JPS62228364A - Line system continuous feeding specular face polishing device - Google Patents

Line system continuous feeding specular face polishing device

Info

Publication number
JPS62228364A
JPS62228364A JP7041686A JP7041686A JPS62228364A JP S62228364 A JPS62228364 A JP S62228364A JP 7041686 A JP7041686 A JP 7041686A JP 7041686 A JP7041686 A JP 7041686A JP S62228364 A JPS62228364 A JP S62228364A
Authority
JP
Japan
Prior art keywords
polishing
liquid
workpiece
tool
viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7041686A
Other languages
Japanese (ja)
Other versions
JPH0416311B2 (en
Inventor
Koichi Kiyomiya
清宮 紘一
Kenji Nakagami
中上 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIRAKURU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
MIRAKURU KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIRAKURU KK, Agency of Industrial Science and Technology filed Critical MIRAKURU KK
Priority to JP7041686A priority Critical patent/JPS62228364A/en
Publication of JPS62228364A publication Critical patent/JPS62228364A/en
Publication of JPH0416311B2 publication Critical patent/JPH0416311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To enable a uniform specular face polishing by providing the liquid reservoir of a polishing liquid on the surface board of a tool base, providing a number of flow- out ports on the peripheral edge of said surface board, and arranging and reciprocating said tool bases on each of which an abrasive grain holdable visco-elastic polishing body is installed, in a direction perpendicular to the feeding direction of a workpiece. CONSTITUTION:A number of liquid flow-out ports 30 are opened on the peripheral edge of the disk-form surface board 24 of a tool base 21 installed on a motor driven shaft 14. And, a liquid reservoir 26 is formed on the back of the surface board 24 and is feed with a liquid from a liquid feeding opening 31. A liquid-penetrating visco- elastic polishing body 22 of an urethane form, etc. is installed on the surfaces of the tool base 21. Accordingly, a polishing liquid is fed to the contact part between the polishing body 22 and a workpiece by means of a centrifugal force due to the rotation of a tool. Many of the tools are multiply arranged in the direction perpendicular to the feeding direction as well as the feeding direction of the workpiece, and are reciprocated in the perpendicular direction at a speed higher than the feeding speed of the workpiece. Accordingly, a uniform specular face polishing can be carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ステンレス鋼定尺板、またはコイル材のよう
に比較的広い面積の平面をもつ研磨対象物、あるいは表
面に比較的小さい凹凸を有する大面積工作物や小物部品
の配列により形成された研磨対象物について、ライン式
連続送りにより完全鏡面仕上げするための研磨装置に関
するものである。 [従来の技術] 鏡面仕上げされたステンレス鋼板は建築関係の内外装に
用いられている外、シリコン太陽電池用基板などにも用
途が広がっているが、このところ鏡面仕上げの程度に対
するユーザ側の認識が次第に厳しくなってきており、従
来のパフ研磨で仕上げた砥粒線の目立つようなものは、
準鏡面として区別して扱われる一方、完全な鏡面に対す
る需要が増大しつつある。 また、従来のパフ研磨では、粉層が甚だしく、それを抑
制して作業環境を改善することが非常に困難であるとい
う問題もある。 このような現状において、特に、比較的大きな研磨対象
物を一挙に鏡面研磨することの要求が増大しているが、
パフ研磨あるいはラッピング等をはじめとする従来の研
磨方式では、そのような要求に対する対応が困難であっ
た。 即ち、ステンレス鋼定尺板、またはコイル材のように、
比較的広い面積をもつ研磨対象物を鏡面研磨する場合1
次のような問題点があるが、従来の研磨手段ではこのよ
うな問題点の解決は望めない。 まず、研磨用工具としては、その対象物に対して大きな
面で接触して’i磨する単一の研磨用工具を用いるより
も、多数の研磨用工具を配列させて、それらにより研磨
する方が、種々の面で有効適切であると考えられるが、
この場合においても、各工具の研磨対象物に対する押付
は力を充分に小さいものとしなければ、研磨対象物と工
具との全体的な接触圧が増大して、両者の相対的な送り
が困難になるばかりでなく、対象物も極めて強固な支持
手段によって支持することが必要となり、装置が大型化
する。 また、研磨に際しては研磨用液体を供給する必要がある
が、全体的にその研磨用液体の量が多くなると、作業環
境が悪化するという問題があり、しかもそれを均一に供
給しなければ、均一な鏡面研磨は望めない。 さらに、砥粒線のない完全な鏡面を得るためには、パフ
研磨のように、同一の位置を砥粒が繰返し切削するよう
な研磨手段は採用することができず、研磨対象物と研磨
用工具の相対的な移動について充分な配慮が必要になる
。 [発明が解決しようとする問題点] 本発明の目的は、上記のように比較的広い面積をもつ研
磨対象物を鏡面研磨するに際し、工具の研磨対象物に対
する押付は力を充分に小さいものとして、装置の大型化
を避けると共に、できるだけ少量の研磨用液体を均一に
供給して研磨できるように構成し、さらに砥粒線のない
完全な鏡面を得るように配慮した鏡面研磨装置を提供す
ることにある。 c問題点を解決するための手段] 上記目的を達成するため、本発明のライン式連続送り鏡
面研磨装置は、回転駆動機の回転軸の先端に取付ける工
具基盤を、円板状の表面板の背後に研磨用液体が供給さ
れる液溜めを設けて、その表面板における周辺部に多数
の液流出口を開設することにより構成し、この工具基盤
に、通液性を有すると共に砥粒を保持可能な粘弾性材料
により形成して、表面を被加工物の表面に倣って変形可
能な加工面とした粘弾性研磨体を取付け、これに。 よって構成される研磨ユニットの多数を、平面的な被加
工物に対し、その送り方向と直交する方向に配列させて
、各研磨ユニットを、被加工物に対して粘弾性研磨体を
一定の力で押付けた状態でその押付は方向に移動自在に
支持させ、且つそれらの研磨ユニットを、上記被加工物
の相対的送り方向と直交する方向にその送り速度よりも
充分に速い速度で往復運動させる往復動機構に連結した
ことを特徴とするものである。 [作 用] 各研磨ユニットにおいては、工具基盤内の液溜めに研磨
用液体を供給しながら回転駆動機により研磨用工具を回
転させると、その回転に伴う遠心力により工具基盤の表
面板の周辺部に設けた多数の液流出口から研磨用液体が
