JPS6234711B2 - - Google Patents

Info

Publication number
JPS6234711B2
JPS6234711B2 JP56186566A JP18656681A JPS6234711B2 JP S6234711 B2 JPS6234711 B2 JP S6234711B2 JP 56186566 A JP56186566 A JP 56186566A JP 18656681 A JP18656681 A JP 18656681A JP S6234711 B2 JPS6234711 B2 JP S6234711B2
Authority
JP
Japan
Prior art keywords
glass
temperature
sintered
pressure
hot isostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56186566A
Other languages
Japanese (ja)
Other versions
JPS5888179A (en
Inventor
Masato Moritoki
Takao Fujikawa
Junichi Myanaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP56186566A priority Critical patent/JPS5888179A/en
Publication of JPS5888179A publication Critical patent/JPS5888179A/en
Publication of JPS6234711B2 publication Critical patent/JPS6234711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は圧媒ガスを使用する熱間静水圧プレス
処理、特に低軟化点のガラス、圧媒ガスを溶解す
るガラスをシール材として用いる前記熱間静水圧
処理法のシール性改善方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot isostatic pressing process using a pressure medium gas, particularly a hot isostatic press process using a glass having a low softening point or a glass that dissolves the pressure medium gas as a sealing material. This invention relates to a method for improving sealing performance.

ガラスをシール材として用いる熱間静水圧プレ
ス(以下HIPと略記する)処理方法は異形成形が
可能であること、通常カプセル材として使用され
る銅、鋼などでは使用できない高温下でもHIPす
ることが可能であるなどの利点があり、ガラスカ
プセル法(特公昭46−2731号公報参照)、成形体
をガラス粒中に埋設する方法(特開昭55−89405
号公報参照)などが公知であり、現在、高温構造
材料として広くその開発が進められているセラミ
ツクス粉末の成形加工に利用されている。
The hot isostatic pressing (hereinafter abbreviated as HIP) treatment method that uses glass as a sealing material allows for irregular shapes, and can be used at high temperatures that cannot be used with copper, steel, etc., which are normally used as encapsulants. The glass capsule method (see Japanese Patent Publication No. 46-2731) and the method of embedding the molded body in glass grains (Japanese Patent Publication No. 55-89405)
(see Japanese Patent Publication No. 2003-111000), etc., and are currently used in the molding process of ceramic powder, which is currently being widely developed as a high-temperature structural material.

ところが耐熱性セラミツクス粉末はその焼結温
度が高く、従つてHIP温度の従前の金属粉末成形
時に比べ高くなるところから低軟化点のガラスを
用いて窒化珪素(Si3N4)、炭化珪素(SiC)など
のセラミツクスを処理する際にはHIP温度が1700
℃程度になるため前記ガラス封入方式でもガラス
浴方式でも同じ状態となり、被処理セラミツクス
成形体はガラス浴中に浸漬された状態で、まわり
は溶融ガラスにより覆われることになる。そし
て、この場合、セラミツクス成形体は高密度にな
るまでは比重が1.8〜2.1g/cm3とガラスの比重2.2
〜2.3よりも小さいためガラス浴から成形体の一
部が浮き出てシールが不完全になることがある。
これはHIP処理時、圧力媒体としてAr又はN2
スが使用されるとき、直接成形体に該圧媒ガスが
触れることとなり、ガス中に含有される微量酸素
とセラミツクスとの反応を誘起するほか、セラミ
ツクス成形体の気孔中に圧媒ガスが入るため、圧
媒ガスの圧力が緻密化のための駆動力として作用
しなくなり、本来目的とする圧力の効果が得られ
ない状況を生ぜしめる。
However, the sintering temperature of heat-resistant ceramic powder is high, and therefore the HIP temperature is higher than that in conventional metal powder compacting. ) when processing ceramics such as
Since the temperature is about 10.degree. C., the conditions are the same in both the glass encapsulation method and the glass bath method, and the ceramic molded body to be treated is immersed in the glass bath and its surroundings are covered with molten glass. In this case, the specific gravity of the ceramic molded body is 1.8 to 2.1 g/cm 3 until it reaches high density, and the specific gravity of glass is 2.2.
If it is smaller than ~2.3, part of the molded body may come out from the glass bath, resulting in incomplete sealing.
This is because when Ar or N2 gas is used as a pressure medium during the HIP process, the pressure medium gas comes into direct contact with the molded body, inducing a reaction between the trace amount of oxygen contained in the gas and the ceramics. Since the pressurized gas enters the pores of the ceramic molded body, the pressure of the pressurized gas no longer acts as a driving force for densification, resulting in a situation where the intended pressure effect cannot be obtained.

