囲第1項又は第4項記載の被処理物収納構造
体。
[Scope of Claims] 1 A structure in which a ceramic molded body to be treated is housed in a crucible having air permeability and subjected to hot isostatic press treatment, wherein the molded body to be treated is formed inside the crucible. The entire surface is surrounded by a flexible non-porous graphite foil or sheet together with the sealing material glass, and a weight is placed on the top surface of the non-porous graphite foil or sheet. A processing object storage structure characterized by: 2. The processed material storage structure according to claim 1, wherein the crucible having air permeability is a carbon crucible. 3. The object storage structure according to claim 1 or 2, wherein the ceramic molded object to be treated is a molded object containing silicon nitride as a main component. 4 Processing object The processing object according to claim 1, 2 or 3, in which the entire surface of the molded object is surrounded by upper and lower glass plates and glass powder filled between them. Item storage structure. 5. The object storage structure according to claim 1 or 4, wherein the glass is Pyrex glass.
JP56186567A 1981-11-19 1981-11-19 Treated matter containing structure Granted JPS5888180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186567A JPS5888180A (en) 1981-11-19 1981-11-19 Treated matter containing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186567A JPS5888180A (en) 1981-11-19 1981-11-19 Treated matter containing structure

Publications (2)

Publication Number Publication Date
JPS5888180A JPS5888180A (en) 1983-05-26
JPS6222954B2 true JPS6222954B2 (en) 1987-05-20

Family

ID=16190783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186567A Granted JPS5888180A (en) 1981-11-19 1981-11-19 Treated matter containing structure

Country Status (1)

Country Link
JP (1) JPS5888180A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148163A (en) * 2017-03-09 2018-09-20 日本特殊陶業株式会社 Method of manufacturing component for semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JPS5888180A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
AU621072B2 (en) Method of making metal matrix composites
KR960000474B1 (en) Method for producing ceramic/metal heat storage media and to the product thereof
KR0183974B1 (en) Method of forming metal matrix composite bodies by a self-generated vacuum process and products produced therefrom
IE59605B1 (en) Inverse shape replication method of making ceramic composite articles and articles obtained thereby
US4478626A (en) Method of hot isostatic pressing treatment
WO1994021407A1 (en) Method for producing articles by reactive infiltration
KR880008960A (en) Self-supporting ceramic composite manufacturing method and refractory parts
US4209478A (en) Method of sintering ceramics
GB2062011A (en) Hot isostatic pressing
KR960004427B1 (en) Method for the manufacture of an object of a powdered material by isostatic pressing
JPS6222954B2 (en)
US4952353A (en) Hot isostatic pressing
PL167044B1 (en) Method of making macrocomposite bodies by selfgenerated vacuum process and macrocomposite body obtained thereby
US5071685A (en) Ceramic articles, methods and apparatus for their manufacture
CA1133683A (en) Method for manufacturing an object of silicon nitride
JPS6234711B2 (en)
KR0183973B1 (en) Methods for forming macrocomposite bodies and macrocomposite bodies produced thereby
JPS5852406A (en) Hot hydrostatic pressing method
US11065686B2 (en) Method for sintering metals, non-oxide ceramics and other oxidation-sensitive materials
US5989483A (en) Method for manufacturing powder metallurgical tooling
US3973061A (en) Method for the preparation of porous ferrous metal impregnated with magnesium metal
JPS6222953B2 (en)
JPH05509076A (en) Ceramic composite with reduced metal content
JP3570640B2 (en) High density aluminum fluoride sintered body and method for producing the same
JPS6112961B2 (en)