通液性を有する粘弾性研磨体を通して被加工物表面に供
給される。そのため、研磨用液体を圧力を掛けて送り込
む必要はない、また、被加工物表面に対する研磨用工具
の圧接力は、例えば研磨ユニット自体の重量程度の非常
に小さいものでよい。 上記研磨ユニットがこのように作用するため、その多数
を配列させて、被加工物の相対的送り方向と直交する方
向にその送り速度よりも充分に速い速度で往復運動させ
ると、各研磨ユニツ)に適度な研磨用液体が供給される
ため、全体的にその液体が環境を悪化させる程度になる
ことはなく、また砥粒が同一の位置を繰返して研削する
ことがないため、仕上面に砥粒線が生じるようなことは
ない。 さらに、粘弾性研磨体を、粘弾性材料により形成して、
その表面を被加工物の表面に倣って変形可能な加工面と
し、また粘弾性研磨体を被加工物に対して一定の力で押
付けた状態でその押付は方向に移動自在に支持させてい
るので、表面が平面状をなすステンレス鋼定尺板または
コイル材のような被加工物ばかりでなく、表面に比較的
小さい凹凸を有する大面積工作物や小物部品の配列によ
り形成された研磨対象物にも適用することができる。 [実施例] 第1図ないし第3図は本発明のライン式連続送り鏡面研
磨装置の実施例を示すもので、ステンレス鋼定尺板等の
被加工物Wを載置して移送するコンベヤ装M1 、上記
コンベヤ装置lによって移送される被加工物Wの上方に
設置された複数の機枠2、各機枠2上に上に設けた往復
動機構3、その往復動機構3によってコンベヤ装置lに
よる被加工物Wの移送方向と直交する方向に往復動する
ようにした摺動枠4、その摺動枠4に上下摺動自在に支
持させた多数の研磨ユニット5等を主体として構成され
ている。 第4図及び第5図は、上記研磨ユニット5の詳細を例示
したもので、ここでは電解砥粒複合研磨を行う装置とし
て構成した場合を示している。 この研磨ユニット5は、装置本体11内に、モータから
なる回転駆動機12及びその出力側に設けた減速装置1
3とを備え、それらによって回転する回転軸14を装置
本体11から導出して、その先端に工具20を取付けて
いる。 上記工具20は、電解研磨のための電極としても機能さ
せるために導電性を有する銅その他の材料により形成し
た略円板状の工具基5121と、その表面に取付ける粘
弾性研磨体22とを主体として構成されている。 上記工具基fi21は、回転軸14の先端に取付ける円
板状の表面板24の背後に液溜め26を形成したもので
、表面板24は、その中央を回転軸Hに取付け、また周
辺部に多数の液流出口30を開設し、背後の液溜め26
を液体の供給開口31により開放させ、その間口31の
周囲に、後述の電解用電流を供給する給電用摺接子33
を接触させるためのJl接面32を形成している。 上記工具基盤21の表面に取付ける粘弾性研磨体22は
、発泡ポリウレタンその他の合成樹脂発泡体等のスポン
ジ状部材、あるいはナイロン不織布のような、通液性を
有する粘弾性体によって構成し、それを工具基盤の表面
に取付けるようにしたものである。 また、上記粘弾性研磨体22は、その表面または内部全
体に砥粒を分散保持させておくことができ、その場合に
は、アルミナ等の砥粒を混合した合成樹脂ポンドにより
、ナイロン不織布等に砥粒を接着状態に保持させ、ある
いはそのような砥粒の固定を行うことなく、遊離状態の
砥粒を不織布の網目に支持させるようにすることもでき
る。 上記表面板24に開設した多数の液流出口30は、上記
工具基l1121の周辺部、さらに具体的には周縁から
若干内側寄りに設け、工具基5121内の周辺部には研
磨用液体または電解液の液溜め26を形成し、この液溜
め26にそれらの液を一時的に貯えて、多数の液流出口
30から液体を安定的に供給できるようにするものであ
る。従って、工A20が回転する間に液流出口30から
研磨用液体または電解液が逐次流出し、その液体が工具
の回転に伴う遠心力で主として工具20の周辺における
粘弾性研磨体22と被加工物との接触部分に供給される
。しかも、工具20が液体の保有性にすぐれるため、比
較的少ない量の液体で研磨を行うことができる。 液体の供給管38は、研磨作用部分に対して研磨用液体
または電解液を供給するためのもので、装置本体11の
一端に送給口40を開口させ、また装置本体内を通じて
、上記工具基盤21の背後に設けた回転軸14のまわり
の液供給開口31内に、他端の送出口41を開口状態で
臨ませている。このように、研磨用液体または電解液は
、大気に開放した液溜めに注入するだけであり、そのた
めそれらの液体を圧送するための設備を非常に簡単なも
のとすることができ、例えば、B単な水中ポンプ等を使
用するだけでもよい。 前記粘弾性研磨体22に砥粒を保持させる代り、あるい
はそれに加えて、この液体の供給管38を通じて送給す
る研磨用液体あるいは電解液中に遊離砥粒を混入させる
ことができ、特に微細粒子による研磨を行う場合にはこ
の遊離砥粒を用いるのが有利であり、粘弾性研磨体22
の全体に対して砥粒の均一な供給を行うことができる。 電解のための電流を供給することなく、砥粒のみを利用
して研磨する場合、上記供給管38を通じて供給する液
体は、研磨部分の冷却、研磨によって除去された微粉の
排出等の作用を行うことになり、比較的少量の液体で所
期の機能を発揮させることができる。 給電用摺接子33及びそれに接触する摺接面32を通じ
て電極工具20に供給する電解用の電流は、被加工物を
プラス極、電極工具20をマイナス極として、電解によ
る研磨を行うためのものである・かかる構成の研磨ユニ
ット5は、第1図ないし第3図に示すように、ライン式
連続送り鏡面研磨装置における摺動枠4に、その多数を
被加工物Wの送り方向と直交する方向に配列させ、且つ
被加工物Wの送り方向に多重に配列させて取付けている
。また、各研磨ユニット5は、その粘弾性研磨体22を
研磨ユニット自体の重力により、一定の小さい力(例え
ば数10 kPa)で被加工物Wに押付けた状態で、摺
動枠4に対して上下方向に摺動自在に支持させている。 研磨ユニット5の重力では粘弾性研磨体の圧接力が不足
する場合には、スプリングの力を付加すればよい。 従って、研磨体22を粘弾性材料により形成したことと
相俟って、その粘弾性研磨体22を表面が平面状をなす
ステンレス鋼定尺板等の被加工物ばかりでなく、表面に
比較的小さい凹凸を有する大面精工作物や小物部品(例
えば時計用バンド)の配列により形成された研磨対象物
にも倣わせることができる。 また、上記のように多数の研磨ユニット5を並設すると
、各研磨ユニットが独立した振動系を構成し、全体とし
て複雑な振!a糸を構成しないので、装置全体の制御が
極めて簡単になる点で非常に有利である。 研磨が欝加工工程を含む場合には、粘弾性研磨体22に
保持させる研磨材を、粗い方から順にライン方向に配置
することにより、非常に能率的に粗さを改善することが
できる。このような配置は。 上述したように多数の研磨ユニット5を多重列に並設す
ることによりはじめて実現できるものである。 上記研磨ユニット5を取付けた摺動枠4は、機枠2上に
設けたローラ40によりコンベヤ装置1の移送方向に対
して直交する方向に往復動自在に支持させ、前記往復動
機構3により、即ちモータ42により減速器43を介し
て駆動される偏心輪45と上記摺動枠4を連杆46によ
り連結して、モータ42の駆動により往復動するように
構成している。この往復動機構3による摺動枠4の往復
動の速度は、上記被加工物Wの送り速度よりも充分に速
い速度1例えば1桁程度速い速度で往復運動させるよう
に設定している。 なお、被加工物をライン方向へ定速送りする上記コンベ
ヤ装置1としては、図示したような無端コンベヤばかり
でなく1例えばローラ・コンベヤ、その他の各種コンベ
ヤを採用することができる。また、被加工物の受台とし
て、被加工物が板材の場合には、板の寸法に合った容器
状の受台を用意し、被加工物が小物部品の場合にはそれ
らの多数を配列収容するのに適した容器状の受台を用意
し、これらの受台を定速送りするような構成を採ること
も可能である。 さらに、被加工物がコイル材である場合には、コンベヤ
によることなく、そのコイル材の巻取り装置を利用して
ライン送りを与えるようにすればよい、 上記構成を有
する鏡面研磨装置においては、各研磨ユニット5におけ
る工具基盤21内の液溜め26に研磨用液体を供給しな
がら回転駆動機により研磨用工具を回転させると、その
回転に伴う遠心力により工具基fi21の表面板の周辺
部に設けた多数の液流出口30から研磨用液体が通液性
を宥する粘弾性研磨体22を通して被加工物表面に供給
される。また、被加工物表面に対する研磨用工具の圧接
力は1例えば研磨ユニット自体の重量程度の非常に小さ
いものでよい、このように研磨体の圧接力を小さくする
と、被加工物の支持機構及び機枠2に大きな強度を必要
とせず、それらの構成を著しく簡単化することができ、
また配列させる研磨五ニー/ トの数を増大させ得るの
で、研磨の能率化を図ることができる。 電解砥粒複合研磨を行う場合には、液体供給管38を通
じて工具20に電解液を供給しながら、工具20と被加
工物Wとの間に数ボルトないし10数ボルトの電圧で数
アンペアの電流を流し、回転駆動機12により工具20
を回転させながら複合研磨すればよい。 上記工具20は、その直径を12cm程度にした場合1
回転駆動l112による数10Orpm以下の回転速度
において、多少の凹凸を有する被加工物表面に圧接して
も、その粘弾性研磨体22の周辺部分が被加工物表面形
状に倣って変形し、その表面にフィツトすることにより
、それを鏡面研磨することができる。