又、一方、低軟化点ガラスのあるもの例えばパ
イレツクスガラスにあつては特定の温度、圧力領
域では圧媒ガスを溶解し、成形体のポア部にこの
ガスが溜つて内圧を生じ、完全にはHIP処理によ
る高密度化が達成されない場合がある。
On the other hand, low softening point glasses, such as Pyrex glass, dissolve pressure medium gas in a specific temperature and pressure range, and this gas accumulates in the pores of the molded body, creating an internal pressure, and completely melting. densification through HIP processing may not be achieved.

しかしながら、このような欠点は有するが、低
軟化点のガラスは取扱いが容易であること、価格
が安いこと等、多くの利点があり、その利用は極
めて工業的であるところから前記欠点の改良はひ
としく望まれている。
However, although it has these disadvantages, glass with a low softening point has many advantages such as ease of handling and low price, and its use is extremely industrial, so it is difficult to improve the above disadvantages. They are equally desired.

本発明は、かかる時代の趨勢に即応し、前記ガ
ラスの欠点を克服することにより極めて有用なシ
ール材であるガラスシール材をより有効に活用し
得る改善されたシール方法を提供することを目的
とするものである。
An object of the present invention is to provide an improved sealing method that can more effectively utilize a glass sealing material, which is an extremely useful sealing material, by overcoming the drawbacks of glass, in response to the trends of the times. It is something to do.

即ち、かかる目的を達成する本発明の特徴はセ
ラミツクス粉末成形体をガラス浴中に浸漬した状
態で、高温下、気体を圧力媒体として加圧焼結す
るHIP法において前記成形体の全表面をBN粉末
を内層として、前記成形体材料が焼結する温度よ
りも低い温度で焼結する材料よりなる粉末で覆
い、HIP処理途中で、前記被覆材料を先ず焼結さ
せて気密の層とした後、さらに前記成形体が焼結
する温度まで昇温しHIP処理する点にある。
That is, the feature of the present invention that achieves this object is that the entire surface of the ceramic powder compact is immersed in a glass bath and the entire surface of the compact is sintered under pressure at high temperature using gas as a pressure medium. Covering with powder as an inner layer made of a material that sinteres at a temperature lower than the temperature at which the compact material is sintered, and during the HIP process, after first sintering the covering material to form an airtight layer, Furthermore, the temperature is raised to a temperature at which the molded body is sintered, and HIP treatment is performed.

以下、更に上記本発明の具体的な実施態様につ
いて説明する。
Hereinafter, specific embodiments of the present invention will be further described.

先ず本発明の基本的な処理法であるHIP処理法
は、セラミツクス粉末成形体をガラスカプセルに
封入、またはガラス粉粒体中に埋設し、ガラス浴
中に浸漬した状態で、かつ高温下、Ar、N2ガス
など不活性ガスを圧力媒体として加圧焼結する方
法である。
First, in the HIP treatment method, which is the basic treatment method of the present invention, a ceramic powder compact is encapsulated in a glass capsule or embedded in a glass powder granule, immersed in a glass bath, and exposed to Ar under high temperature. This is a pressure sintering method using an inert gas such as N 2 gas as a pressure medium.

ここでセラミツクス粉末としては、窒化珪素、
炭化珪素、炭化硼素(B4C)の何れかを主成分と
するセラミツクスであり、通常、予備成形体ある
いはこれを予備焼結した予備焼結体として形成さ
れ、ガラスカプセル内に封入又はガラス粉粒体中
に埋設されて爾後のHIP処理に付される。
Here, as the ceramic powder, silicon nitride,
It is a ceramic whose main component is either silicon carbide or boron carbide (B 4 C), and it is usually formed as a preform or a pre-sintered body by pre-sintering it, and it is enclosed in a glass capsule or glass powder. It is embedded in granules and subjected to subsequent HIP treatment.

これら予備成形、更に予備焼結された被処理成
形体は、セラミツクス粉末単独の外、Y2O3
末、Al2O3粉末、MgO粉などからなる焼結助剤を
含む場合もある。
These preformed and presintered molded bodies may contain a sintering aid such as Y 2 O 3 powder, Al 2 O 3 powder, MgO powder, etc., in addition to the ceramic powder alone.

一方、前記被処理成形体を被覆する手段として
ガラスカプセル封入方法と、ガラス粉粒体中に埋
設する方法があるがこれらは何れの場合において
もガラスの軟化点以上に加熱すれば同じ状態を呈
することは前述の通りであり、唯、前者の場合に
は封入時に残留空気の影響を避けるため脱気密封
するに当り脱気部分がカプセル内のみとなるから
脱気が簡単であるのに対し、後者の場合には加熱
炉全体を脱気する必要がある点で多少異なるだけ
である。
On the other hand, there are a glass capsule encapsulation method and a method of embedding it in glass powder as a means of covering the molded object to be treated, but in either case, the same state will be exhibited if heated above the softening point of the glass. This is as mentioned above; however, in the former case, degassing is easy because the only part to be degassed and sealed is inside the capsule to avoid the influence of residual air during encapsulation. The only difference is that in the latter case it is necessary to evacuate the entire furnace.

なお、本発明で使用するガラスとしてはシリカ
ガラス、バイコールガラス、パイレツクスガラス
などがあるがシリカガラスは成形体と反応層を生
成することがあり、又、バイコールガラスは処理
後の除去に難があり、従つて最も好適なものとし
てはパイレツクスガラスであり、通常、使用され
る。又、HIP処理はHIP炉内でAr、N2などの雰囲
気ガス下において昇温昇圧して行なわれるがガラ
スカプセルの局部的な歪の発生を阻止し、あるい
はガラス粉粒体が相互に融着して被処理成形体外
面に緻密なガラス層が形成される前に被処理体内
に高圧ガスが侵入しHIP処理を不可能ならしめる
のを防止するため、雰囲気圧力が100気圧以下の
状態で先ず温度をガラスの軟化点以上に昇温して
ガラスを容易に塑性流動できる様になし、かつガ
ラス粉粒体を使用する場合は被処理体外周面に緻
密なガラス層を形成させておき、続いて所定の
HIP温度、圧力に昇温昇圧させるようにする。し
かし後述するように本発明においては、ガラス被
覆と、被処理成形体との間に被覆材料が焼結層を
作るので、必らずしも上記HIP方法を採ることは
要求されない。
The glasses used in the present invention include silica glass, Vycor glass, and Pyrex glass, but silica glass may form a reaction layer with the molded product, and Vycor glass is difficult to remove after processing. Therefore, Pyrex glass is the most preferred and usually used. In addition, HIP treatment is carried out in a HIP furnace by raising the temperature and pressure in an atmosphere gas such as Ar or N2 , which prevents local distortion of the glass capsule or prevents the glass powder particles from fusing together. In order to prevent high-pressure gas from entering the object and making HIP treatment impossible before a dense glass layer is formed on the outer surface of the object, the HIP treatment is first performed at an atmospheric pressure of 100 atmospheres or less. The temperature is raised above the softening point of the glass so that the glass can easily flow plastically, and when glass powder is used, a dense glass layer is formed on the outer peripheral surface of the object to be treated. specified
Let the HIP temperature and pressure increase. However, as will be described later, in the present invention, the coating material forms a sintered layer between the glass coating and the molded object to be treated, so the HIP method described above is not necessarily required.

即ち、本発明は、上述の如きHIP処理において
シールの完全性を確保すべく特有の被覆材料を被
処理成形体の全表面を覆つて層成することであ
る。
That is, the present invention involves layering a specific coating material over the entire surface of the molded article to ensure seal integrity during the HIP process as described above.

そのため前記ガラスカプセルへの封入、ガラス
粉粒体への埋設に先立ち、被処理成形体の外面
に、その全外面を覆い、成形体焼結温度よりも低
い温度で焼結し、かつHIP処理温度においても溶
融しない材料粉末を層着する。
Therefore, prior to encapsulation in the glass capsule and embedding in the glass powder, the entire outer surface of the molded object to be processed is covered, sintered at a temperature lower than the sintering temperature of the molded object, and the HIP treatment temperature is A material powder that does not melt is deposited in a layer.

被覆材料としてはAl2O3、ZrO2、BNなどが用
いられ、就中、BN粉末は最も好適であるが、
HIP処理しようとするセラミツクス成形体との関
連があり、必らずしもBN粉末に限られるもので
はない。しかしBN粉末は離型性が良好であり、
被処理成形体を覆う直接の外面にはBN粉末層を
形成しておくことが必要である。従つて、離型性
を容易ならしめるためのBN粉末層を内層とし
て、その外面に前記本発明の特色とする被覆材料
が付着される。
Al 2 O 3 , ZrO 2 , BN, etc. are used as the coating material, and among them, BN powder is the most suitable, but
It is related to the ceramic molded body to be subjected to HIP treatment, and is not necessarily limited to BN powder. However, BN powder has good mold release properties,
It is necessary to form a BN powder layer on the outer surface directly covering the molded object to be processed. Therefore, a BN powder layer for facilitating mold release is used as an inner layer, and the coating material characterized by the present invention is adhered to the outer surface thereof.