[Industrial Application Field] The present invention is applicable to polishing objects having a relatively wide flat surface such as stainless steel regular plates or coil materials, or large-area workpieces or small objects having relatively small irregularities on the surface. The present invention relates to a polishing apparatus for polishing an object formed by an array of parts to a complete mirror finish by continuous line feeding. [Prior art] Mirror-finished stainless steel sheets are used not only for the interior and exterior of buildings, but also for use in substrates for silicon solar cells, etc. However, recently, users' awareness of the degree of mirror-finishing has changed. is becoming increasingly strict, and items with noticeable abrasive grain lines that are finished with conventional puff polishing are
While it is treated as a quasi-mirror surface, the demand for a completely mirror surface is increasing. Another problem with conventional puff polishing is that the powder layer is so large that it is extremely difficult to suppress it and improve the working environment. In this current situation, there is an increasing demand for mirror polishing of relatively large polishing objects all at once.
Conventional polishing methods such as puff polishing or lapping have difficulty meeting such demands. That is, like a stainless steel standard plate or coil material,
When mirror polishing an object with a relatively large area 1
There are the following problems, but conventional polishing means cannot be expected to solve these problems. First, rather than using a single polishing tool that comes into contact with the object over a large area and polishes it, it is better to arrange a number of polishing tools and use them to polish the object. is considered to be effective and appropriate in various aspects,
Even in this case, unless the force used to press each tool against the object to be polished is sufficiently small, the overall contact pressure between the object and the tool will increase, making it difficult to feed them relative to each other. Not only that, but the object also needs to be supported by extremely strong support means, which increases the size of the apparatus. In addition, when polishing, it is necessary to supply polishing liquid, but if the amount of polishing liquid increases overall, there is a problem that the working environment deteriorates, and if it is not supplied evenly, You cannot expect mirror polishing. Furthermore, in order to obtain a perfect mirror surface without abrasive grain lines, it is impossible to use polishing methods such as puff polishing, in which abrasive grains repeatedly cut the same position, and the Sufficient consideration must be given to the relative movement of tools. [Problems to be Solved by the Invention] An object of the present invention is to press a tool against the polishing object with a sufficiently small force when mirror-polishing an object having a relatively large area as described above. To provide a mirror polishing device that avoids increasing the size of the device, is configured to uniformly supply as little polishing liquid as possible for polishing, and is designed to obtain a perfect mirror surface without abrasive grain lines. It is in. c. Means for Solving Problems] In order to achieve the above object, the line type continuous feed mirror polishing device of the present invention has a tool base attached to the tip of the rotating shaft of the rotary drive machine, which is attached to a disc-shaped surface plate. It is constructed by providing a liquid reservoir at the back to which polishing liquid is supplied, and opening a large number of liquid outlet ports around the surface plate.This tool base has liquid permeability and holds abrasive grains. A viscoelastic abrasive body made of a suitable viscoelastic material and whose surface can be deformed to follow the surface of the workpiece is attached to this. Therefore, a large number of polishing units are arranged in a direction perpendicular to the feed direction of the flat workpiece, and each polishing unit applies a constant force to the viscoelastic polishing body against the workpiece. While pressed, the polishing units are supported so as to be movable in the direction, and the polishing