この被覆材料では、勿論、金属粉末を除外する
ものではないが、Mo、Pt、Crなどに限られ、し
かもCrの場合、処理後の剥離性に難があるので
前記材料が好まれる。
Of course, this coating material does not exclude metal powders, but is limited to Mo, Pt, Cr, etc. In the case of Cr, the above-mentioned materials are preferred because it has difficulty in peeling off after treatment.

そして、これら被覆材料は、その形態保持の点
から、必要に応じ、例えばゴム型の如き柔軟性シ
ート材からなる型などを使用し、該型内に被覆材
料粉末を充填し、その中に所要の被処理成形体を
埋設して常温下で静水圧処理等により層着する。
In order to maintain the shape of these coating materials, a mold made of a flexible sheet material such as a rubber mold is used as necessary, and the coating material powder is filled into the mold, and the required amount is filled into the mold. The molded body to be treated is buried and layered by hydrostatic pressure treatment or the like at room temperature.

なお、この被覆材料の厚さは1層以上で0.3mm
以上、好ましくは0.5mm以上である。何れにして
もこの被覆材料はHIP処理途中好ましくは1200℃
程度において気密焼結層を被処理成形体の外面に
形成しHIP処理による緻密化を達成するに足るも
のでなければならない。
The thickness of this coating material is 0.3mm for one or more layers.
It is preferably 0.5 mm or more. In any case, this coating material is preferably heated to 1200℃ during the HIP process.
The degree of sintering must be sufficient to form an airtight sintered layer on the outer surface of the molded body to be treated and achieve densification by HIP treatment.

因に被覆材料の種類と、それが気密層になるま
で焼結される温度、圧力条件ならびにHIP処理さ
れるセラミツクス成形体の種類とHIP温度、圧力
を示せば下記の通りである。
The types of coating materials, the temperature and pressure conditions at which they are sintered to form an airtight layer, as well as the types of ceramic molded bodies to be subjected to HIP treatment, HIP temperature and pressure are as follows.

被覆材料 Al2O3 1200℃ 1000Kgf/cm2以上 ZrO2 1350℃ 1000Kgf/cm2以上 BN 1650℃ 1800Kgf/cm2以上 セラミツクス成形体 Si3N4 1750℃ 2000Kg/cm2以上 SiC 1850℃ 2000Kg/cm2以上 B4C 1850℃ 2000Kg/cm2以上 かくして上記セラミツクス成形体から選ばれる
被処理体に対して前記被覆材料を選択して処理を
行なうときは、添付図面に示す圧力、温度の曲線
をもつて先ずA位置で被覆材料の焼結が行われ、
次いでB位置で該被覆材料で覆われた被処理成形
体の焼結が行われる。
Coating material Al 2 O 3 1200℃ 1000Kgf/cm 2 or more ZrO 2 1350℃ 1000Kgf/cm 2 or more BN 1650℃ 1800Kgf/cm 2 or more Ceramic molded body Si 3 N 4 1750℃ 2000Kg/cm 2 or more SiC 1850℃ 2000Kg/cm 2 or more 2 or more B 4 C 1850℃ 2000Kg/cm 2 or more Therefore, when the above-mentioned coating material is selected and the treatment is carried out on the object to be treated selected from the above-mentioned ceramic molded objects, the pressure and temperature curves shown in the attached drawings are applied. First, the coating material is sintered at position A,
Next, at position B, the molded body covered with the coating material is sintered.

従つて、このような本発明方法によればガラス
浴中で圧媒ガスを利用し処理するに際し、比重に
差があり、処理途中でガラス浴より浮き上るよう
なことがあるとしても、シールは全く完全とな
り、HIP処理による適確な等方圧縮による高密度
化が期待できる。
Therefore, according to the method of the present invention, when processing using a pressure medium gas in a glass bath, even if there is a difference in specific gravity and the seal may float out of the glass bath during the processing, the seal will remain intact. It is completely perfect, and high density can be expected through accurate isotropic compression through HIP processing.