units are reciprocated in a direction perpendicular to the relative feed direction of the workpiece at a speed sufficiently faster than the feed rate. It is characterized by being connected to a reciprocating mechanism. [Function] In each polishing unit, when the polishing tool is rotated by the rotary drive machine while supplying polishing liquid to the liquid reservoir in the tool base, the centrifugal force accompanying the rotation causes damage around the surface plate of the tool base. A polishing liquid is supplied to the surface of the workpiece from a large number of liquid outlets provided in the part through a viscoelastic polishing body having liquid permeability. Therefore, it is not necessary to feed the polishing liquid under pressure, and the pressing force of the polishing tool against the surface of the workpiece may be very small, for example, about the weight of the polishing unit itself. Since the above-mentioned polishing units act in this way, if a large number of them are arranged and reciprocated in a direction perpendicular to the relative feed direction of the workpiece at a speed sufficiently faster than the feed rate, each polishing unit) Since the proper amount of polishing liquid is supplied to the surface, the liquid does not deteriorate the environment overall, and the abrasive grains do not repeatedly grind the same position, so the finished surface is not abrasive. There are no grain lines. Furthermore, the viscoelastic abrasive body is formed of a viscoelastic material,
The surface is a machined surface that can be deformed to follow the surface of the workpiece, and the viscoelastic abrasive body is pressed against the workpiece with a constant force, and the pressing is supported so that it can move freely in the direction. Therefore, not only workpieces with flat surfaces such as stainless steel regular plates or coil materials, but also large-area workpieces with relatively small irregularities on the surface and objects formed by arrays of small parts can be polished. It can also be applied to [Example] Figures 1 to 3 show an example of the line-type continuous feed mirror polishing apparatus of the present invention, which is a conveyor device on which a workpiece W such as a stainless steel plate of fixed length is placed and transferred. M1, a plurality of machine frames 2 installed above the workpieces W to be transferred by the conveyor device l, a reciprocating mechanism 3 provided above each machine frame 2, and a conveyor device l by the reciprocating mechanism 3; The main components include a sliding frame 4 that reciprocates in a direction perpendicular to the direction in which the workpiece W is transferred, and a number of polishing units 5 that are supported by the sliding frame 4 so as to be vertically slidable. There is. FIG. 4 and FIG. 5 illustrate the details of the polishing unit 5, in which the polishing unit 5 is constructed as an apparatus for performing electrolytic abrasive composite polishing. This polishing unit 5 includes a rotary drive machine 12 consisting of a motor and a speed reduction device 1 provided on the output side of the machine body 11.
3, a rotating shaft 14 rotated by them is led out from the device main body 11, and a tool 20 is attached to the tip thereof. The tool 20 mainly includes a substantially disk-shaped tool base 5121 made of conductive copper or other material to function as an electrode for electrolytic polishing, and a viscoelastic polishing body 22 attached to the surface of the tool base 5121. It is configured as. The tool base fi21 has a liquid reservoir 26 formed behind a disc-shaped surface plate 24 attached to the tip of the rotating shaft 14, and the center of the surface plate 24 is attached to the rotating shaft H, and the peripheral part A large number of liquid outlet ports 30 are opened, and a liquid reservoir 26 at the back is opened.
is opened by a liquid supply opening 31, and a power supply sliding contact 33 for supplying an electrolytic current (described later) around the opening 31.
A Jl contact surface 32 is formed for contacting. The viscoelastic abrasive body 22 attached to the surface of the tool base 21 is made of a sponge-like member such as foamed polyurethane or other synthetic resin foam, or a viscoelastic body with liquid permeability such as nylon nonwoven fabric. It is designed to be attached to the surface of the tool base. In addition, the viscoelastic polishing body 22 can have abrasive grains dispersed throughout its surface or inside, and in that case, a synthetic resin pad mixed with abrasive grains such as alumina is used to coat a nylon nonwoven fabric or the like. The abrasive grains can be held in an adhesive state, or the abrasive grains in a free state can be supported by the mesh of the nonwoven fabric without fixing the abrasive grains. A large number of liquid outlet ports 30 opened in the surface plate 24 are provided at the periphery of the tool base 1121, more specifically, slightly inward from the periphery, and the periphery inside the tool base 5121 is provided with polishing liquid or electrolyte. A liquid reservoir 26 is formed, and the liquids are temporarily stored in the liquid reservoir 26, so that the liquid can be stably supplied from a large number of liquid outlet ports 30. Therefore, while the tool A 20 rotates, the polishing liquid or the electrolytic solution sequentially flows out from the liquid outlet 30, and the liquid mainly contacts the viscoelastic polishing body 22 around the tool 20 and the workpiece due to the centrifugal force accompanying the rotation of the tool. Supplied to parts that come into contact with objects. Moreover, since the tool 20 has excellent liquid retention properties, polishing can be performed with a relatively small amount of liquid. The liquid supply pipe 38 is for supplying a polishing liquid or an electrolytic solution to the polishing portion, and has a supply port 40 opened at one end of the device main body 11, and is connected to the tool base through the device main body. A delivery port 41 at the other end is exposed in an open state within the liquid supply opening 31 around the rotating shaft 14 provided behind the rotary shaft 21 . In this way, the polishing liquid or electrolyte is simply injected into a reservoir open to the atmosphere, and the equipment for pumping these liquids can therefore be very simple; for example, B A simple submersible pump or the like may also be used. Instead of or in addition to holding abrasive grains in the viscoelastic polishing body 22, free abrasive grains may be mixed into the polishing liquid or electrolyte that is fed through the liquid supply pipe 38, and especially fine particles. It is advantageous to use these free abrasive grains when polishing with viscoelastic polishing body 22.
It is possible to uniformly supply abrasive grains to the entire area. When polishing is performed using only abrasive grains without supplying electric current for electrolysis, the liquid supplied through the supply pipe 38 functions to cool the polishing part, discharge fine powder removed by polishing, etc. Therefore, the desired function can be achieved with a relatively small amount of liquid. The electrolytic current supplied to the electrode tool 20 through the power feeding sliding contact 33 and the sliding contact surface 32 in contact with it is for polishing by electrolysis, with the workpiece as a positive pole and the electrode tool 20 as a negative pole. As shown in FIGS. 1 to 3, the polishing unit 5 having such a configuration has a large number of sliding frames 4 perpendicular to the feeding direction of the workpiece W in a line type continuous feed mirror polishing device. They are arranged in the same direction, and are arranged in multiple directions in the feeding direction of the workpiece W. In addition, each polishing unit 5 presses the viscoelastic polishing body 22 against the workpiece W with a constant small force (for example, several tens of kPa) due to the gravity of the polishing unit itself, and presses the viscoelastic polishing body 22 against the sliding frame 4. It is supported slidably in the vertical direction. If the force of the viscoelastic polishing body is insufficient due to the gravity of the polishing unit 5, the force of a spring may be added. Therefore, in combination with the fact that the polishing body 22 is made of a viscoelastic material, the viscoelastic polishing body 22 can be used not only for workpieces