以上の如く、本発明方法は低軟化点ガラスをシ
ール材とする特長を活かしつつ、その欠点である
シール性を克服し、HIP処理の工業的利用に大き
く寄与するものである。
As described above, the method of the present invention takes advantage of the advantages of using low softening point glass as a sealing material while overcoming its drawback in sealing performance, thereby greatly contributing to the industrial use of HIP processing.

なお、圧媒ガスを溶解するガラス、例えばパイ
レツクスガラスをシール材とする場合には、更に
加圧焼結終了後、ガラスに溶解した圧媒ガスを再
び気化させ、ガラスを発泡状態となし、これを冷
却することにより小さな機械的外力で付着したガ
ラスを容易に除去することが出来、一石二鳥であ
る。
In addition, when glass that dissolves pressure gas, such as Pyrex glass, is used as a sealing material, furthermore, after pressure sintering is completed, the pressure gas dissolved in the glass is vaporized again to make the glass into a foamed state, By cooling this, the attached glass can be easily removed with a small external mechanical force, killing two birds with one stone.

以下、更に本発明を実施例につき説明する。 Hereinafter, the present invention will be further explained with reference to examples.

実施例 平均粒径約1μm、α相約70%のY2O32.5%含
有のSi3N4粉末を5000Kgf/cm2の圧力で等方圧縮
成形し相対密度62%の被処理成形体を得た。
Example Si 3 N 4 powder containing 2.5% Y 2 O 3 with an average particle diameter of about 1 μm and about 70% α phase was isostatically compression molded at a pressure of 5000 Kgf/cm 2 to obtain a molded body with a relative density of 62%. Ta.

この成形体表面にBNを0.3mmの厚さで塗布し、
更にその外面にAl2O3を0.3mmの厚さで塗布し、グ
ラフアイトルツボ中にパイレツクスガラス中に埋
設して配置し、HIP装置に挿入した。Al2O3は前
述の如く1200℃、1000Kgf/cm2以上で焼結される
のでHIP途中の該位置(添付図面A位置)におい
て焼結状態が得られ、引続き昇温、昇圧により
BNも前記所定の温度、圧力で焼結され、更に
Si3N4成形体のHIP処理温度、圧力である1750
℃、2000Kgf/cm2以上(添付図面B位置)まで昇
温昇圧した。
Apply BN to a thickness of 0.3 mm on the surface of this molded body,
Furthermore, Al 2 O 3 was applied to the outer surface to a thickness of 0.3 mm, and the crucible was placed in a graphite crucible embedded in Pyrex glass, and inserted into a HIP device. As mentioned above, Al 2 O 3 is sintered at 1200℃ and 1000Kgf/cm 2 or more, so a sintered state is obtained at this position (position A in the attached drawing) during HIP, and then by increasing temperature and pressure.
BN is also sintered at the predetermined temperature and pressure, and
HIP processing temperature and pressure of Si 3 N 4 molded body is 1750
The temperature and pressure were increased to 2000 Kgf/cm 2 or higher (position B in the attached drawing).

HIP処理後、圧力を2000Kgf/cm2に保持したま
ま500℃まで降温し、次いで減圧し放冷した。ル
ツボからガラスに覆われた成形体を取り出し、電
気炉中で再び1100℃まで昇温し、30分保持した
後、冷却した。
After the HIP treatment, the temperature was lowered to 500° C. while maintaining the pressure at 2000 Kgf/cm 2 , and then the pressure was reduced and allowed to cool. The glass-covered molded body was taken out from the crucible, heated again to 1100°C in an electric furnace, held for 30 minutes, and then cooled.

成形体を覆つていてガラスはガラス中に溶解し
ていた圧媒ガスの気化により発泡ガラスとなつて
おり、シール材の除去は極めて容易であつた。得
られた成形体は相対密度98.5%の高密度焼結体で
全体にわたり等方圧縮は適確で均質な製品であつ
た。
The glass covering the molded body had become foamed glass due to the vaporization of the pressure medium gas dissolved in the glass, and it was extremely easy to remove the sealing material. The obtained molded body was a high-density sintered body with a relative density of 98.5%, and was a homogeneous product with appropriate isotropic compression throughout.

【図面の簡単な説明】[Brief explanation of the drawing]

図はHIP処理時における温度及び圧力の態様を
示す図表である。
The figure is a chart showing aspects of temperature and pressure during HIP processing.