such as a stainless steel plate with a flat surface, but also for a relatively flat surface. It is also possible to imitate a polished object formed by a large precision workpiece having small irregularities or an arrangement of small parts (for example, a watch band). Furthermore, when a large number of polishing units 5 are arranged in parallel as described above, each polishing unit constitutes an independent vibration system, resulting in a complex vibration system as a whole. Since the A-thread is not constituted, it is very advantageous in that the control of the entire device becomes extremely simple. When polishing includes a pressing step, the roughness can be improved very efficiently by arranging the abrasives held by the viscoelastic polishing body 22 in the line direction in order from the roughest to the roughest. This kind of arrangement. As described above, this can only be realized by arranging a large number of polishing units 5 in parallel in multiple rows. The sliding frame 4 to which the polishing unit 5 is attached is supported by rollers 40 provided on the machine frame 2 so as to be able to reciprocate in a direction perpendicular to the conveyance direction of the conveyor device 1, and by the reciprocating mechanism 3, That is, the eccentric wheel 45 driven by the motor 42 via the decelerator 43 and the sliding frame 4 are connected by a connecting rod 46, and are configured to reciprocate under the drive of the motor 42. The reciprocating speed of the sliding frame 4 by the reciprocating mechanism 3 is set so that the reciprocating speed is sufficiently faster than the feeding speed of the workpiece W, for example, about one order of magnitude faster. The conveyor device 1 for conveying the workpiece at a constant speed in the line direction may be not only an endless conveyor as shown in the figure, but also a roller conveyor or other various conveyors. In addition, if the workpiece is a plate, prepare a container-shaped holder that matches the dimensions of the plate, and if the workpiece is a small part, arrange a large number of them. It is also possible to prepare container-shaped pedestals suitable for accommodating the container and to adopt a configuration in which these pedestals are fed at a constant speed. Furthermore, when the workpiece is a coiled material, line feeding may be provided using a winding device for the coiled material without using a conveyor.In the mirror polishing apparatus having the above configuration, When the polishing tool is rotated by the rotary drive machine while supplying the polishing liquid to the liquid reservoir 26 in the tool base 21 in each polishing unit 5, the centrifugal force accompanying the rotation causes the peripheral part of the surface plate of the tool base fi21 to A polishing liquid is supplied from a large number of liquid outlet ports 30 to the surface of the workpiece through a viscoelastic polishing body 22 that allows liquid permeability. In addition, the pressing force of the polishing tool against the surface of the workpiece may be very small, for example, the weight of the polishing unit itself.If the pressing force of the polishing body is reduced in this way, the support mechanism of the workpiece and the The frame 2 does not require great strength, and its configuration can be significantly simplified.
Furthermore, since the number of polishing units arranged can be increased, polishing efficiency can be improved. When performing electrolytic abrasive composite polishing, while supplying an electrolytic solution to the tool 20 through the liquid supply pipe 38, a current of several amperes at a voltage of several to ten-odd volts is applied between the tool 20 and the workpiece W. The tool 20 is rotated by the rotary drive machine 12.
Composite polishing can be done while rotating. When the diameter of the tool 20 is approximately 12 cm,
At the rotational speed of the rotary drive l112 of several tens of Orpm or less, even if the surface of the workpiece having some irregularities is pressed against it, the peripheral portion of the viscoelastic polishing body 22 deforms to follow the shape of the surface of the workpiece, and the surface By fitting it to the surface, it can be mirror polished.

【発明の効果】【Effect of the invention】

以上に詳述した本発明の鏡面研磨装置によれば、ステン
レス鋼定尺板、またはコイル材のように比較的広い面積
の平面をもつ研磨対象物、あるいは表面に比較的小さい
凹凸を有する大面積工作物や小物部品の配列により形成
された研磨対象物について、ライン式is送りによる極
めて能率的な完全鏡面仕上げをすることができ、最終的
に1/100.層Rmaxのオーダーまで粗さの改善を
行うことができる。
According to the mirror polishing apparatus of the present invention described in detail above, it is possible to polish an object having a flat surface with a relatively large area, such as a stainless steel regular plate or a coil material, or a large area with relatively small irregularities on the surface. For polishing objects formed by workpieces or arrays of small parts, line-type IS feeding allows extremely efficient complete mirror finishing, with a final finish of 1/100. Roughness improvements can be made to the order of layer Rmax.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るライン式連続送り鏡面研磨装置の
平面図、第2図は同正面図、第3図は同側面図、第4図
は研磨ユニットの正面図、第5図は研磨用工具の一部切
欠正面図である。 3・・往復動機構、  5・・研磨ユニット、12・・
・回転駆動機、 14・・回転軸、21・・工具基盤、
   22・・粘弾性研磨体、24・・表面板、   
 26・・液溜め、30φ・液流出口、   W・・被
加工物。
Fig. 1 is a plan view of a line type continuous feed mirror polishing apparatus according to the present invention, Fig. 2 is a front view thereof, Fig. 3 is a side view thereof, Fig. 4 is a front view of the polishing unit, and Fig. 5 is a polishing unit. FIG. 3 is a partially cutaway front view of the tool. 3. Reciprocating mechanism, 5. Polishing unit, 12.
・Rotary drive machine, 14. Rotating shaft, 21. Tool base,
22... Viscoelastic polishing body, 24... Surface plate,
26...Liquid reservoir, 30φ, liquid outlet, W...Workpiece.

Claims (1)

【特許請求の範囲】[Claims] 1、回転駆動機の回転軸の先端に取付ける工具基盤を、
円板状の表面板の背後に研磨用液体が供給される液溜め
を設けて、その表面板における周辺部に多数の液流出口
を開設することにより構成し、この工具基盤に、通液性
を有すると共に砥粒を保持可能な粘弾性材料により形成
して、表面を被加工物の表面に倣って変形可能な加工面
とした粘弾性研磨体を取付け、これによって構成される
研磨ユニットの多数を、平面的な被加工物に対し、その
送り方向と直交する方向に配列させて、各研磨ユニット
を、被加工物に対して粘弾性研磨体を一定の力で押付け
た状態でその押付け方向に移動自在に支持させ、且つそ
れらの研磨ユニットを、上記被加工物の相対的送り方向
と直交する方向にその送り速度よりも充分に速い速度で
往復運動させる往復動機構に連結したことを特徴とする
ライン式連続送り鏡面研磨装置。
1. The tool base to be attached to the tip of the rotating shaft of the rotary drive machine,
The tool base is constructed by providing a liquid reservoir behind the disk-shaped surface plate to which polishing liquid is supplied, and opening a large number of liquid outlet ports around the surface plate. A large number of polishing units are constructed by attaching a viscoelastic polishing body, which is made of a viscoelastic material capable of holding abrasive grains and whose surface can be deformed to follow the surface of the workpiece. are arranged in a direction perpendicular to the feeding direction of the flat workpiece, and each polishing unit is moved in the pressing direction while pressing the viscoelastic polishing body against the workpiece with a constant force. The polishing unit is movably supported by the polishing unit, and is connected to a reciprocating mechanism that reciprocates the polishing unit in a direction orthogonal to the relative feed direction of the workpiece at a speed sufficiently faster than the feed rate. Line type continuous feed mirror polishing equipment.
JP7041686A 1986-03-28 1986-03-28 Line system continuous feeding specular face polishing device Granted JPS62228364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041686A JPS62228364A (en) 1986-03-28 1986-03-28 Line system continuous feeding specular face polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041686A JPS62228364A (en) 1986-03-28 1986-03-28 Line system continuous feeding specular face polishing device