Claims (1)

【特許請求の範囲】 1 セラミツクス粉末成形体をガラス浴中に浸漬
した状態で、高温下、圧媒ガスを使用して加圧焼
結する熱間静水圧プレス方法において、前記成形
体の全表面を、BNを内層として前記成形体材料
が焼結する温度よりも低い温度で焼結し、かつ熱
間静水プレス時に溶融しない材料からなる粉末で
覆い、前記熱間静水圧プレス処理途中で前記被覆
粉末材料をまず焼結させて気密性の層とした後、
さらに前記成形体が焼結する温度まで昇温するこ
とを特徴とするセラミツクスの熱間静水圧プレス
方法。 2 セラミツクス粉末成形体が窒化珪素、炭化珪
素、炭化硼素の何れかを主成分とする成形体であ
る特許請求の範囲第1項記載のセラミツクスの熱
間静水圧プレス方法。 3 被覆材料がAl2O3、ZrO2、BNから選ばれた
材料である特許請求の範囲第1項又は第2項記載
のセラミツクスの熱間静水圧プレス方法。 4 ガラスがパイレツクスガラスである特許請求
の範囲第1項、第2項又は第3項記載のセラミツ
クスの熱間静水圧プレス方法。
[Scope of Claims] 1. In a hot isostatic pressing method in which a ceramic powder compact is immersed in a glass bath and pressure sintered using a pressure medium gas at high temperature, the entire surface of the compact is is covered with a powder made of a material that is sintered at a temperature lower than the temperature at which the compact material is sintered with BN as an inner layer and does not melt during hot isostatic pressing, and the coating is removed during the hot isostatic pressing process. The powder material is first sintered into an airtight layer and then
A hot isostatic pressing method for ceramics, further comprising raising the temperature to a temperature at which the compact is sintered. 2. The hot isostatic pressing method for ceramics according to claim 1, wherein the ceramic powder compact is a compact containing silicon nitride, silicon carbide, or boron carbide as a main component. 3. The hot isostatic pressing method for ceramics according to claim 1 or 2, wherein the coating material is a material selected from Al 2 O 3 , ZrO 2 and BN. 4. A hot isostatic pressing method for ceramics according to claim 1, 2 or 3, wherein the glass is Pyrex glass.
JP56186566A 1981-11-19 1981-11-19 Ceramics thermal hydrostatic press method Granted JPS5888179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56186566A JPS5888179A (en) 1981-11-19 1981-11-19 Ceramics thermal hydrostatic press method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56186566A JPS5888179A (en) 1981-11-19 1981-11-19 Ceramics thermal hydrostatic press method

Publications (2)

Publication Number Publication Date
JPS5888179A JPS5888179A (en) 1983-05-26
JPS6234711B2 true JPS6234711B2 (en) 1987-07-28

Family

ID=16190763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56186566A Granted JPS5888179A (en) 1981-11-19 1981-11-19 Ceramics thermal hydrostatic press method

Country Status (1)

Country Link
JP (1) JPS5888179A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE456563B (en) * 1986-05-13 1988-10-17 Asea Cerama Ab SET TO ISSTATIC PRESSURE OF POWDER FOR FORMAL IN A GLASS ENVIRONMENT

Also Published As

Publication number Publication date
JPS5888179A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
JP2009525359A5 (en)
JPH029081B2 (en)
JPS6245195B2 (en)
CA1192384A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
US4478789A (en) Method of manufacturing an object of metallic or ceramic material
JPS641283B2 (en)
GB2048952A (en) Isostatic Hot Pressing Metal or Ceramic
JPS5935870B2 (en) Silicon nitride object manufacturing method
US4952353A (en) Hot isostatic pressing
JPS6234711B2 (en)
CA1133683A (en) Method for manufacturing an object of silicon nitride
IE850242L (en) Improved process for compacting a porous structural member¹for hot-isostatic moulding.
SE414920B (en) SET TO MAKE A FORM OF A MATERIAL IN THE FORM OF A POWDER THROUGH ISOSTATIC PRESSING OF A POWDER-FORMATED BODY
JPS5852406A (en) Hot hydrostatic pressing method
JPS6222953B2 (en)
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JPH0499104A (en) Capsule structure of green compact for sintering and manufacture of sintered body with this capsule
JPS581074B2 (en) netsukanseisuiatsuseikeihou
JP2589815B2 (en) Hot isostatic pressing method
JPS6146432B2 (en)
JPS649270B2 (en)
JPS6222954B2 (en)
JPS5888187A (en) Manufacture of minute silicon nitride sintered body
JPH0812450A (en) Production of sintered compact by hot isotropic pressure treatment
JPH0114194B2 (en)