Publications (2)

Publication Number Publication Date
JPS62228364A true JPS62228364A (en) 1987-10-07
JPH0416311B2 JPH0416311B2 (en) 1992-03-23

Family

ID=13430845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041686A Granted JPS62228364A (en) 1986-03-28 1986-03-28 Line system continuous feeding specular face polishing device

Country Status (1)

Country Link
JP (1) JPS62228364A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215920A (en) * 1988-07-04 1990-01-19 Tokyo Electric Power Co Inc:The Wall surface decontaminating device
JPH0366563A (en) * 1989-08-02 1991-03-22 Taika Kogyo Kk Polishing device for metal plate
JPH0679533A (en) * 1992-09-02 1994-03-22 Nishiyama Stainless Chem Kk Complex electrolytic polishing process
JPH08229743A (en) * 1995-11-27 1996-09-10 C Uyemura & Co Ltd Polishing device for plate material
JP2009184093A (en) * 2008-02-08 2009-08-20 Mitsubishi Rayon Co Ltd Continuous polishing device and continuous polishing method of traveling substrate
JP2010516900A (en) * 2007-01-29 2010-05-20 トーソー エスエムディー,インク. Ultra-smooth surface sputtering target and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541108U (en) * 1977-06-06 1979-01-06
JPS54123493U (en) * 1978-02-17 1979-08-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541108U (en) * 1977-06-06 1979-01-06
JPS54123493U (en) * 1978-02-17 1979-08-29

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215920A (en) * 1988-07-04 1990-01-19 Tokyo Electric Power Co Inc:The Wall surface decontaminating device
JPH0366563A (en) * 1989-08-02 1991-03-22 Taika Kogyo Kk Polishing device for metal plate
JPH0679533A (en) * 1992-09-02 1994-03-22 Nishiyama Stainless Chem Kk Complex electrolytic polishing process
JPH08229743A (en) * 1995-11-27 1996-09-10 C Uyemura & Co Ltd Polishing device for plate material
JP2010516900A (en) * 2007-01-29 2010-05-20 トーソー エスエムディー,インク. Ultra-smooth surface sputtering target and method of manufacturing the same
JP2009184093A (en) * 2008-02-08 2009-08-20 Mitsubishi Rayon Co Ltd Continuous polishing device and continuous polishing method of traveling substrate

Also Published As

Publication number Publication date
JPH0416311B2 (en) 1992-03-23

Similar Documents

Publication Publication Date Title
US5658185A (en) Chemical-mechanical polishing apparatus with slurry removal system and method
US20040203325A1 (en) Conditioner disk for use in chemical mechanical polishing
JP3387858B2 (en) Polishing pad conditioner
JP6031560B2 (en) Chemical mechanical polishing equipment
KR100709457B1 (en) Semiconductor wafer grinding method
KR930004543B1 (en) Mirror finish polisher
JPH11156711A (en) Polishing device
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
US4609450A (en) Combined electrolytic-abrasive polishing apparatus
JPS62228364A (en) Line system continuous feeding specular face polishing device
US6537139B2 (en) Apparatus and method for ELID grinding a large-diameter workpiece to produce a mirror surface finish
US6932684B1 (en) Reciprocal blade lapping machine
JP3141853U (en) Polishing tool and polishing apparatus using the polishing tool
JPH05176B2 (en)
JPS61219527A (en) Method and device for electrolytic and abrasive grain composite polishing
CN218874891U (en) Polishing device
JPS61219525A (en) Electrolytic and abrasive grain composite automatic polishing device
CN210115769U (en) Chamfer grinding device
CN208557105U (en) A kind of grinding mechanism
KR20000008937A (en) Method and apparatus for polishing wafer
US4493165A (en) Orbital polisher with elastic abrasive
US20030114086A1 (en) Chemical-mechanical polisher hardware design
JPS6288566A (en) Precision polishing method
JPH08229743A (en) Polishing device for plate material
JPH03136758A (en) Carrier plate type infield polishing device capable of inprocess electrolytic dressing by using ultra-abrasive grain metal bond grind stone

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term